淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-2601202116340700
中文論文名稱 以綠色溶劑製備聚偏二氟乙烯/聚甲基丙烯酸甲酯複合膜應用於間隔式薄膜蒸餾之海水淡化研究
英文論文名稱 A study on preparation of PVDF/PMMA composite membrane with green solvent for seawater desalination by gap membrane distillation
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 109
學期 1
出版年 110
研究生中文姓名 林育賢
研究生英文姓名 Yu-Xian Lin
電子信箱 iankito1314@gmail.com
學號 608400072
學位類別 碩士
語文別 中文
口試日期 2021-01-13
論文頁數 109頁
口試委員 指導教授-鄭東文
委員-童國倫
委員-蘇鎮芳
中文關鍵字 聚偏二氟乙烯  聚甲基丙烯酸甲酯  間隙式薄膜蒸餾  海水淡化 
英文關鍵字 Poly(vinylidene fluoride) (PVDF)  Poly(methyl methacrylate) (PMMA)  gap membrane distillation  seawater desalination 
學科別分類
中文摘要 本研究以濕式相轉換法製備薄膜,應用於薄膜蒸餾中,並以聚偏二氟乙烯(PVDF)和聚甲基丙烯酸甲酯(PMMA)作為膜材,二甲基亞碸(DMSO)為溶劑,探討添加不同PMMA含量(3.6 wt%、7.2 wt%、10.8 wt%、14.4 wt%)對於薄膜結構、平均孔徑、接觸角等影響。
在薄膜蒸餾中,探討不同參數對薄膜蒸餾之滲透通量以及鹽阻隔率之影響,將以AGMD與WGMD在不同進料溫度(50、60、70℃)、流速(0.4、0.6、0.8 L/min)與間隙高度(0、1、3 mm)進行性能探討,以及對薄膜進行回復性和耐久性測試,最後將WGMD和DCMD進行滲透通量以及產出比率(GOR)比較,探討不同薄膜蒸餾之優缺點。
結果顯示,當鑄膜溶液中的PMMA含量增加時,所製備的薄膜表面孔徑、孔洞數、孔隙度與接觸角皆有增加的趨勢,因此有利於薄膜蒸餾之滲透通量的提升。
在薄膜蒸餾中,WGMD的通量隨著間隙高度的降低、進料溫度與流速的增加,皆使滲透通量上升,在進料溫度70℃、流速0.8 L/min、間隙高度為0 mm且PMMA含量為14.4 wt%時,可得到最高滲透通量26.04 L/m2.h。薄膜回復性測試中顯示出三種薄膜於3.5 wt%的NaCl進料中皆有良好的回復性,且在連續24小時的WGMD操作中,F2A8薄膜保持著穩定的滲透通量與99.99%以上的阻隔率,代表此薄膜在長時間操作下有良好的穩定性。最後在WGMD與DCMD的性能比較中,雖然DCMD的滲透通量皆比WGMD高,但在WGMD的GOR皆高於DCMD,代表WGMD在熱能的使用效率較DCMD好,因此WGMD仍具有一定的優勢。
英文摘要 This work studied the preparation of the flat-sheet polyvinylidene fluoride (PVDF)/poly(methyl methacrylate) (PMMA) composite membrane by immersion-precipitation for applying in membrane distillation. The casting dope comprise PVDF, PMMA, and dimethyl sulfoxide .In this work, DMSO was selected as solvent, and the effect of PMMA content (3.6 wt%、7.2 wt%、10.8 wt% and 14.4 wt%, respectively) in the casting dope on the morphology of membrane was investigated.
In membrane distillation, the performance of air gap membrane distillation (AGMD) and water gap membrane distillation (WGMD) at different feed temperature (50-70 ℃), flow rate (0.4-0.8 L/min), gap width (0, 1, 3 mm) was investigated. Finally, the advantages and the disadvantages between DCMD and WGMD was investigated by permeate flux and gained output ratio (GOR).
The experimental results indicated that the pore size, porosity and contact angle of membrane became larger and the thickness of skin layer smaller as increase in PMMA content. The water has higher thermal conductivity than air, thereby the flux of WGMD is higher than AGMD. The flux of membrane distillation increased as the decrease in the gap width and increase the feed temperature and flow rate. The highest flux of WGMD is 26.04 L/m2hr, when the feed temperature is 70 ℃, flow rate is 0.8 L/min and the gap width is 0 mm.
