淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2508201413564200
中文論文名稱 二維夾縫產生之脈衝渦流特性探討
英文論文名稱 The characteristics of impulsive vortex formation from a 2-D gap
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 102
學期 2
出版年 103
研究生中文姓名 陳方璞
研究生英文姓名 Fang-Pu Chen
學號 699480041
學位類別 碩士
語文別 中文
口試日期 2014-06-18
論文頁數 55頁
口試委員 指導教授-盧博堅
委員-丁大為
委員-張正興
中文關鍵字 回流  渦流  穴蝕 
英文關鍵字 retrograde flow  vortex  cavitation 
學科別分類 學科別應用科學環境工程
中文摘要 許多的研究表示,心臟疾病是現代人死亡原因前幾名。穴蝕氣泡當機械心瓣關閉時瞬間形成,這會破壞血球細胞與心瓣完整性,是一個眾所周知被廣泛研究的現象。在MHV關閉期間,擠壓流通過狹縫生產噴射流並在下游捲起渦旋。同樣的,高速滲漏間隙流可能捲起渦旋。向前的流場與尾流相互作用,在擋水板後面回彈也可能會導致渦流的形成。利用固定葉片間的夾縫模擬血液回流時通過夾縫產生出高速的噴射流。此研究我們使用PIV仔細測量在MHV中迴流流場的渦流結構。我們測量渦流半徑,最大切向速度,循環強度和計算壓降,這使我們能夠量化評估渦流在MHV穴蝕中的形式。若渦流中心壓低低於飽和蒸汽壓(-740mmHg)即能發生穴蝕現象,本實驗所量測出來的最大壓降為172.042mmHg,並不會有穴蝕現象產生。
英文摘要 A lot of studies have shown that heart disease plays an important role of death of modern people. The instantaneous formation of cavitation bubbles at mechanical heart valve closing, which subsequently damage blood cells and the valve integrity, is a well-known and widely studied phenomenon. During MHV closure, squeeze flow through the gaps can produce jet flows that roll up downstream into vortices. Similarly, high-speed leakage flow may roll up into vortices. Interactions between the forward flow and fluid trailing behind the occluder after rebound may also result in vortex formation. We use the fixed leaflets simulated blood retrograde flow through the gap to produce a high-speed jet. We have carefully measured the vortex structure in the MHV regurgitant flow field using PIV. We measured the vortex radius, maximum tangential velocity, circulation strength, and calculated pressure drop, which allows us to quantitatively evaluate the vortices in MHV cavitation formation. The maximum pressure drop in the vortex center is 172.042mmHg. Since cavitation formation requires the locale pressure to drop below vapor pressure (about -740 mmHg), Our results clearly showed that vortex formation with a pressure drop of this order of magnitude cannot provide significant contribution to mechanical heart valve cavitation.
論文目次 目錄
目錄 iv
表目錄 v
圖目錄 vi
第一章 緒論 1
1-1前言 1
1-2研究動機與目的 3
1-3研究過程 6
第二章 文獻回顧 8
2-1機械心瓣 8
2-2穴蝕成因 10
第三章 實驗設置與方法 14
3-1 實驗架設 14
3-2壓力計 16
3-3數位質點影像測速儀(DPIV) 17
3-4實驗條件設置 19
3-5公式運算 20
3-6資料分析 26
第四章 結果與討論 29
4-1 不同條件之最大速度的渦流分析 30
4-2 渦流歷程分析 32
4-3 渦流與穴蝕關係 34
第五章 結論與實驗建議 35
5-1 結論 35
5-2 實驗建議 35
參考文獻 36


表目錄
表2-1 渦流中心點預估壓降 40
表4-1 夾縫出口左側渦流半徑R(mm) 40
表4-2 夾縫出口左側渦流最大切向速度Vθ(m/s) 40
表4-3 夾縫出口左側環流量Γ(m2/s) 40
表4-4 夾縫出口左側渦流壓降dP(mmHg) 40
表4-5 夾縫出口右側渦流半徑R(mm) 41
表4-6 夾縫出口右側渦流最大切向速度Vθ(m/s) 41
表4-7 夾縫出口右側環流量Γ(m2/s) 41
表4-8 夾縫出口右側渦流壓降dP(mmHg) 41

圖目錄
圖1-1研究流程示意圖 42
圖3-1 夾縫 43
圖3-2 系統架構示意圖 43
圖3-3 壓力腔與主體腔實體圖 44
圖3-4 壓力感應器型號105C12 44
圖3-5 訊號配合訊號調節器(sensor signal conditioner)型號480E09 45
圖3-6 訊號產生器 45
圖3-7 DPIV雷射光源 46
圖3-8 Rankine vortex model示意圖[23] 46
圖3-9 DPIV分析介面 47
圖4-1 v=2.52m/s於t0 + 15ms瞬時流場向量圖 47
圖4-2 v=2.52m/s於t0 + 20ms瞬時流場向量圖 48
圖4-3 v=2.52m/s於t0 + 30ms瞬時流場向量圖 48
圖4-4 v=3.54m/s於t0 + 15ms瞬時流場向量圖 49
圖4-5 v=3.54m/s於t0 + 20ms瞬時流場向量圖 49
圖4-6 v=3.54m/s於t0 + 30ms瞬時流場向量圖 50
圖4-7 v=9.54m/s於t0 + 15ms瞬時流場向量圖 50
圖4-8 v=9.54m/s於t0 + 20ms瞬時流場向量圖 51
圖4-9 v=9.54m/s於t0 + 30ms瞬時流場向量圖 51
圖4-10 夾縫出口左側渦流半徑R 52
圖4-11 夾縫出口左側渦流最大切向速度Vθ 52
圖4-12 夾縫出口左側環流量Γ 53
圖4-13 夾縫出口左側渦流壓降dP 53
圖4-14 夾縫出口右側渦流半徑R 54
圖4-15 夾縫出口右側渦流最大切向速度Vθ 54
圖4-16 夾縫出口左側環流量Γ 55
圖4-17 夾縫出口右側渦流壓降dP 55
參考文獻 1. Klepetko W, Moritz A, Mlczoch J, Schurawitzkin H, Domaning E, Wolner E. Leaflet fracture in Edwards-Duromedics bileaflet valves. J Thorac Cardiovasc Surg. 1989;97(1):90-4.
