淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2508201114194600
中文論文名稱 二氧化鈦溶液之過濾行為及其光觸媒性能
英文論文名稱 Flux behavior of titanium dioxide suspension and its photocatalyst performance.
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 99
學期 2
出版年 100
研究生中文姓名 張瑋展
研究生英文姓名 Wei-Chan Chang
電子信箱 698400446@s98.tku.edu.tw
學號 698400446
學位類別 碩士
語文別 中文
口試日期 2011-07-12
論文頁數 97頁
口試委員 指導教授-鄭東文
委員-李篤中
委員-童國倫
委員-黃國楨
委員-莊清榮
委員-鄭東文
中文關鍵字 二氧化鈦  氣液兩相流  過濾行為  光觸媒  掃流 
英文關鍵字 titanium dioxide  gas-liquid two-phase flow  flux behavior  photocatalyst  cross-flow 
學科別分類
中文摘要 本研究主要使用掃流式陶瓷膜過濾系統,探討二氧化鈦粒子水溶液的過濾行為,及結合光觸媒反應操作,探討光觸媒分解染料之效果及回收粒子之性能。實驗參數有溶液的pH值、流體速度、通氣速度及透膜壓差。
從實驗的結果得知二氧化鈦在等電位點(pH 7)時粒子易凝聚,且形成的濾餅較鬆散受剪應力的影響大,因此pH 7的濾速較pH 5及pH 9來的高;當增加流體速度或通入氣體時,可以有效造成擾動,減少二氧化鈦粒子附著於膜面上。當pH = 5或pH = 9時,二氧化鈦粒子因帶電而均勻的懸浮於水中,過濾時因粒子體積小而堆積緊密,改變流體速度及通氣速度對提升濾速沒有明顯的幫助。隨著透膜壓差的增加,提升掃流速度有幫助減少濃度極化,及延後極限濾速的發生。氣液兩相流的操作方式對提升濾速的幫助最大,於本實驗中最大濾速發生於pH 7,流體速度0.2 m/s及通氣速度0.3 m/s的操作條件。
掃流過濾結合光觸媒反應操作,於pH 5條件下形成之TiO2動態膜有阻擋染料之功能,而回收之TiO2粒子有不錯的光觸媒效能,約為原始粒子性能之91~97%。
英文摘要 In this study, a tubular ceramic membrane was used in a cross-flow filtration system to discuss the flux behavior of the titanium dioxide solution, and the combination with photocatalyst reactor was also operated to investigate the performance of decolorization by titanium dioxide particles. The experimental parameters included transmembrane pressure, pH value, liquid velocity and gas velocity.
Experimental results showed that the TiO2 particles tended to coagulate and form a less compact cake at pH 7, thus, the permeate flux at pH 7 was higher than that at pH 5 or pH 9. The larger particles can be easily swept away from the membrane surface by the cross-flow velocity. At pH 5 or pH 9, the charged titanium dioxide particles form a tightness layer, thus the effect of cross-flow velocity becomes less significance. High cross-flow velocity induced a high mass transfer rate that could lower the trend to reach the limiting flux regime as increasing the transmembrane pressure. A significant flux enhancement was obtained by the addition of gas slugs into the liquid stream. An optimal operation was obtained at pH 7, UL = 0.2 m/s and UG = 0.3 m/s in this work.
Photocatalyst reactor combined with cross-flow filtration, the TiO2 dynamic membrane could inhibit the dye AO7 through the membrane at pH 5. The recovered TiO2 particles have a good photocatalyst performance which is equal to 91~97% of original TiO2 particles.
論文目次 目錄

圖目錄 Ⅳ
表目錄 Ⅷ
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2

第二章 文獻回顧 3
2.1 微過濾的特性 3
2.1.1 濃度極化現象 3
2.1.2 結垢現象 4
2.2 影響濾速的因素 5
2.3 提高濾速的方法 7
2.4 濾速分析模式 15
2.5 二氧化鈦粒子溶液 21
2.5.1二氧化鈦粒子於過濾系統之研究 22
2.5.2二氧化鈦光觸媒應用於廢水處理程序 24
2.5.3光觸媒之光催化反應器結合薄膜過濾 26


