§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2508201514104300
DOI 10.6846/TKU.2015.00862
論文名稱(中文) 新型渦流捕捉顆粒晶片之設計
論文名稱(英文) Design of New Vortex-based Flow Chips to Capture Particles
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 103
學期 2
出版年 104
研究生(中文) 林彥祺
研究生(英文) Yen-Chi,Lin
學號 602370511
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2015-07-10
論文頁數 78頁
口試委員 指導教授 - 楊龍杰(ljyang (ljyang@mail.tku.edu.tw)
委員 - 鍾永強(ycchung@mail.mcut.edu.tw)
委員 - 韓謝忱(hchan@sinica.edu.tw)
關鍵字(中) 生物晶片
蜻蜓翼
渦旋
微流道
關鍵字(英) Biochips
Dragonfly wing
Vortex
Microfluidic
第三語言關鍵字
學科別分類
中文摘要
本文主要在設計新型的捕捉顆粒生物晶片,先透過COMSOL軟體進行計算流體力學的模擬,了解於此設計中會產生之速度流場以及顆粒的運動狀態。此生物晶片將蜻蜓翼與微流道結合在一起,利用蜻蜓翼在流動時會於翅膀皺摺凹陷處產生渦旋之特性,擬於微流道內產生低雷諾數渦旋,進行微顆粒之捕捉。
    本文著重於仿蜻蜓翼生物晶片的設計與三維粒子流動模擬,希望得到較好的顆粒抓取效果。經重複嘗試,對於寬度200μm的微流道,蜻蜓翼連續壁弦長806μm,連續壁厚度61μm,入口流速0.52 m/s可產生明顯的蜻蜓翼渦流;入流口賦予50。的入流傾角,可增強微流道之起始渦度,有利顆粒捕捉(50顆約可捕捉2顆;捕捉率4%),本文也嘗試階梯式兩只蜻蜓翼串接的流場模擬,適當橫向增胖蜻蜓翼尺寸一倍,捕獲率可達6%;對於未來進一步擴充為陣列式顆粒捕捉器具有應用參考價值。
英文摘要
This work presents the design of a new flow chip to capture particles. A dragonfly wing blocks along the centerline of a microchannel to generate multiple vortex in the corrugated grooves streamwisely. These multiple vortex in the dragonfly wing are used to capture more particles. Different from the conventional vortex-based flow chips with rectangular grooves along the both sides channel wall, the dragonfly wing grooves here in is designed to capture central -part particles novelly. The chord length of the dragonfly wing is 806 μm and thickness ratio is 7.5 %. Through the CFD simulation result (by COMSOL or FEMLAB), the inlet velocity of 0.52m/s can induce obvious vortex pattern in the corrugated dragonfly wing inserted in a microchannel of 200μm wide. The inclined angle of 50。at the channel entrance can provide enough initial vorticity strength beneficial to the particle capture rate of 4% per dragonfly wing structure.
    This work also tried two dragonfly structure cascadedly connected together. When the thickness ratio of the dragonfly wing double, the cascaded two-wing case can increase the capture ratio up to 6%. These simulation message reveals the usefulness of increasing the particle capture ratio of flow array design. It’s also good for the integration and application in tumor cell capture, sorting and separation in the future.
第三語言摘要
論文目次
目錄
第一章 緒論	1
1-1前言	1
1-1-1 微機電系統	1
1-1-2循環腫瘤細胞(CTCs cell)	2
1-2文獻回顧	5
