淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-2508202011142700
中文論文名稱 在纖維強化塑膠射出製程中不同纖維長度引導其微結構變化與巨觀特性變異相關性之研究
英文論文名稱 The Effects of Fiber Length on Micro-structure and Macro-properties of Fiber Reinforced Injection Molded Parts
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 108
學期 2
出版年 109
研究生中文姓名 朱家豪
研究生英文姓名 Jia-Hau Chu
電子信箱 403400301@gms.tku.edu.tw
學號 607400131
學位類別 碩士
語文別 中文
口試日期 2020-07-08
論文頁數 107頁
口試委員 指導教授-黃招財
委員-黃聖杰
委員-林國賡
中文關鍵字 射出成型  纖維強化塑膠  纖維微結構  纖維長度分布  機械性質 
英文關鍵字 Injection molding  fiber reinforced thermoplastics(FRT)  fiber microstructure  fiber length distribution  mechanical properties 
學科別分類
中文摘要 論文提要內容:
隨著環保意識的興起,節能減碳已經成為各國的主要發展政策之一,由於纖維強化熱塑性塑膠(fiber reinforced thermoplastics, FRT)具有非常優異的特性,近年來已成為產業中主要的輕量化技術之一,尤其是在汽車及航太產業中。然而,因為纖維在塑膠內部的微結構非常複雜且很難掌握,更無法有效定量其對成品之巨觀翹曲變形以及機械性質的影響。為此,本研究利用三種不同澆口型態的(Model I為側邊入料、Model II為直接入料、Model III為雙邊入料)標準拉伸試片(ASTM D638)的複合幾何模型,並同時利用四種不同之材料,包含純聚丙烯(PP)、3 mm之短纖維(SF)、12 mm之中纖維(MF)以及25 mm之長纖維(LF)材料,藉此複合幾何改變以及不同材料之纖維長度差異來探索纖維微結構之變化以及其對成品巨觀性質之影響。具體來說,本研究同時利用CAE模擬分析來探討微結構與巨觀性質之變化,並利用實際射出實驗來加以驗證。結果顯示,在射出成品之巨觀翹曲變形中,CAE模擬與實驗趨勢十分吻合,以SF材料之翹曲變形為例,從Model I和Model III長邊翹曲皆是呈現哭臉(中間高,兩邊低)的趨勢,而且比較PP和SF成品後可明顯看出當纖維加入後可以有效降低整體之翹曲量值。在機械性質上,也可以觀察到SF複合試片之強度明顯提升。更進一步探討後發現,因為成品幾何設計所引導之入口效應改變了纖維排向,使Model I之強度大於Model II。特別是我們可從CAE模擬結果中看到Model I之A11纖維排向比例大於Model II,此等纖維特性也經電腦斷層掃描及影像重建驗證。再者,我們比較SF、MF以及LF纖維長度變化後發現,CAE模擬分析纖維排向幾乎沒有差異(此部份可能起因於CAE內部纖維排向理論還不夠完善);纖維長度則隨著初始長度越長,其成品保留之纖維長度越長,但其斷裂長度也越長;再則,在纖維濃度分布上,比較相同初始纖維含量之MF和LF發現,其成品纖維濃度差異都介於5 wt %之內,沒有因為纖維長度不同而有太大變化。從巨觀性質上比較,當纖維長度越長,對於翹曲變形的抵抗能力越好,此部分模擬和實驗皆十分吻合;至於在機械性質上,纖維長度及濃度之提升對於拉伸強度都有補強效果。然而,當纖維長度增加到一定長度後,拉伸強度卻沒有等量提升,此部份推測是因LF複合材料經射出成品後,許多長纖維可能聚集形成纖維束、產生氣泡,或者長纖維可能彎曲變形,導致強化之功能降低。
英文摘要 Energy saving and carbon reduction have become an important objective for the world. Thanks to the excellent properties of the fiber reinforced thermoplastics (FRTs), it has been applied into industry as one of the major lightweight technologies for the automobile and aerospace industry. However, the micro-structures of fiber inside the plastic matrix are very complicated, which makes it difficult to understand the influence of micro-structures on the warpage and mechanical properties. We used a benchmark system with three standard specimens based on ASTM D638 where those specimens have different gate designs. We also applied four materials including pure