The results of long-term operation show that the flux of the F2A8 membrane have good stability, and the salt rejection maintain 99.99%. In the performance comparison between WGMD and DCMD, although the flux of DCMD is higher than WGMD, the GOR of WGMD is higher than DCMD, which means that WGMD is better than DCMD in energy efficiency.
論文目次 中文摘要 I
英文摘要 II
目錄 IV
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 海水淡化技術 2
1.3 薄膜的種類與應用 4
1.4 薄膜蒸餾技術 6
1.5 綠色溶劑 8
1.6 研究動機與目的 10
第二章 文獻回顧 11
2.1 薄膜蒸餾歷史與發展 11
2.2 影響薄膜蒸餾滲透通量的因素 17
2.2.1薄膜材料性質 17
2.2.2 進料溶液 19
2.2.3 蒸氣壓差 20
2.2.4 進料流速 20
2.2.5 間隙高度 21
2.3 高分子薄膜製備方法 22
2.4 成膜理論-熱力學 24
2.5成膜理論-質傳動力學 27
2.6 PVDF/PMMA複合膜 28
第三章 實驗裝置與方法 29
3.1 實驗藥品 29
3.2 實驗設備 31
3.3 PVDF∕PMMA複合薄膜製備 33
3.3.1 PVDF∕PMMA製膜液配置 33
3.3.2 PVDF∕PMMA鑄膜方式 33
3.3.3 薄膜編號 34
3.4 薄膜性質分析 40
3.4.1 薄膜性質分析儀器 40
3.4.2 薄膜結構分析 41
3.4.3 薄膜膜厚與孔隙度量測 42
3.4.4 薄膜接觸角量測 43
3.4.5 薄膜機械強度測試 43
3.4.6 薄膜晶體結構特性測試 43
3.4.7 鑄膜液黏度測試 44
3.5 薄膜蒸餾裝置 45
3.5.1 直接接觸式薄膜蒸餾實驗模組 45
3.5.2 間隙式薄膜蒸餾實驗模組 45
3.6 薄膜蒸餾實驗 51
3.6.1 薄膜蒸餾操作條件 51
3.6.2 流量計校正 52
3.6.3 薄膜蒸餾實驗步驟 53
3.7 薄膜蒸餾結果分析 55
3.7.1 滲透通量分析與計算 55
3.7.2 薄膜蒸餾產出比率分析 56
3.7.3 鹽類含量之分析方法與阻隔率計算 56
第四章 結果與討論 58
4.1 鑄膜液黏度分析 58
4.2 薄膜結構與性質分析 60
4.2.1 薄膜SEM圖結構分析 60
4.2.2 薄膜孔徑與孔隙度分析 66
4.2.3 薄膜接觸角分析 67
4.2.4 薄膜機械強度分析 67
4.2.5 薄膜晶體結構分析 68
4.3 間隙式薄膜蒸餾 74
4.3.1 不同PMMA含量薄膜之滲透通量比較 74
4.3.2 AGMD與WGMD之滲透通量比較 75
4.3.3 薄膜於WGMD中不同操作條件之探討 78
4.3.4 各薄膜於不同進料濃度之回復性探討 84
4.3.5 薄膜於長時間操作中之結果 86
4.4 DCMD與WGMD性能比較 88
4.5 薄膜蒸餾通量與產水成本之文獻比較 91
第五章 結論 96
參考文獻 99

圖目錄
圖1-1 MSF與MED運作原理示意圖[4] 3
圖1-2 薄膜相關程序與分離成分示意圖[7] 5
圖1-3 常用溶劑選擇指標表[12] 9
圖2-1 (A) DCMD, (B) AGMD, (C) SGMD, (D) VMD示意圖[18] 16
圖2-2 AGMD、DCMD、PGMD與VMD的蒸氣傳輸機制圖[31] 16