第三章 實驗裝置與方法 30
3.1 實驗裝置 30
3.2 實驗藥品 31
3.3 實驗步驟 33
3.4 操作條件 35
3.5流量計校正 36
3.6 薄膜清洗 36

第四章 結果與討論 39
4.1 液體速度對濾速之影響 39
4.2 透膜壓差之影響 44
4.3 溶液pH值之影響 44
4.4 通氣之影響 48
4.5 過濾阻力Rc 54
4.6 進料移除後過濾阻力之變化 57
4.7 TiO2光觸媒反應及過濾操作 59
4.7.1 pH值的影響 62
4.7.2 通氣的影響 66
4.7.3 回收TiO2之性能 67

第五章 結論 69
符號說明 71
參考文獻 73
附錄 82


圖目錄

Fig. 2.1 The diagram of permeate flux vs. transmembrane pressure. 6
Fig. 2.2 The form of Two-phase flow inside pipes 10
Fig. 3.1 Schematic diagram of the experimental apparatus. 31
Fig. 3.2 The relationship of liquid velocity and small flowmeter scale. 37
Fig. 3.3 The relationship of Re and liquid velocity(small flowmeter). 37
Fig. 3.4 The relationship of liquid velocity and big flowmeter scale. 38
Fig. 3.5 The relationship of Re and liquid velocity(big flowmeter). 38
Fig. 4.1 Effect of various transmembrane pressure on the 2nd hrs flux in different cross velocity (pH 5). 40
Fig. 4.2 Effect of various transmembrane pressure on the 2nd hrs flux in different cross velocity (pH 7). 41
Fig. 4.3 Effect of various transmembrane pressure on the 2nd hrs flux in different cross velocity (pH 9). 41
Fig. 4.4 Effect of various cross velocity on the 2nd hr. flux under different transmembrane pressure (pH 5). 42
Fig. 4.5 Effect of various cross velocity on the 2nd hrs flux under different transmembrane pressure (pH 7). 43
Fig. 4.6 Effect of various cross velocity on the 2nd hrs flux under different transmembrane pressure (pH 9). 43
Fig. 4.7 Dependence of zeta potential and average particle size of titanium dioxide on solution pH. 45
Fig. 4.8 Effect of various cross velocity on the 2nd hrs under different pH value (ΔPi = 50 kPa). 46
Fig. 4.9 Effect of various cross velocity on the 2nd hrs under different pH value (ΔPi = 100 kPa). 47
Fig. 4.10 Effect of various cross velocity on the 2nd hrs under different pH value (ΔPi = 150 kPa). 47
Fig. 4.11 Effect of various cross velocity on the 2nd hrs under different pH value (ΔPi = 200 kPa). 48
Fig. 4.12 Effect of different gas velocity on the flux-time curve (pH 7, ΔPi = 100kPa). 50
Fig. 4.13 Effect of various cross velocity on the 2nd hrs flux in different inlet gas velocity (pH 5, ΔPi = 100 kPa). 51
Fig. 4.14 Effect of various cross velocity on the 2nd hrs flux in different inlet gas velocity (pH 7, ΔPi = 100 kPa). 52
Fig. 4.15 Effect of various cross velocity on the 2nd hrs flux in different inlet gas velocity (pH 9, ΔPi = 100 kPa). 52
Fig. 4.16 Effect of various pH value on the 2nd hrs flux with same cross velocity different inlet gas and liquid velocity. 53
Fig. 4.17 Variation of Rc with time under different transmembrane pressure (pH 5, UL = 0.2 m/s). 55
Fig. 4.18 Variation of Rc with time under different transmembrane pressure (pH 5, UL = 0.5 m/s). 55
Fig. 4.19 Variation of Rc with time under different transmembrane pressure (pH 5, UL = 0.8 m/s). 56
Fig. 4.20 Variation of Rc with time under different transmembrane pressure (pH 7, UL = 0.8 m/s). 56
Fig. 4.21 Comparison of Rc between TiO2(aq) and water on the 2nd hrs filtration. 57
Fig. 4.22 The effect of adding salt on permeate flux. 58
Fig. 4.23 TiO2 absorption ability (before 60 mins) and photocatalyst ability (after 60 mins) with dye AO7 (pH 7, UL = 0.2 m/s) 59
Fig. 4.24 Compare with TiO2 and TiO2 with AO7 filtration. 60
Fig. 4.25 The Rc1 and Rc2 of TiO2 with AO7 filtrated. 60
Fig. 4.26 Dependence of zeta potential and average particle size of titanium dioxide with AO7 on solution pH. 61