polypropylene(PP), short fiber of 3 mm(SF), medium fiber of 12 mm(MF) and long fiber of 25 mm(LF). This system is used to study the fiber microstructures and associated macro-properties using numerical simulation and experimental studies. Results showed that the simulation data of full model warpage is consistent with the experimental observation. Specifically, the warpage can be improved significantly in the appearance of the fibers. Moreover, the mechanical properties were also improved when using the SF material. Moreover, the different gate design of Model I and Model II caused the entrance effect which changed the fiber orientation distribution. The change in fiber orientation would further enhance the mechanical properties of Model I. To confirm the observation, the fiber orientation distribution is predicted using CAE simulation, and verified using micro-CT scan and image analysis. Moreover, we compare the product of SF, MF and LF reinforced plastics to find out the effect of fiber lengthes. The fiber orientation distribution of SF, MF and LF by CAE simulation only have slightly different. As for the fiber length distribution, increasing the initial fiber length would increase the fiber length in the final product. However, increasing the intial fiber length would also accompany by the more fiber breakage. The fiber density distribution was slightly affected by the fiber length as we compared the MF and LF products. The fiber density difference between MF and LF parts is under 5 wt %. As we compared the macro-properties of the three fiber materials. We found that the longer fiber length is introduced, the better full model warpage behavior can be. The mechanical properties are also proportional to the fiber length. However, the mechanical improvement was not seen in the LF product. It is possible due to the fiber bending or entanglement of fibers.
論文目次 目錄
致謝 I
中文摘要 II
英文摘要 IV
目錄 VI
圖目錄 IX
表目錄 XIII
符號說明 XIV
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機與目的 5
1.4 論文架構 6
第二章 射出成型製程與纖維複合材料之介紹 9
2.1 塑膠射出成型製程介紹 9
2.2 高分子材料介紹 11
2.2.1 聚丙烯 11
2.2.2 纖維強化塑膠 12
2.3 纖維微結構之機理介紹 12
2.3.1 纖維排向 13
2.3.2 纖維長度 13
2.3.3 纖維濃度 14
第三章 研究方法與流程 15
3.1 研究流程 15
3.2 數值模擬分析與系統資訊 17
3.2.1 基本理論 17
3.2.2 成品幾何與模具設計 25
3.2.3 CAE模擬分析網格模型 27
3.2.4 材料選擇 31
3.2.5 成型條件設定 32
3.2.6 量測位置選定 33
3.2.7 CAE模擬分析之硬體及系統 35
3.2.8 CAE模擬分析之軟體 35