圖2-3 高分子-溶劑-非溶劑之三相圖[59] 26
圖2-4 製膜液與沉澱槽擴散示意圖[52] 27
圖3-1 中空水槽示意圖 (鑄膜) 35
圖3-2 中空水槽示意圖 (沉澱槽) 36
圖3-3 親水支撐層之SEM圖 37
圖3-4 親水支撐層示意圖[ASAHI KASEI公司] 37
圖3-5 PVDF/PMMA複合膜製作流程示意圖 38
圖3-6 DCMD模組示意圖 46
圖3-7 DCMD 壓克力模組示意圖(進料與滲透側) 47
圖3-8 AGMD與WGMD模組示意圖 48
圖3-9 AGMD與WGMD進料側壓克力模組示意圖 49
圖3-10 AGMD與WGMD冷卻側壓克力模組示意圖 50
圖3-11進料側流量計校正曲線 52
圖3-12 冷卻水側流量計校正曲線 52
圖3-13 直接接觸式薄膜蒸餾裝置示意圖 54
圖3-14 間隙式薄膜蒸餾裝置示意圖 55
圖3-15 氯化鈉水溶液檢量線 57
圖4-1 20000倍薄膜表面SEM圖 62
圖4-2 50000倍薄膜表面SEM圖 63
圖4-3 500倍薄膜截面SEM圖 64
圖4-4 20000倍薄膜截面SEM圖 65
圖4-5 三種PVDF結晶相之XRD[66] 69
圖4-6 PVDF粉末之XRD分析圖 70
圖4-7 PMMA粉末之XRD分析圖 70
圖4-8 支撐層之XRD分析圖 71
圖4-9製備不同PMMA含量之薄膜XRD圖(1) 72
圖4-10製備不同PMMA含量之薄膜XRD圖(2) 73
圖4-11 不同PMMA含量薄膜於WGMD之滲透通量比較圖 75
圖4-12 F2A8薄膜於AGMD與WGMD之滲透通量比較圖 77
圖4-13 薄膜於間隙高度0mm以及50 ℃下不同進料流速之通量圖 80
圖4-14 薄膜於間隙高度0mm以及60 ℃下不同進料流速之通量圖 80
圖4-15 薄膜於間隙高度0mm以及70 ℃下不同進料流速之通量圖 81
圖4-16 F2A8薄膜於間隙高度0mm中不同進料溫度與流速之通量圖 81
圖4-17 薄膜於60 ℃下間隙高度3mm以及不同進料流速之通量圖 82
圖4-18 薄膜於60 ℃下間隙高度1mm以及不同進料流速之通量圖 82
圖4-19 薄膜於60 ℃下間隙高度0mm以及不同進料流速之通量圖 83
圖4-20 F2A8薄膜於60 ℃下不同間隙高度與進料流速之通量圖 83
圖4-21薄膜於WGMD中進料3.5 wt%鹽水前後之純水通量圖 85
圖4-22 薄膜於WGMD中進料15 wt%鹽水前後之純水通量圖 85
圖4-23 F2A8薄膜於WGMD中操作24小時之滲透通量與導電度圖 87
圖4-24 不同薄膜於DCMD與WGMD下之滲透通量圖 90
圖4-25 不同薄膜於DCMD與WGMD下之GOR圖 90
圖4-26 不同太陽能集熱方式示意圖[81] 94
圖4-27 不同海水淡化方式之成本圖(左為大型系統;右為小型系統)[82] 95


表目錄
表3-1 親水支撐層性質表 39
表3-2 薄膜製備條件表 39
表3-3 薄膜編號表 40
表3-4 薄膜蒸餾操作條件表 51
表4-1 鑄膜液黏度表 59
表4-2 薄膜性質分析表 69
表4-3 DCMD實驗結果之文獻比較表 93
表4-4 一般DCMD與熱回收系統DCMD之成本與性能評估表[81] 94
表4-5 DCMD搭配三種太陽能集熱方式之成本與性能評估表[82] 95



參考文獻 1. Huang, Y. C., & Lee, C. M. (2019). Designing an optimal water supply portfolio for Taiwan under the impact of climate change: Case study of the Penghu area. Journal of Hydrology, 573, 235-245.
