淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2512200821253000
中文論文名稱 太陽能電源管理系統非反向升降壓轉換器之穩定性分析
英文論文名稱 Stability Analysis of a Non-Inverting Synchronous Buck-Boost Power Converter for a Solar Power Management System
校院名稱 淡江大學
系所名稱(中) 航空太空工程學系碩士班
系所名稱(英) Department of Aerospace Engineering
學年度 97
學期 1
出版年 98
研究生中文姓名 鄭淳仁
研究生英文姓名 Chun-Jen Cheng
學號 695430248
學位類別 碩士
語文別 英文
口試日期 2009-01-05
論文頁數 71頁
口試委員 指導教授-蕭照焜
委員-馬德明
委員-謝傑任
中文關鍵字 升降壓轉換器  馬可夫跳躍系統  太陽能電源管理系統 
英文關鍵字 buck-boost converter  solar power management system  Markov jump system 
學科別分類 學科別應用科學航空太空
中文摘要 本論文探討太陽能電源管理系統之非反向升降壓轉換器之穩定性分析。我們所設計的轉換器可以由降壓模式、升壓模式與升降壓模式中依據輸入的電壓不同來做切換。太陽能板在大氣條件與陽光入射角的不同下,太陽能板電壓輸出會有很大的變化。論文中分別對三種模式與不同的參數做增益裕度(Gain Margin)與相位裕度(Phase Margin)之分析,可以觀察到各參數對系統之影響,主要的參數為電容、電感與負載。這種切換式的系統我們把它描述成馬可夫跳躍系統(Markov jump system)的型式,在仔細選擇我們的系統參數後,我們可以確保此系統的增益與相位裕度,同時滿足均方穩定(mean square stability)的需求。最後我們把此非反向升降壓轉換器應用於太陽能電源管理系統上,來從太陽能板上獲取最大的能量。
英文摘要 This paper presents the stability analysis of a non-inverting synchronous buck-boost DC/DC power converter for a solar power management system. The system can operate in buck, buck-boost or boost mode according to the condition of the supply voltage. The variation of the supply voltage arises from the rapid changes of the atmospheric condition or sunlight incident angle. The stability margins of each individual operation mode for different system parameters (inductor, capacitor) and load conditions are analyzed first. The results show that the stability margins depend on the inductor and capacitor selected for the converter and depend on the load conditions also. The systems are then modeled as Markov jump systems for evaluating the mean square stability of the systems. With careful selection of the system parameters, adequate stability margins of each individual operation mode and mean square stability of the jump system can be assured. The buck-boost converter is incorporated into the solar power battery management system to maximize the utility of the available solar power drawn from the solar panel.
論文目次 Contents
Chinses Abstract……………………………………………………………………...I
Abstract………………………………………………………………………………II
Contents ......................................................................................................................III
List of Tables...............................................................................................................IV
List of Figures..............................................................................................................V
Chapter 1 ......................................................................................................................1
Introduction..................................................................................................................1
Chapter 2 ......................................................................................................................4
Synchronous Buck-Boost Converter Background ....................................................4
Chapter 3 ......................................................................................................................8
Dynamic Characteristics .............................................................................................8
Chapter 4 ....................................................................................................................42
Mean Square Stability Analysis ................................................................................42
Chapter 5 ....................................................................................................................46
Battery Management Application ............................................................................46
5.1 Design Consideration...................................................................................46
5.2 Flowchart of Battery Management ............................................................49
5.3 Schematic of Battery Management ............................................................55
Chapter 6 ....................................................................................................................60
Conclusion ..................................................................................................................60
Reference ....................................................................................................................61
Appendix.....................................................................................................................63

List of Tables
Table 1 Summaries of the Stability Margins.............................................40
Table 2 Summaries of the Stability Margins.............................................41
Table 3 Indicated light of batteries checking............................................53