1-2-1流體慣性力	5
1-2-2微流體顆粒運動	8
1-2-3於微流道中進行顆粒或細胞分離	9
1-2-4 蜻蜓翼研討	11
1-3研究動機與目的	13
第二章 仿蜻蜓翼生物晶片設計與流場模擬	17
2-1 計算流體力學-COMSOL Multiphysics	17
2-2模組功能介紹與建立	18
2-3仿蜻蜓翼生物晶片之參數設定二維與三維模擬	20
2-4流場速度探討	30
2-5入流角度與流場關係	35
2-6抓取率提升-陣列式設計	43
第三章 微流道製程	48
3-1光罩設計與製造	48
3-2 基本製程技術	49
3-2-1 晶片清潔	49
3-2-2微影製程	51
第四章 結論與未來展望	58
4-1粒子追蹤結論	58
4-2 未來展望	60
參考文獻	62
附錄A COMSOL 軟體使用設定	68
附錄B 蜻蜓翼之座標資訊	73
附錄C 補充之速度及粒子追蹤圖	74

 
圖目錄
圖1 - 1於彎曲流道中生成渦流	6
圖1 - 2 壓力梯度	7
圖1 - 3顆粒受慣性力影響之時間-位置	7
圖1 - 4平衡位置與顆粒直徑關係	9
圖1 - 5細胞抓取裝置	10
圖1 - 6蜻蜓翼流場模擬	13
圖1 - 7全文架構	16
圖2 - 1計算流體力學COMSOL模組分類	19
圖2 - 2流體粒子交互作用	19
圖2 - 3流場粒子追蹤設定	21
圖2 - 4阻力區域選取	21
圖2 - 5耦合條件選取	22
圖2 - 6文獻裝置模擬結果-流場速度場	22
圖2 - 7文獻裝置模擬結果-粒子軌跡圖(2.5ms)	23
圖2 - 8文獻裝置模擬結果-粒子軌跡圖(5ms)	24
圖2 - 9文獻裝置模擬結果-粒子軌跡圖(7.5ms)	24
圖2 - 10文獻裝置模擬結果-粒子軌跡圖(10ms)	25
圖2 - 11三維計算模擬-速度場	25
圖2 - 12三維計算模擬-粒子軌跡圖	26
圖2 - 13繪製仿蜻蜓翼生物晶片平面圖	27
圖2 - 14內部壁的建立	27
圖2 - 15壁條件-反彈	28
圖2 - 16仿蜻蜓翼二維流場	28
圖2 - 17仿蜻蜓翼二維粒子軌跡圖	29
圖2 - 18仿蜻蜓翼三維流場	29
圖2 - 19仿蜻蜓翼三維粒子軌跡圖	29
圖2 - 20速度場-流道寬度120μm	31
圖2 - 21速度場-流道寬度160μm	31
圖2 - 22速度場-流道寬度200μm	32
圖2 - 23速度0.06m/s-速度場	33
圖2 - 24速度0.1m/s-速度場	34
圖2 - 25速度0.15m/s-速度場	34
圖2 - 26速度0.2m/s-速度場	34
圖2 - 27入流角度=30。	36
圖2 - 28入流角度=45。	36
圖2 - 29入流角度=50。	36
圖2 - 30入流角度=60。	37
圖2 - 31連續壁前挪,入流角度50。	38
圖2 - 32連續壁前挪,入流角度60。	38
圖2 - 33蜻蜓翼Y軸比例調整至2倍	39
圖2 - 34最初設定之蜻蜓翼尖端與流道壁距離	39
圖2 - 35縱向放大兩倍軸向不變-速度場	40
圖2 - 36粒子追蹤-入流角度50。	41
圖2 - 37粒子追蹤-入流角度60。	41
圖2 - 38增胖型蜻蜓翼(入流角50。)-速度場	42
圖2 - 39增胖型蜻蜓翼(入流角60。)-速度場	42
圖2 - 40 矩形抓取裝置串接	44
圖2 - 41 頭尾相連串接	45
圖2 - 42 聯接通道串接	46
圖2 - 43 階梯式串接	46
圖2 - 44軸向放大兩倍,入流角50。	47
圖2 - 45階梯式串接-軸向放大兩倍	47
圖3 - 1光罩設計圖	48
圖3 - 2正負光阻	51
圖3 - 3光阻塗佈機	53
圖3 - 4紅外線對準雙面曝光機	54
圖 3 - 5微流道微影製作	56
圖 3 - 6微流道OM圖	56
圖 3 - 7 實驗製程流程	57
圖 A - 1模型選擇	68
圖 A - 2選擇空間維度	69
圖 A - 3研究選擇-雙向耦合粒子追蹤	70
圖 A - 4幾何模型建立	71
圖 A - 5網格建立	71
圖 A - 6研究時間設定	72
圖 B - 1蜻蜓翼各點標號	73
圖 C - 1粒子軌跡-流道寬度120μm	74
圖 C - 2粒子軌跡-流道寬度160μm	74
圖 C - 3粒子軌跡-流道寬度200μm	75
圖 C - 4入流角度=30。	75
圖 C - 5入流角度=45。	76
圖 C - 6連續壁前挪,入流角度50。	76
圖 C - 7連續壁前挪,入流角度60。	77
圖 C - 8增胖型蜻蜓翼-入流角50。	77
圖 C - 9增胖型蜻蜓翼-入流角60。	78
 
表目錄
表2 - 1流道寬度與雷諾數及速度差異	32
表4 - 1速度與渦旋生成關係	59
表4 - 2入流角度與渦旋生成關係	59
表4 - 3不同之設計與抓取率	60
表B-1 蜻蜓翼各點相對座標	73
參考文獻
[1]	楊龍杰,掌握微機電,滄海書局,2007年。
[2]	吳程遠(譯),“ 別鬧了!費曼先生 ”,台北市天下文化出版。(原著:理察.費曼). 1993。
[3]	Y. C. Tai, L. S. Fan, and R. S. Muller, “ IC-process micro-motors: design, technology, and testing, ” Proc. of the 1st IEEE MEMS(or Micro-Tele-Operated Robotics Workshop), 20-22 Feb., Salt Lake City, USA, Page(s):1-6, 1989.