2. Luo, T., Young, R., & Reig, P. (2015). Aqueduct projected water stress country rankings. Technical Note.
3. Panagopoulos, A., Haralambous, K. J., & Loizidou, M. (2019). Desalination brine disposal methods and treatment technologies-A review. Science of the Total Environment, 693, 133545.
4. Hanshik, C., Jeong, H., Jeong, K. W., & Choi, S. H. (2016). Improved productivity of the MSF (multi-stage flashing) desalination plant by increasing the TBT (top brine temperature). Energy, 107, 683-692.
5. Morillo, J., Usero, J., Rosado, D., El Bakouri, H., Riaza, A., & Bernaola, F. J. (2014). Comparative study of brine management technologies for desalination plants. Desalination, 336, 32-49.
6. Pangarkar, B. L., Sane, M. G., & Guddad, M. (2011). Reverse osmosis and membrane distillation for desalination of groundwater: a review. ISRN Materials Science, 2011.
7. Strathmann, H., Giorno, L., Piacentini, E., & Drioli, E. (2017). 1.4 Basic Aspects in Polymeric Membrane Preparation. Comprehensive Membrane Science and Engineering, 65.
8. Smolders, K. F. A. C. M., & Franken, A. C. M. (1989). Terminology for membrane distillation. Desalination, 72(3), 249-262.

9. Koschikowski, J., Wieghaus, M., Rommel, M., Ortin, V. S., Suarez, B. P., & Rodríguez, J. R. B. (2009). Experimental investigations on solar driven stand-alone membrane distillation systems for remote areas. Desalination, 248(1-3), 125-131.
10. El-Zanati, E., & El-Khatib, K. M. (2007). Integrated membrane–based desalination system. Desalination, 205(1-3), 15-25.
11. Schwager, P., Decker, N., & Kaltenegger, I. (2016). Exploring green chemistry, sustainable chemistry and innovative business models such as chemical leasing in the context of international policy discussions. Current Opinion in Green and Sustainable Chemistry, 1, 18-21.
12. Prat, D., Wells, A., Hayler, J., Sneddon, H., McElroy, C. R., Abou-Shehada, S., & Dunn, P. J. (2015). CHEM21 selection guide of classical-and less classical-solvents. Green Chemistry, 18(1), 288-296.
13. B.R. Bodell. (1963). Silicone Rubber Vapor Diffusion in Saline Water Distillation. United States Patent Serial.
14. Weyl, Peter K. (1967). Recovery of Demineralized Water from Saline Waters. United States Patent US3340186A.
15. Findley, M. E. (1967). Vaporization through porous membranes. Industrial & Engineering Chemistry Process Design and Development, 6(2), 226-230.
16. Schofield, R. W., Fane, A. G., & Fell, C. J. D. (1987). Heat and mass transfer in membrane distillation. Journal of Membrane Science, 33(3), 299-313.
17. Kamide, K. (1990). Thermodynamics of Polymer Solutions. Elsevier.
18. Lawson, K. W., & Lloyd, D. R. (1997). Membrane distillation. Journal of Membrane Science, 124(1), 1-25.
19. Khayet, M., Godino, P., & Mengual, J. I. (2000). Theory and experiments on sweeping gas membrane distillation. Journal of Membrane Science, 165(2), 261-272.
20. Phattaranawik, J., Jiraratananon, R., Fane, A. G., & Halim, C. (2001). Mass flux enhancement using spacer filled channels in direct contact membrane distillation. Journal of Membrane Science, 187(1-2), 193-201.
21. Phattaranawik, J., Jiraratananon, R., & Fane, A. G. (2003). Heat transport and membrane distillation coefficients in direct contact membrane distillation. Journal of Membrane Science, 212(1-2), 177-193.
22. Ugrozov, V. V., Elkina, I. B., Nikulin, V. N., & Kataeva, L. I. (2003). Theoretical and experimental research of liquid-gap membrane distillation process in membrane module. Desalination, 157(1-3), 325-331.
23. Cath, T. Y., Adams, V. D., & Childress, A. E. (2004). Experimental study of desalination using direct contact membrane distillation: a new approach to flux enhancement. Journal of Membrane Science, 228(1), 5-16.