3.2.9 CAE模擬分析專案建立 35
3.3 實務實驗研究與相關資訊 36
3.3.1 實際射出成型之流程 36
3.3.2 射出成型系統與相關設備 37
3.3.3 射出成品巨觀翹曲變形量測方法 39
3.3.4 射出成品巨觀拉伸性質測試方法 40
3.3.5 射出成品纖維長度量測方法 42
3.3.6 射出成品纖維濃度量測方法 44
第四章 結果與討論 45
4.1 纖維微觀結構與巨觀性質之關聯性探討 45
4.1.1 成品巨觀性質 45
4.1.2 纖維微觀結構變化探討 54
4.1.3 巨觀性質與微觀結構關聯性探討 66
4.2 纖維長度對微觀結構與巨觀性質之影響探討 69
4.2.1 巨觀翹曲變形 69
4.2.2 巨觀機械性質 75
4.2.3 纖維微觀結構 77
第五章 結論 97
第六章 未來研究方向 99
第七章 參考文獻 100
第八章 附錄 106
作者簡歷 106

圖目錄
圖2-1射出成型週期 11
圖3-1研究流程 16
圖3-2成品幾何模型(單位: mm) 26
圖3-3拉伸試片尺寸(單位: mm) 26
圖3-4模座水路配置 27
圖3-5網格種類 28
圖3-6本研究之實體網格 29
圖3-7不同層數網格之進澆口壓力曲線 30
圖3-8網格品質 31
圖3-9巨觀翹曲量測節點 34
圖3-10微觀結構量測節點 34
圖3-11射出實驗流程圖 37
圖3-12 CLF-180TXL射出機台 38
圖3-13實務巨觀翹曲量測示意圖 39
圖3-14 TEAS電子式游標尺 39
圖3-15 HT-9102M拉伸機台 41
圖3-16拉伸試片尺寸示意圖 41
圖3-17高溫燒結爐 43
圖4-1 PP射出成品Model I長邊翹曲 46
圖4-2 PP射出成品Model II短邊翹曲 46
圖4-3 PP射出成品Model III長邊翹曲 47
圖4-4 PP射出成品Impact side短邊翹曲 47
圖4-5 SF射出成品Model I長邊翹曲 48
圖4-6 SF射出成品Model II短邊翹曲 48
圖4-7 SF射出成品Model III長邊翹曲 49
圖4-8 SF射出成品Impact side短邊翹曲 49
圖4-9 PP與SF射出成品Model I長邊翹曲比較(實驗值) 50
圖4-10 PP與SF射出成品Model III長邊翹曲比較(實驗值) 51
圖4-11 PP與SF射出成品拉伸強度比較 52
圖4-12 PP射出成品拉伸之應力應變曲線 53
圖4-13 SF射出成品拉伸之應力應變曲線 53
圖4-14 PP和SF流動波前圖 55
圖4-15 SF射出成品Model I NGR纖維排向 56
圖4-16 SF射出成品Model I CR纖維排向 57
圖4-17 SF射出成品Model I EFR纖維排向 57
圖4-18 SF射出成品Model II NGR纖維排向 58
圖4-19 SF射出成品Model II CR纖維排向 58
圖4-20 SF射出成品Model II EFR纖維排向 59
圖4-21 SF射出成品Model III NGR纖維排向 59
圖4-22 SF射出成品Model III CR纖維排向 60
圖4-23 SF射出成品Model III EFR纖維排向 60
圖4-24 SF射出成品Model I纖維長度 62
圖4-25 SF射出成品Model II纖維長度 63
圖4-26 SF射出成品Model III纖維長度 63
圖4-27 SF射出成品Model I纖維濃度 65
圖4-28 SF射出成品Model II纖維濃度 65
圖4-29 SF射出成品Model III纖維濃度 66
圖4-30充填90 %之速度場分布 67
圖4-31充填100 %之速度場分布 67
圖4-32經經電腦斷層掃描及影像重建後之SF射出成品Model I NGR纖維排向 68
圖4-33經經電腦斷層掃描及影像重建後之SF射出成品Model II NGR纖維排向 68
圖4-34三種材料之模擬射出成品Model I長邊翹曲 71
圖4-35三種材料之模擬射出成品Model II短邊翹曲 71
圖4-36三種材料之模擬射出成品Model III長邊翹曲 72
圖4-37三種材料之模擬射出成品Impact side短邊翹曲 72
圖4-38三種材料之實驗射出成品Model I長邊翹曲 74
圖4-39三種材料之實驗射出成品Model II短邊翹曲 74
圖4-40三種材料之實驗射出成品Model III長邊翹曲 75
圖4-41三種材料之實驗射出成品Impact side短邊翹曲 75
圖4-42三種材料之射出成品拉伸強度比較 76
圖4-43 MF射出成品Model I NGR纖維排向 77
圖4-44 MF射出成品Model I CR纖維排向 78
圖4-45 MF射出成品Model I EFR纖維排向 78
圖4-46 MF射出成品Model II NGR纖維排向 79
圖4-47 MF射出成品Model II CR纖維排向 79
圖4-48 MF射出成品Model II EFR纖維排向 80
圖4-49 MF射出成品Model III NGR纖維排向 80
圖4-50 MF射出成品Model III CR纖維排向 81
圖4-51 MF射出成品Model III EFR纖維排向 81
圖4-52 LF射出成品Model I NGR纖維排向 82
圖4-53 LF射出成品Model I CR纖維排向 82
圖4-54 LF射出成品Model I EFR纖維排向 83