Fig. 4.27 . Effect of different pH value on TiO2 absorption ability (before 60 mins) and photocatalyst ability (after 60 mins) with dye AO7. 63
Fig. 4.28 Absorption ability (before 60 mins) and photocatalyst ability(after 60 mins) of the TiO2 combined with crossflow filtration (pH 7, UL = 0.2 m/s, UG = 0.3 m/s). 64
Fig. 4.29 Absorption ability (before 60 mins) and photocatalyst ability(after 60 mins) of the TiO2 combined with crossflow filtration (UL = 0.2 m/s, UG = 0.3 m/s). 65
Fig. 4.30 Absorption ability(before 60 mins) and photocatalyst ability(after 60 mins) of the TiO2 combined with crossflow filtration (UL = 0.2 m/s, UG = 0 m/s). 65
Fig. 4.31 Comparison of the 2nd hrs. flux between TiO2 filtration and TiO2+AO7 filtration. 66
Fig. A-1 Filtration curves of Jv vs. time under various transmembrane pressure (pH 5, UL = 0.2 m/s). 82
Fig. A-2 Filtration curves of Jv vs. time under various transmembrane pressure (pH 7, UL = 0.2 m/s). 82
Fig. A-3 Filtration curves of Jv vs. time under various transmembrane pressure (pH 9, UL = 0.2 m/s). 83
Fig. A-4 Filtration curves of Jv vs. time under various transmembrane pressure (pH 5, UL = 0.5 m/s). 83
Fig. A-5 Filtration curves of Jv vs. time under various transmembrane pressure (pH 7, UL = 0.5 m/s). 84
Fig. A-6 Filtration curves of Jv vs. time under various transmembrane pressure (pH 9, UL = 0.5 m/s). 84
Fig. A-7 Filtration curves of Jv vs. time under various transmembrane pressure (pH 5, UL = 0.8 m/s). 85
Fig. A-8 Filtration curves of Jv vs. time under various transmembrane pressure (pH 7, UL = 0.8 m/s). 85
Fig. A-9 Filtration curves of Jv vs. time under various transmembrane pressure (pH 9, UL = 0.8 m/s). 86
Fig. C-1 Variation of Rc with time under different transmembrane pressure (pH 7, UL = 0.2 m/s). 88
Fig. C-2 Variation of Rc with time under different transmembrane pressure (pH 9, UL = 0.2 m/s). 88
Fig. C-3 Variation of Rc with time under different transmembrane pressure (pH 5, UL = 0.5 m/s). 89
Fig. C-4 Variation of Rc with time under different transmembrane pressure (pH 7, UL = 0.5 m/s). 89
Fig. C-5 Variation of Rc with time under different transmembrane pressure (pH 9, UL = 0.8 m/s). 90
Fig. D-1 size distribution by intensity (pH 5 0.2 wt% TiO2). 91
Fig. D-2 size distribution by Volume (pH 5 0.2 wt% TiO2). 91
Fig. D-3 size distribution by intensity (pH 7 0.2 wt% TiO2). 92
Fig. D-4 size distribution by Volume (pH 7 0.2 wt% TiO2). 92
Fig. D-5 size distribution by intensity (pH 9 0.2 wt% TiO2). 92
Fig. D-6 size distribution by Volume (pH 9 0.2 wt% TiO2). 93
Fig. D-7 size distribution by intensity (pH 5 0.2 wt% TiO2 with AO7). 93
Fig. D-8 size distribution by Volume (pH 5 0.2 wt% TiO2 with AO7). 93
Fig. D-9 size distribution by intensity (pH 7 0.2 wt% TiO2 with AO7). 94
Fig. D-10 size distribution by Volume (pH 7 0.2 wt% TiO2 with AO7). 94
Fig. D-11 size distribution by intensity (pH 9 0.2 wt% TiO2 with AO7). 94
Fig. D-12 size distribution by Volume (pH 9 0.2 wt% TiO2 with AO7). 95
Fig. D-13 size distribution by intensity (pH 4 0.2 wt% TiO2 by recovery). 95
Fig. D-14 size distribution by volume (pH 4 0.2 wt% TiO2 by recovery). 95
Fig. D-15 zeta potential distribution (pH 4 0.2 wt% TiO2 by recovery). 96
Fig. D-16 size distribution by intensity (pH 4 0.2 wt% with AO7 TiO2 by recovery). 96
Fig. D-17 size distribution by volume (pH 4 0.2 wt% with AO7 TiO2 by recovery). 96
Fig. D-18 zeta potential distribution (pH 4 0.2 wt% TiO2 with AO7 by recovery). 97