24. Alklaibi, A. M., & Lior, N. (2005). Transport analysis of air-gap membrane distillation. Journal of Membrane Science, 255(1-2), 239-253.
25. Xu, Y., Zhu, B. K., & Xu, Y. Y. (2006). Pilot test of vacuum membrane distillation for seawater desalination on a ship. Desalination, 189(1-3), 165-169.
26. Cerneaux, S., Strużyńska, I., Kujawski, W. M., Persin, M., & Larbot, A. (2009). Comparison of various membrane distillation methods for desalination using hydrophobic ceramic membranes. Journal of Membrane Science, 337(1-2), 55-60.
27. Francis, L., Ghaffour, N., Alsaadi, A. A., & Amy, G. L.(2013).Material gap membrane distillation: A new design for water vapor flux enhancement. Journal of Membrane Science, 448, 240-247.
28. Khalifa, A. E. (2015). Water and air gap membrane distillation for water desalination–An experimental comparative study. Separation and Purification Technology, 141, 276-284.
29. Gao, L., Zhang, J., & Gray, S. (2017). Experimental study of hollow fiber permeate gap membrane distillation and its performance comparison with DCMD and SGMD. Separation and Purification Technology, 188, 11-23.
30. Gao, L., Zhang, J., & Gray, S. (2019). Modelling mass and heat transfers of Permeate Gap Membrane Distillation using hollow fiber membrane. Desalination, 467, 196-209.
31. Eykens, L., Reyns, T., De Sitter, K., Dotremont, C., Pinoy, L., & Vander Bruggen, B. (2016). How to select a membrane distillation configuration? Process conditions and membrane influence unraveled. Desalination, 399, 105-115.
32. Khalifa, A. E., & Alawad, S. M. (2018). Air gap and water gap multistage membrane distillation for water desalination. Desalination, 437, 175-183.

33. Amaya-Vías, D., Nebot, E., & López-Ramírez, J. A. (2018). Comparative studies of different membrane distillation configurations and membranes for potential use on board cruise vessels. Desalination, 429, 44-51.
34. Andrés-Mañas, J. A., Ruiz-Aguirre, A., Acién, F. G., & Zaragoza, G. (2020). Performance increase of membrane distillation pilot scale modules operating in vacuum-enhanced air-gap configuration. Desalination, 475, 114202.
35. Alkhudhiri, A., Darwish, N., & Hilal, N. (2012). Membrane distillation: A comprehensive review. Desalination, 287, 2-18.
36. Jeong, S., Shin, B., Jo, W., Kim, H. Y., Moon, M. W., & Lee, S. (2016). Nanostructured PVDF membrane for MD application by an O2 and CF4 plasma treatment. Desalination, 399, 178-184.
37. Zahirifar, J., Hadi, A., Karimi-Sabet, J., & Dastbaz, A. (2019). Influence of hexagonal boron nitride nanosheets as the additives on the characteristics and performance of PVDF for air gap membrane distillation. Desalination, 460, 81-91.
38. Dastbaz, A., Karimi-Sabet, J., Ahadi, H., & Amini, Y. (2017). Preparation and characterization of novel modified PVDF-HFP/GO/ODS composite hollow fiber membrane for Caspian Sea water desalination. Desalination, 424, 62-73.
39. Cassard, H. M., & Park, H. G. (2018). How to select the optimal membrane distillation system for industrial applications. Journal of Membrane Science, 565, 402-410.
40. Gryta, M. (2008). Fouling in direct contact membrane distillation process. Journal of Membrane Science, 325(1), 383-394.
41. Banat, F. A., & Simandl, J. (1994). Theoretical and experimental study in membrane distillation. Desalination, 95(1), 39-52.
42. Liu, C., Chen, L., Zhu, L., Wu, Z., Hu, Q., & Pan, M. (2019). The effect of feed temperature on biofouling development on the MD membrane and its relationship with membrane performance: An especial attention to the microbial community succession. Journal of Membrane Science, 573, 377-392.
43. Martı́nez-Dı́ez, L., & Vazquez-Gonzalez, M. I. (1999). Temperature and concentration polarization in membrane distillation of aqueous salt solutions. Journal of Membrane Science, 156(2), 265-273.