圖4-55 LF射出成品Model II NGR纖維排向 83
圖4-56 LF射出成品Model II CR纖維排向 84
圖4-57 LF射出成品Model II EFR纖維排向 84
圖4-58 LF射出成品Model III NGR纖維排向 85
圖4-59 LF射出成品Model III CR纖維排向 85
圖4-60 LF射出成品Model III EFR纖維排向 86
圖4-61 MF射出成品Model I纖維長度 87
圖4-62 M射出成品Model II纖維長度 88
圖4-63 MF射出成品Model III纖維長度 88
圖4-64 LF射出成品Model I纖維長度 89
圖4-65 LF射出成品Model II纖維長度 90
圖4-66 LF射出成品Model III纖維長度 90
圖4-67 MF射出成品Model I纖維濃度 92
圖4-68 MF射出成品Model II纖維濃度 92
圖4-69 MF射出成品Model III纖維濃度 93
圖4-70 LF射出成品Model I纖維濃度 94
圖4-71 LF射出成品Model II纖維濃度 94
圖4-72 LF射出成品Model III纖維濃度 95
圖4-73研磨結果之纖維束示意圖 96
圖4-74研磨結果之氣泡示意圖 96
表目錄
表3-1本研究之網格資訊 29
表3-2材料資訊 32
表3-3成型條件 33
表3-4射出機台相關資訊 38
表3-5 TEAS電子式游標尺相關資訊 40
表3-6拉伸試片相關尺寸 42
表3-7高溫燒結爐相關資訊 43
表4-1 SF射出成品拉伸數據整理 54
參考文獻 [1] J. Immarigeon, R. Holt, A. Koul, L. Zhao, W. Wallace, & J. Beddoes. (1995). Lightweight materials for aircraft applications. Materials characterization, 35(1), 41-67.
[2] S. E. Plotkin. (2001). European and Japanese fuel economy initiatives: what they are, their prospects for success, their usefulness as a guide for US action. Energy Policy, 29(13), 1073-1084.
[3] EPA of USA, “Sources of Greenhouse Gas Emissions”, Web-source: https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions.
[4] S. Wenlong, C. Xiaokai, & W. Lu. (2016). Analysis of energy saving and emission reduction of vehicles using light weight materials. Energy Procedia, 88, 889-893.
[5] A. I. Taub, & A. A. Luo. (2015). Advanced lightweight materials and manufacturing processes for automotive applications. Mrs Bulletin, 40(12), 1045-1054.
[6] Y. Li, Z. Lin, A. Jiang, & G. Chen. (2004). Experimental study of glass-fiber mat thermoplastic material impact properties and lightweight automobile body analysis. Materials & design, 25(7), 579-585.
[7] J. Markarian. (2007). Long fibre reinforced thermoplastics continue growth in automotive. Plastics, Additives and Compounding, 9(2), 20-24.
[8] R. Wang, J. Zeng, X. Feng, & Y. Xia. (2013). Evaluation of effect of plastic injection molding process parameters on shrinkage based on neural network simulation. Journal of Macromolecular Science, Part B, 52(1), 206-221.
[9] M. Rohde, A. Ebel, F. Wolff-Fabris, & V. Altstädt. (2011). Influence of processing parameters on the fiber length and impact properties of injection molded long glass fiber reinforced polypropylene. International Polymer Processing, 26(3), 292-303.