2. Kafesjian R, Howanec M, Ward GD, Diep L, Wagstaff LS, Rhee R. Cavitation damage of pyrolytic carbon in mechanical heart valves. J Heart Valve Dis. 1994;3 Suppl 1:S2-7.
3. Hwang NH. Cavitation potential of pyrolytic carbon heart valve prostheses: a review and current status. J Heart Valve Dis. 1998;7(2):140-50.
4. He Z, Xi B, Zhu K, Hwang NH. Mechanicals of mechanical heart valve cavitation: investigation using a tilting disk valve model. J Heart Valve Dis. 2001;10(5):666-74.
5. Bachmann C, Kini V, Deutsch S, Fontaine AA, Tarbell JM. Mechanisms of cavitation and the formation of stable bubbles on the Bjork-Shiley Monostrut prosthetic heart valve. J Heart Valve Dis. 2002;11(1):105-13.
6. Dauzat M, Deklunder G, Aldis A, Rabinovitch M, Burte F, Bret PM. Gas Bubble emboli detected by transcranial Doppler sonography in patients with prosthetic heart valves: a preliminary report. J Ultrasound Med. 1994;13(2):129-35.
7. Stirling J, Muramatsu K, Shirai T. Cerebral embolism as a cause of stroke and transient ischemic attack. Echocardiography. 1996;13(5):513-518.
8. Georgiadis D, Baumgartner RW, Karatschai R, Linder A, Zerkowski HR, Zierz S. Further evidence of gaseous embolic material in patients with artificial heart valves. J Thorac Cardiovasc Surg. 1998;115(4):808-10.
9. Rambod E, Beizaie M, Shusser M, Milo S, Gharib M. A physical model describing the mechanism for formation of gas microbubbles in patients with mitral mechanical heart valves. Ann Biomed Eng. 1999;27(6):774-92.
10. Sliwka U, Diehl DD, Meyer B, Schondube F, Noth J. Transcranial Doppler “high intensity transient signals” in the acute phase and long-term follow-up of mechanical heart valve implantation. J Stoke Cerebrovasc Dis. 1995;5(3):139-146.
11. Deklunder G, Roussel M, Lecroart JL, Prat A, Gautier C. Microemboli in cerebral circulation and alternation of cognitive abilities in patients with mechanical prosthetic heart valves. Stroke. 1998;29(9):1821-6.
12. Kini V, Bachmann C, Fontaine A, Deutsch S, Tarbell JM. Flow visualization in mechanical heart valves: occlude rebound and cavitation potential. Ann Biomed Eng. 2000;28(4):431-41.
13. Kini V, Bachmann C, Fontaine A, Deutsch S, Tarbell JM. Integrating particle image velocimetry and laser Doppler velocimetry measurements of the regurgitant flow field past mechanical heart valves. Artif Organs. 2001;25(2):136-45.
14. Manning KB, Kini V, Fontaine AA, Deutsch S, Tarbell JM. Regurgitant flow field characteristics of the St. Jude bileaflet mechanical heart valve under physiologic pulsatile flow using particle image velocimetry. Artif Organs. 2003;27(9):840-6.
15. Manning KB, Przybsz TM, Fontaine AA, Tarbell JM, Deutsch S. Near field flow characteristics of the Bjork-Shiley Monostrut valve in a modified single short valve chamber. ASAIO J. 2005;51(2):133-8.
16. Avrahami I, Rosenfeld M, Einav S, Eichler M, Reul H. Can vortices in the flow across mechanical heart valves contribute to cavitationNULL Med Biol Eng Comput. 2000;38(1):93-7.
17. Cheng R, Lai YG, Chandran KB. Three-dimensional fluid-structure interaction simulation of bileaflet mechanical heart valve flow dynamics. Ann Biomed Eng. 2004;32(11):1471-83.
18. Hammond GL, Geha AS, Kopf GS, Hashim SW. Biological versus mechanical valves. J Thorac Cardiovasc Surg. 1987;93(2):182-98.
19. Toshimasa Tokuno. Cavitation Inception of Deceleration Surfaces. Ph. D. Thesis, University of Rice, 1978.
20. Bluestein D, Einav S, Hwang NH. A squeeze Flow Phenomenon at the Closing of a Bileaflet Mechanical Heart Valve Prosthesis. J Biomechanics. 1994;27(11):1369-78.
21. Zapanta CM. Correlation of Prosthetic Heart Valve Dynamics with Cavitation: In Vitro and In Vivo studies. Ph. D. Thesis, The Pennsylvania State University, 1997.
22. 吳思樺,2012,主動脈雙葉片機械心瓣關閉時之回流流場-質點流速儀量測,淡江大學水資源及環境工程學系碩士論文
23. Li CP, Chen SF, Lo CW, Lu PC. Role of vortices in cavitation formation in the flow at the closure of a bileaflet mitral mechanical heart valve. J Artif Organs. 2012;15(1):57-64.
24. Gross JM, Guo GX, Hwang NH. Venturi pressure cannot cause cavitation in mechanical heart valve prostheses. ASAIO Trans. 1991;37(3):M357-8.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-08-25公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-08-25起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信