[4]	C. Liu, J. B. Huang, Z. Zhu, F. Jiang, S. Tung, Y. C. Tai, and C. M. Ho, “ A micromachined flow shear-stress sensor based on thermal transfer principles, ” Journal of Microelectromechanical Systems, 8 (1), pp. 90-98, 1999.
[5]	C. Liu, T. Tsao, G. B. Lee, J.T.S. Leu, Y.W. Yi, Y. C. Tai, and C. M. Ho, “ Out-of-plane magnetic actuators with electroplated permalloy for fluid dynamics control, ” Sensors and Actuators, A: Physical, 78 (2), pp. 190-197, 1999.
[6]	P. Yao, G. J. Schneider, and D. W. Prather, “ Three-dimensional lithographical fabrication of microchannels, ” Journal of Microelectromechanical Systems, 14 (4), pp. 799-805,  2005.
[7]	J. M. Wang and L. J. Yang, “ Electro-hydro-dynamic (EHD) micropumps with electrode protection by parylene and gelatin, ” Tamkang Journal of Science and Engineering, 8 (3), pp. 231-236, 2005. 
[8]	劉冠君 , “ 圓管挫曲式微型閥門之研製 ” , 淡江大學機械與機電工程學系碩士論文,2006 年 6 月。
[9]	S. Shoji and M. Esash, “ Microflow devices and systems, ” Journal of Micromech. Microeng., 4, pp. 157-171, 1994.
[10]	G. W. Gross, B. K. Rhoades, H. M. E. Azzazy and M. C. Wu, “ The use of neuronal networks on multielectrode arrays as biosensors, ” Biosensors and Bioelectronics, 10, (6-7), pp. 553-567, 1995.
[11]	李國賓, “ 下一波生物晶片-微流體生醫晶片 ”,科學發展月刊,385期, pp.72-77, 2005.
[12]	張文燦,李金德, “ 肝癌患者接受肝臟移植後復發之可能原因”,高雄醫師會誌 Journal of Kaohsiung Medical Association, 18(2), pp. 142-145, 2010.
[13]	Cancer Facts & Figures, Cancer Practice, 8(3), pp. 9-22, 2010.
[14]	J. Yang, S. A. Mani, J. L. Donaher, S. Ramaswamy, R. A. Itzykson,  C. Come, P. Savagner, I. Gitelman, A. Richardson, and R.A.Weinberg, “ Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis, ” Cell, 117 (7), pp. 927-939, 2004.
[15]	P.S. Steeg, “ Metastasis suppressors alter the signal transduction of cancer cells, ” Nature Reviews Cancer, 3 (1), pp. 55-63, 2003.
[16]	P. Carmeliet and R. K. Jain, “ Angiogenesis in cancer and other diseases, ” Nature, 407, pp. 249-257, 2000.
[17]	愛醫網http://tw.medvov.com/view.aspx?lid=e9e1b5bd-7e1f-486b-9cea-56b4230bce18
[18]	D. Di Carlo, “ Inertial microfluidics, ” Lab on a Chip, 9, pp. 3038–3046, 2009.

[19]	A. P. Sudarsan and V. M. Ugaz, “ Multivortex micromixing, ” Proc.Natl. Acad. Sci. U. S. A., 103, pp. 7228–33, 2006.
[20]	H. Schlichting, Boundary-Layer Theory, New York, 1979.
[21]	B. P. Ho and L. G. Leal, “ Inertial migration of rigid spheres in two-dimensional unidirectional flows, ” J. Fluid Mech. , 65, pp. 365–400, 1974.
[22]	J. Koo and C. Kleinstreuer, “ Liquid flow in microchannels: experimental observations and computational analyses of microfluidics effects, ” J. Micromech. Microeng., 13, pp. 568–579, 2003.
[23]	D. Di Carlo, D. Irimia, R. G. Tompkins and M. Toner, “ Continuous inertial focusing, ordering, and separation of particles in microchannels, ” Proc. Natl. Acad. Sci. U. S. A., 104, pp. 18892–7, 2007.
[24]	B. Chun and A. J. C. Ladd, “ Inertial migration of neutrally buoyant particles in a square duct: An investigation of multiple equilibrium positions, ” Phys. Fluids, 18, 031704, 2006.
[25]	A. A. S. Bhagat, S. S. Kuntaegowdanahalli, “ Papautsky, Enhanced particle filtration in straight microchannels using shearmodulated inertial migration, ” Phys. Fluids, 20, 101702–4., 2008.