表目錄

Table 3.1 The property of membrane. 30
Table 3.2 The properties of titanium dioxide(Ⅳ) P25. 32
Table 3.3 The properties of Acid Orange 7. 32
Table 4.1 The relation of injection factor and the shape of bubble. 49
Table 4.2 The performance of secondary titanium dioxide. 68
Table B-1 The Rc1 and Rc2 under different liquid velocity and transmembrane pressure at pH 5. 87
Table B-2 The Rc1 and Rc2 under different liquid velocity and transmembrane pressure at pH 7. 87
Table B-3 The Rc1 and Rc2 under different liquid velocity and transmembrane pressure at pH 9. 87
參考文獻 Aimar, P., J. A. Howell, M. J. Clifton, and V. Sanchez, “Concentration Polarization Build-up in Hollow Fibers: A Method of Measurement and its Modelling in Ultrafiltration”, J. Membrane Sci., 59, 81(1991).
Amar, R. B., B. B. Gupta and M. Y. Jaffrin, “Apple Juice Clarification Using Mineral Membrane: Fouling Controlled by Backwashing and Puslatile Flow”, J. Food Sci., 55, 1620(1990).
Balcioglu I.A. and I. Arslan, “Application of photocatalytic oxidation treatment topretreated and raw effluents from the Kraft bleaching process and textile industry”, Environmental Pollution, 103, 261 (1998).
Bauser, H., H. Chmiel, N. Stroh, E. Walitza, “Control of concentration polarization and fouling of membranes in media, food and biotechnical application”, J. Membrane Sci., 27, 195-202(1986).
Belfort, G., “Fluid mechanics in membrane filtration: recent developments”, J. Membrane Sci., 40, 123-147(1989).
Bellara, S.R., Z.F. Cui, D.S. Pepper, “Gas sparging to enhance permeate flux in ultrafiltration using hollow fibre membranes”, J. Membrane Sci. 121, 175-184(1996).
Bhattacharya I.N. and S. Anand, “Separation of entrained fine titania particles from iron chloride solution”, Int. J. Miner. Process, 43, 73 (1995).
Cabassud, C., S. Laborie, J.M. Laine, “How slug flow can improve ultrafiltration flux in organic hollow fibers”, J. Membrane Sci., 128, 93-101(1997).
Cabassud, C., S. Laborie, L. Durand-Bourlier, and J. M. Laine, “Air Sparging in Ultrafiltration Hollow Fibers: Relationship between Flux Enhancement, Cake Characteristics and Hydrodynamic Parameters”, J. Membrane Sci., 181, 57 (2001).
Cheng, T.W., H.M. Yeh, C.T. Gau, “Enhancement of Permeate Flux by Gas Slugs for Crossflow Ultrafiltration in Tubular Membrane Module”, Sep. Sci. Technol. 33, 2295-2309 (1998).
Cheng, T.W., H.M. Yeh, J.H. Wu, “Effects of gas slugs and inclination angle on the ultrafiltration in tubular membrane module”, J. Membrane Sci., 158, 223-234 (1999).
Cheng, T.W., T.L. Lin, “Characteristics of gas-liquid two-phase flow in small diameter inclined tubes”, Chem. Eng. Sci. 56, 6393-6398 (2001).
Cheng, T.W., S.Y. Pan, “Recovery of Sizing Agent by Gas Sparging Ultrafiltration”, J. Chin. Inst. Chem. Engrs., 32, 431-436 (2001).
Cheng, T.W., “Influence of inclination on gas-sparged cross-flow ultrafiltration through an inorganic tubular membrane”, J. Membrane Sci. 196, 103-110 (2002).
Cheng, T.W., J.G. Wu, “Quantitative flux analysis of gas-liquid two-phase ultrafiltration”, Sep. Sci. Technol. 38, 817-835 (2004).