44. Al-Obaidani, S., Curcio, E., Macedonio, F., Di Profio, G., Al-Hinai, H., & Drioli, E. (2008). Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation. Journal of Membrane Science, 323(1), 85-98.
45. Winter, D., Koschikowski, J., & Wieghaus, M. (2011). Desalination using membrane distillation: Experimental studies on full scale spiral wound modules. Journal of Membrane Science, 375(1-2), 104-112.
46. Im, B. G., Lee, J. G., Kim, Y. D., & Kim, W. S. (2018). Theoretical modeling and simulation of AGMD and LGMD desalination processes using a composite membrane. Journal of Membrane Science, 565, 14-24.
47. Young, T. H., Huang, J. H., & Chuang, W. Y. (2002). Effect of evaporation temperature on the formation of particulate membranes from crystalline polymers by dry-cast process. European Polymer Journal, 38(1), 63-72.
48. Young, T. H., Huang, Y. H., & Huang, Y. S. (2000). The formation mechanism of EVAL membranes prepared with or without the nonsolvent absorption process. Journal of Membrane Science, 171(2), 197-206.
49. Young, T. H., Lin, D. T., Chen, L. Y., Huang, Y. H., & Chiu, W. Y. (1999). Membranes with a particulate morphology prepared by a dry–wet casting process. Polymer, 40(19), 5257-5264.
50. Matsuyama, H., Kim, M. M., & Lloyd, D. R. (2002). Effect of extraction and drying on the structure of microporous polyethylene membranes prepared via thermally induced phase separation. Journal of Membrane Science, 204(1-2), 413-419.
51. Shang, M., Matsuyama, H., Maki, T., Teramoto, M., & Lloyd, D. R. (2003). Preparation and characterization of poly (ethylene‐co‐vinyl alcohol) membranes via thermally induced liquid–liquid phase separation. Journal of Applied Polymer Science, 87(5), 853-860.
52. Mulder, M., & Mulder, J. (1996). Basic Principles of Membrane Technology. Springer science & business media.
53. Bottino, A., Capannelli, G., Munari, S., & Turturro, A. (1988). High performance ultrafiltration membranes cast from LiCl doped solutions. Desalination, 68(2-3), 167-177.
54. Tompa, H. (1956). Polymer Solutions. Butterworths Scientific Publications.
55. 張啟林. (2004). 多孔型複合薄膜培養神經細胞之研究, 淡江大學化學工程與材料工程學系碩士班, 1-134.
56. Sperling, L. H. (2005). Introduction to Physical Polymer Science. John Wiley & Sons.
57. Reuvers, A. J., Altena, F. W., & Smolders, C. A. (1986). Demixing and gelation behavior of ternary cellulose acetate solutions. Journal of Polymer Science Part B: Polymer Physics, 24(4), 793-804.
58. Young, T. H., Lin, D. J., Gau, J. J., Chuang, W. Y., & Cheng, L. P. (1999). Morphology of crystalline Nylon-610 membranes prepared by the immersion-precipitation process: competition between crystallization and liquid–liquid phase separation. Polymer, 40(18), 5011-5021.
59. Baker, R. W. (2012). Membrane Technology and Applications. John Wiley & Sons.
60. Cheng, L. P., Dwan, A. H., & Gryte, C. C. (1995). Membrane formation by isothermal precipitation in polyamide‐formic acid‐water systems i. Description of membrane morphology. Journal of Polymer Science Part B: Polymer Physics, 33(2), 211-222.
61. Lin, D. J., Chang, C. L., Lee, C. K., & Cheng, L. P. (2006). Fine structure and crystallinity of porous Nylon 66 membranes prepared by phase inversion in the water/formic acid/Nylon 66 system. European Polymer Journal, 42(2), 356-367.
62. 張聰譯. (2019). 聚偏二氟乙烯複合膜應用於間隔式薄膜蒸餾之海水淡化研究. 淡江大學化學工程與材料工程學系碩士班學位論文, 1-83.
63. Nunes, S. P., & Peinemann, K. V. (1992). Ultrafiltration membranes from PVDF/PMMA blends. Journal of Membrane Science, 73(1), 25-35.