[10] S. Xavier, D. Tyagi, & A. Misra. (1982). Influence of injection‐molding parameters on the morphology and mechanical properties of glass fiber‐reinforced polypropylene composites. Polymer composites, 3(2), 88-96.
[11] D. F. Marshall. (1987). Long-fibre reinforced thermoplastics. Materials & design, 8(2), 77-81.
[12] 劉維亞, & 張曉明. (2007). 纖維增強熱塑性復合材料及其應用: 北京化學工業出版社.
[13] 馬振基. (2009). 高分子複合材料(下冊)-製程、檢測與應用 (初版). 正中書局.
[14] T. Vu-Khanh, J. Denault, P. Habib, & A. Low. (1991). The effects of injection molding on the mechanical behavior of long-fiber reinforced PBT/PET blends. Composites Science and Technology, 40(4), 423-435.
[15] H. Bijsterbosch, & R. Gaymans. (1995). Polyamide 6—long glass fiber injection moldings. Polymer composites, 16(5), 363-369.
[16] J. Thomason. (2002). The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene: 5. Injection moulded long and short fibre PP. Composites Part A: Applied Science and Manufacturing, 33(12), 1641-1652.
[17] J. Thomason. (2005). The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene: 6. The properties of injection moulded long fibre PP at high fibre content. Composites Part A: Applied Science and Manufacturing, 36(7), 995-1003.
[18] E. Lafranche, P. Krawczak, J. Ciolczyk, & J. Maugey. (2007). Injection moulding of long glass fibre reinforced polyamide 6-6: guidelines to improve flexural properties. Express Polym Lett, 1(7), 456-466.
[19] D. Teixeira, M. Giovanela, L. Gonella, & J. Crespo. (2015). Influence of injection molding on the flexural strength and surface quality of long glass fiber-reinforced polyamide 6.6 composites. Materials & design, 85, 695-706.
[20] S. Goris, U. Gandhi, Y. Y. Song, & T. A. Osswald. (2016). Analysis of the process-induced microstructure in injection molding of long glass fiber-reinforced thermoplastics. SPE Technical Papers, ANTEC2016, 348-356
[21] H. K. Kim, J. S. Sohn, Y. Ryu, S. W. Kim, & S. W. Cha. (2019). Warpage Reduction of Glass Fiber Reinforced Plastic Using Microcellular Foaming Process Applied Injection Molding. Polymers, 11(2), 360.
[22] C. Hieber, L. Socha, S. Shen, K. Wang, & A. Isayev. (1983). Filling thin cavities of variable gap thickness: A numerical and experimental investigation. Polymer Engineering & Science, 23(1), 20-26.
[23] T. Matsuoka, J. I. Takabatake, A. Koiwai, Y. Inoue, S. Yamamoto, & H. Takahashi. (1991). Integrated simulation to predict warpage of injection molded parts. Polymer Engineering & Science, 31(14), 1043-1050.
[24] P. H. Foss, H. C. Tseng, J. Snawerdt, Y. J. Chang, W. H. Yang, & C. H. Hsu. (2014). Prediction of fiber orientation distribution in injection molded parts using Moldex3D simulation. Polymer composites, 35(4), 671-680.
[25] H.-C. Tseng, R.-Y. Chang, & C.-H. Hsu. (2017). Numerical prediction of fiber orientation and mechanical performance for short/long glass and carbon fiber-reinforced composites. Composites Science and Technology, 144, 51-56.
[26] 陳昌泉. (2006). 塑膠成形技術與實務 (初版). 弘揚圖書公司.
[27] 陳夏宗. (2014). 射出成型原理與製程 Principle and process of injection molding (初版). 五南圖書出版股份有限公司.
[28] H. Rees. (1994). Understanding injection molding technology. Hanser.
[29] 魏綸群. (2008). 塑膠射出成型製程時間最佳化設計. (碩士論文), 元智大學.