List of Figures
Figure 1-1 Configuration of the solar power management system................3
Figure 1-2 Solar power variations due to rapid changes of the atmosphere
condition ................................................................................................3
Figure 2-1 Synchronous non-inverting buck-boost power converter ............4
Figure 2-2 Buck Mode Operation (a) Inductor charge (b) Inductor discharge
................................................................................................................5
Figure 2-3 Boost Mode Operation (a) Inductor charge (b) Inductor
discharge ................................................................................................6
Figure 2-4 Buck-Boost Mode Operation (a) Inductor charge (b) Inductor
discharge ................................................................................................7
Figure 3-1 Buck mode during charging state.................................................8
Figure 3-2 Buck mode during discharging state ..........................................10
Figure 3-3 Boost mode during charging state..............................................13
Figure 3-4 Boost mode during discharging state .........................................14
Figure 3-5 Buck-boost mode during charging state.....................................17
Figure 3-6 Buck-boost mode during discharging state ................................19
Figure 3-7 Bode of Buck mode with C changed..........................................22
Figure 3-8 Stability margin of Buck mode with C changed ........................22
Figure 3-9 Bode of Boost mode with C changed.........................................23
Figure 3-10 Stability margin of Boost mode with C changed .....................23
Figure 3-11 Bode of Buck-Boost mode with C changed .............................24
Figure 3-12 Stability margin of Buck-Boost mode with C changed............24
Figure 3-13 Bode of Buck mode with L changed........................................25
Figure 3-14 Stability margin of Buck mode with L changed.......................26
Figure 3-15 Bode of Boost mode with L changed .......................................26
Figure 3-16 Stability margin of Boost mode with L changed......................27
Figure 3-17 Bode of Buck-Boost mode with L changed .............................27
Figure 3-18 Stability margin of Buck-Boost mode with L changed............28
Figure 3-19 Gain Margin of the Boost mode with L and C change.............29
Figure 3-20 Gain Margin of the buck-Boost mode with L and C change....29
Figure 3-21 Gain Margin of the Buck mode with L and C change..............30
Figure 3-22 Phase Margin of the Boost mode with L and C change ...........30
Figure 3-23 Gain Margin of the Buck-Boost mode with L and C change...31
Figure 3-24 Bode of Buck mode with R changed........................................32
Figure 3-25 Stability margin of Buck mode with R changed ......................32
Figure 3-26 Bode of Boost mode with R changed.......................................33
Figure 3-27 Stability margin of Boost mode with R changed .....................33
Figure 3-28 Bode of Buck-Boost mode with R changed.............................34
Figure 3-29 Stability margin of Buck-Boost mode with R changed............34
Figure 3-30 Bode of Buck mode with R changed........................................35
Figure 3-31 Stability margin of Buck mode with R changed ......................36
Figure 3-32 Bode of Boost mode with R changed.......................................36
Figure 3-33 Stability margin of Boost mode with R changed .....................37
Figure 3-34 Bode of Buck-Boost mode with R changed.............................37
Figure 3-35 Stability margin of Buck-Boost mode with R changed............38
Figure 3-36 Stability Margins of the Buck-Boost Power Converter System
for 21 H, L􀀠 􀁐 C􀀠470􀁐 F ..................................................................39
Figure 3-37 Stability Margins of the Buck-Boost Power Converter System
forL􀀠15􀁐H, C􀀠600􀁐 F ..................................................................40
Figure 4-1 Markov Jump Linear System with three Operation Modes .......44
Figure 5-1 Functional block diagram of the battery management system...48
Figure 5-2 Li-ion battery modules and relay control structure ....................49
Figure 5-3 Constant current/ voltage control circuitry ................................49
Figure 5-4 Flowchart of battery management..............................................51
Figure 5-5 Flowchart of initialization..........................................................52
Figure 5-6 Flowchart of battery checking....................................................53
Figure 5-7 Flowchart of Charging/Discharging model selection.................54
Figure 5-8 Flowchart of Interrupt ................................................................55
Figure 5-9 Schematic of battery management .............................................56
Figure 5-10 Schematic of PIC16F876A ......................................................57
Figure 5-11 Schematic of MUX Model .......................................................58
Figure 5-12 Schematic of Relay Model .......................................................59

參考文獻 [1] Duarte, J. L., Wijntjens, J. A. A., and Rozenboom, J., “Designing light sources for solar-powered systems”. Proc. 5th European conf. Power Electronics and Application, vol. 8, 1993. p. 78–82.
[2] Hermann, U, and Langer, H. G., “Low-cost DC to AC converter for photovoltaic power conversion in residential applications”. Proc. IEEE PESC’93, June 1993. p. 588–94.
[3] Bose, B. K., Szczesny, P. M., and Steigerward, R. L., “Microcomputer control of a residential photovoltaic-power conditioning system”. IEEE Trans Ind Applicat 1985; IA-20:1182–91.
[4] Shiau, J.-K., Ma, D.-M., Yang, P.-Y., Wang, G.-F., and Gong, J.-H., “Design of a Solar Power Management System for an Experimental UAV”, IEEE Transactions on Aerospace and Electronic Systems, to appear.
[5] Weissbach, R. S., and Torres, K. M., “A Non-inverting Buck-Boost Converter with Reduced Components Using a Microcontroller”. SoutheastCon, 2001. Proceedings. IEEE 30 March-1 April 2001 pp.79-84
[6] Sahu B., and Rincon-Mora, G.A, “A Low Voltage, Dynamic, Noninverting, Synchronous Buck-Boost Converter for Portable Application”, IEEE Transactions on Power Electronics, 2004, Vol. 19, No.2,: pp. 443-452.
[7] Gaboriault, M., and Notman, A., “A High Efficiency, Non-Inverting, Buck-Boost DC-DC Converter”, Applied Power Electronics Conference and Exposition, 2004. APEC’04. Niniteenth Annual IEEE ,vol.3 ,pp. 1411-1415.
[8] Qiao, H., Zhang, Y., Yao, Y., and Wei, L., “Analysis of Buck-Boost Converter for Fuel Cell Electric Vehicles”. Vehicular Electronics and Safety, 2006. ICVES 2006. IEEE International Conference on 13-15 DEC. 2006, pp.109-113.
[9] Costa, O. L. V., Fragoso, M. D., and Marques, R. P., Discrete-Time Markov Jump Systems, Springer-Verlag, London, 2005.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2009-01-07公開。
  • 同意授權瀏覽/列印電子全文服務,於2009-01-07起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信