64. Ochoa, N. A., Masuelli, M., & Marchese, J. (2003). Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes. Journal of Membrane Science, 226(1-2), 203-211.
65. Rajabzadeh, S., Maruyama, T., Ohmukai, Y., Sotani, T., & Matsuyama, H. (2009). Preparation of PVDF/PMMA blend hollow fiber membrane via thermally induced phase separation (TIPS) method. Separation and Purification Technology, 66(1), 76-83.
66. Martins, P., Lopes, A. C., & Lanceros-Mendez, S. (2014). Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications. Progress in Polymer Science, 39(4), 683-706.
67. Tomaszewska, M. (1996). Preparation and properties of flat-sheet membranes from poly (vinylidene fluoride) for membrane distillation. Desalination, 104(1-2), 1-11.
68. Khayet, M., Cojocaru, C., & García-Payo, M. D. C. (2010). Experimental design and optimization of asymmetric flat-sheet membranes prepared for direct contact membrane distillation. Journal of Membrane Science, 351(1-2), 234-245.
69. Criscuoli, A., Carnevale, M. C., & Drioli, E. (2008). Evaluation of energy requirements in membrane distillation. Chemical Engineering and Processing: Process Intensification, 47(7), 1098-1105.
70. Hou, D., Fan, H., Jiang, Q., Wang, J., & Zhang, X. (2014). Preparation and characterization of PVDF flat-sheet membranes for direct contact membrane distillation. Separation and Purification Technology, 135, 211-222.
71. Drioli, E., Ali, A., Simone, S., Macedonio, F., Al-Jlil, S. A., Al Shabonah, F. S., ... & Criscuoli, A. (2013). Novel PVDF hollow fiber membranes for vacuum and direct contact membrane distillation applications. Separation and Purification Technology, 115, 27-38.
72. Teoh, M. M., Bonyadi, S., & Chung, T. S. (2008). Investigation of different hollow fiber module designs for flux enhancement in the membrane distillation process. Journal of Membrane Science, 311(1-2), 371-379.
73. Yang, X., Wang, R., Shi, L., Fane, A. G., & Debowski, M. (2011). Performance improvement of PVDF hollow fiber-based membrane distillation process. Journal of Membrane Science, 369(1-2), 437-447.
74. 葉國麟. (2012). 真空式與直接接觸式薄膜蒸餾於海水淡化之性能比較. 淡江大學化學工程與材料工程學系碩士班學位論文, 1-77.
75. 歐陽興. (2014). 薄膜蒸餾用平板型聚偏二氟乙烯薄膜之製備. 淡江大學化學工程與材料工程學系碩士班學位論文, 1-80.
76. 林智偉. (2014). 聚偏二氟乙烯中空纖維膜應用於薄膜蒸餾之研究. 淡江大學化學工程與材料工程學系碩士班學位論文, 1-78.
77. 邱士恩. (2015). 聚偏二氟乙烯複合薄膜應用於海水淡化之研究. 淡江大學化學工程與材料工程學系碩士班學位論文, 1-87.
78. 廖一錚. (2016). 聚偏二氟乙烯中空纖維膜應用於海水淡化之研究. 淡江大學化學工程與材料工程學系碩士班學位論文, 1-75.
79. 楊涴婷. (2020). 非恆溫浸漬沉澱法製備聚偏二氟乙烯複合膜及其應用於海水淡化之研究. 淡江大學化學工程與材料工程學系碩士班學位論文, 1-98.
80. Soomro, M. I., Kim, W. S., & Kim, Y. D. (2020). Performance and cost comparison of different concentrated solar power plants integrated with direct-contact membrane distillation system. Energy Conversion and Management, 221, 113193.
81. Al-Obaidani, S., Curcio, E., Macedonio, F., Di Profio, G., Al-Hinai, H., & Drioli, E. (2008). Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation. Journal of Membrane Science, 323(1), 85-98.
82. Warsinger, D. M., Swaminathan, J., & Lienhard, J. H. (2017). Ultrapermeable membranes for batch desalination: maximum desalination energy efficiency, and cost analysis. The International Desalination Association World Congress.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2024-02-02公開。
  • 同意授權瀏覽/列印電子全文服務,於2024-02-02起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2487 或 來信