[26]	D. Di Carlo, J. F. Edd, K. J. Humphry, H. A. Stone, and M. Toner, “ Particle segregation and dynamics in confined flows, ” Physical Review Letters, 102, 094503, 2009.
[27]	J. A. Schonberg and E. J. Hinch, “ Inertial migration of a sphere in Poiseuille flow, ” J. Fluid Mech., 203, p. 517,1989.
[28]	E. S. Asmolov, “ The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number, ” J. Fluid Mech., 381, p. 63 ,1999.
[29]	J. P. Matas, J. F. Morris, and E. Guazelli, “ Inertial migration of rigid spherical particles in Poiseuille flow, ” J. Fluid Mech., 515, p. 171 ,2004.
[30]	黃韋翔, 梳狀微流道內微顆粒分離實驗,國立中興大學碩士論文, 2009。
[31]	蔡惟亘, 利用梳狀微流道分離捕捉單一顆粒之實驗研究,國立中興大學碩士論文, 2013。
[32]	A. J. Mach and D. Di Carlo, “ Continuous scalable blood filtration device using inertial microfluidics, ” Biotechnology and Bioengineering, 107(2), pp. 302-311, 2010.
[33]	K. Hoshino, “ Microchip-based immune-magnetic detection of circulating tumor cells, ” Lab on a Chip, 11, p.3449, 2011.
[34]	J. H. Kang, “ A combined micro-magnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells, ” Lab on a Chip, 12, pp. 2175–2181, 2012.
[35]	E. Sollier, “ Size-selective collection of circulating tumor cells using Vortex technology, ” Lab on a Chip,14, pp. 63-77,2014.
[36]	S. Gupta, A. C. Baker and W. C. Tang, “Microfluidic platforms for capturing circulating tumor cells, ” Proceedings of the 7th IEEE International Conference on Nano/Molecular Medicine and Engineering, November 10-13, pp. 1-4, 2013.

[37]	A. A. Adams et al., “ Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor, ” Journal of the American Chemical Society., 130, pp. 8633 –8641, 2008.
[38]	S. Nagrath et al., “ Isolation of rare circulating tumor cells in cancer patients by microchip technology, ” Nature, 450(20), pp. 1235–1239, 2007.
[39]	T. Felm et al., “ Cytogenetic evidence that circulating epithelial cells in patients with carcinoma are malignant, ” Clin. Cancer Res., 8, pp. 2073 – 2084, 2002.
[40]	A. B. Kesel, Philippi, U. and Nachtigall W, “ Biomechanical aspects of insect wings – an analysis using the finite element method, ” Comp. Biol. Med., 28, pp. 423–437, 1998.
[41]	D. J. S. Newman and R. J . Wootton, “ An approach to themechanics of pleating in dragonfly wings, ” The Journal of Experimental Biology., 125, pp. 361–372, 1986.
[42]	C. J. C. Rees, “ Form and function in corrugated insect wings, ” Nature, 256, pp. 200–203, 1975.
[43]	R. J. Wootton, “ The functional morphology of the wings of Odonata, ” Advances in Odonatology, 5, pp. 153–169, 1991.
[44]	R. J. Wootton, “ Functional morphology of insect wings, ”Annual Review of Entomology., 37, pp. 113–140, 1992.
[45]	R. H. Buckholz, “ The functional role of wing corrugation in living systems, ” J. Fluids Engineer, 108, pp. 93–97, 1986.
[46]	B. G. Newman, S. B. Savage and D. Schouella, “ Model test on a wing section of a dragonfly, ” Scale Effects in Animal Locomotion (ed. T. J. Pedley), pp. 445–477, London: Academic Press, 1977.
[47]	C. J. C. Rees, “ Aerodynamic properties of an insect wing section and a smooth aerofoil compared, ” Nature, 258, pp. 141–142, 1975.
[48]	R. Rudolph, “ Aerodynamical properties of Libellula quadrimaculata L. (Anisoptera: Libellulidae) and the flow around smooth and corrugated wing section models during gliding flight, ” Odonatologica, 7, pp. 49–58, 1978.
[49]	M. Tamai, Z. Wang, G. Rajagopalan, H. Hu and G. He,“ Aerodynamic performance of a corrugated dragonfly airfoil compared with smooth airfoils at low Reynolds numbers, ” 45th AIAA Aerospace Sciences Meeting, AIAA-2077-0483, 2007.
[50]	A. B. Kesel,“Aerodynamic characteristics of dragonfly wing sections compared with technical aerofoils, ” The Journal of Experimental Biology, 203, pp. 3125–3135, 2000.
論文全文使用權限
校內
紙本論文於授權書繳交後1年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後1年公開
校外
同意授權
校外電子論文於授權書繳交後1年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信