[30] C. S. Brazel, & S. L. Rosen. (2012). Fundamental principles of polymeric materials: John Wiley & Sons.
[31] P. V. De Cleir. (1985). Polymers in injection molding (Second Edition). T/C Press.
[32] 馬振基. (2009). 高分子複合材料(上冊) (初版). 正中書局.
[33] T. Whelan. (1990). Injection molding of engineering thermoplastics. New York: Van Nostrand Reinhold.
[34] S. Kenig. (1986). Fiber orientation development in molding of polymer composites. Polymer composites, 7(1), 50-55.
[35] J. Thomason, & M. Vlug. (1996). The Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene: 1. Tensile and flexural modulus. Composites Part A: Applied Science and Manufacturing, 27(6), 477-484.
[36] J. Thomason, M. Vlug, G. Schipper, & H. Krikor. (1996). Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene: Part 3. Strength and strain at failure. Composites Part A: Applied Science and Manufacturing, 27(11), 1075-1084.
[37] H.-C. Tseng, Y.-J. Chang, C.-H. Hsu, & R.-Y. Chang. (2014). Progress on fiber concentration for injection molding simulation of fiber reinforced thermoplastics. SPE Technical Papers, ANTEC2014, 3(2), 8.
[38] M. Cross. (1979). Relation between viscoelasticity and shear-thinning behaviour in liquids. Rheologica Acta, 18(5), 609-614.
[39] S. G. Advani, & C. L. Tucker. (1987). The use of tensors to describe and predict fiber orientation in short fiber composites. Journal of rheology, 31(8), 751-784.
[40] G. B. Jeffery. (1922). The motion of ellipsoidal particles immersed in a viscous fluid. Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character, 102(715), 161-179.
[41] F. Folgar, & C. L. Tucker. (1984). Orientation behavior of fibers in concentrated suspensions. Journal of Reinforced Plastics and Composites, 3(2), 98-119.
[42] J. Wang, J. F. O’gara, & C. L. Tucker. (2008). An objective model for slow orientation kinetics in concentrated fiber suspensions: Theory and rheological evidence. Journal of rheology, 52(5), 1179-1200.
[43] J. H. Phelps, & C. L. Tucker. (2009). An anisotropic rotary diffusion model for fiber orientation in short-and long-fiber thermoplastics. Journal of Non-Newtonian Fluid Mechanics, 156(3), 165-176.
[44] H.-C. Tseng, R.-Y. Chang, & C.-H. Hsu. (2013). Phenomenological improvements to predictive models of fiber orientation in concentrated suspensions. Journal of rheology, 57(6), 1597-1631.
[45] J. H. Phelps, A. I. A. El-Rahman, V. Kunc, & C. L. Tucker. (2013). A model for fiber length attrition in injection-molded long-fiber composites. Composites Part A: Applied Science and Manufacturing, 51, 11-21.
[46] 科盛科技公司. (2007). Moldex 3D模流分析技術與應用 (初版). 全華圖書公司.
[47] Moldex3D. R17 Online help.
[48] W. Grellmann, & S. Seidler. (2013). Preparation of Specimens, Polymer Testing (Second Edition) (pp. 15-38). Hanser.
[49] W. Grellmann, & S. Seidler. (2013). Mechanical Properties of Polymers, Polymer Testing (Second Edition) (pp. 73-231). Hanser.
[50] W. Grellmann, & S. Seidler. (2013). Testing of Composite Materials, Polymer Testing (Second Edition) (pp. 513-563). Hanser.
[51] 傅韋文. (2020). 應用電腦斷層掃描與影像處理技術進行纖維強化塑膠射出成型產品之微結構特性研究. (碩士論文), 淡江大學.
[52] 彭裕康. (2019). 製程參數對射出成型長玻纖複合材料之纖維長度、纖維排向、氣泡及拉伸強度之影響. (碩士論文), 國立成功大學.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2022-08-26公開。
  • 同意授權瀏覽/列印電子全文服務,於2022-08-26起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信