Cheng, T.W., L.N. Li, “Gas-Sparging Cross-Flow Ultrafiltration in Flat-Plate Membrane Module: Effects of Channel Height and Membrane Inclination”, Sep. Purif. Technol. 55, 50-55 (2007).
Cheng, T.W., Z.W. Lee, “Effect of aeration and inclination on flux performance of submerged membrane filtration”, Desalination 234, 74-80(2008).
Cheng, T. W., Z. E. Hong, “Channeling Effect in the Dead-End Filtration of Titania Suspensions”, 13 th Asia Pacific Confederation of Chemical Engineering Congress (2010).
Cheryan, M., “Ultrafiltration and Microfiltration Hand Book”, Tech-nomic Publishing Co. Inc. Pennsylvania (1998).
Chong, R., P. Jelen, W. Wang, “The effect of cleaning agents on a noncellulosic ultrafiltration membrane”, Sep. Sci. Technol. 20 , 393-402 (1985).
Cui, Z. F., and K. I. T. Wright, “Gas-Liquid Two-Phase Crossflow Ultrafiltration of BSA and Dextran Solution”, J. Membrane Sci., 90, 183-189 (1994).
Cui, Z.F., K.I.T. Wright, “Flux enhancements with gas sparging in downwards crossflow ultrafiltration: performance and mechanism”, J. Membrane Sci. 117, 109-116(1996).
Dvalos-Orozco & F.D. Castillo, “Relaxation phenomena in viscoelastic colloidal suspensions with internal rotation”, J. of colloid and interface sci., 178, 69 (1996).
Fane, A. G., C.J.D. Fell, A. Suki, “Effect of pH and ionic environment on the ultrafiltration of protein solutions with retentive membranes”, J. Membrane Sci., 16, 195-210 (1983).
Fane, A. G., Fell, C.J.D. and Suki, A., “Effect of surfactant pretreatment on the ultrafiltration of proteins”, Desalination., 53, 1-3 (1985).
Fell, C.J.D., K.J. Kim, V. Chem, D.E. Wiley, A.G. Fane, “Factors determining flux and rejection of ultrafiltration membranes”, Chem. Eng. Process. 27, 165-173 (1990).
Fernández-Nieves A. and F.J. de las Nieves, “The role of ζ potential in the colloidal stability of different TiO2/electrolyte solution interfaces”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 148, 231 (1999).
Fujishima A. and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature, 37, 238 (1972).
Geissen, S. U. and W. M. XI, “Separation of titanium dioxide from photocatalytically treated water by cross-flow microfiltration”, Water Research, 35, 1256-1262 (2001).
Gesenhues U., “Rheology, sedimentation and filtration of TiO2 suspensions”, Chemical Engineering and Technology, 26, 25 (2003).
Gill, W. N., D. E. Wiley, C. J. D. Fell, and A. G. Fane, “Effect of Viscosity on Concentration Polarization in Ultrafiltration”, AIChE J., 34, 1563 (1988).
Ghosh, R., Z. F. Cui, “Mass Transfer in Gas-sparged Ultrafiltration: Upward Slug Flow in Tubular Membranes”, J. Membrane Sci., 162, 91 (1999).
Gonsalves, V. E., “A Critical investigation of the viscosefiltration process”, Rec trav Chim des Pays-Bas, 69, 873-903(1950).
Grieves, R. B., D. Bhattacharyya, W. G. Schomp and J. L. Bewley, “Membrane ultrafiltration of a nonionic surfactant”, AIChE J., 34, 1563 (1988).
Gupta, B.B., P. Blanpain, M.Y. Jaffrin, “Permeate flux enhancement by pressure and flow pulsation in microfiltration with mineral membrane”, J. Membrane Sci. 70, 257-266 (1992).
Gupta, B.B., J.A. Howell, D. Wu, R.W. Field, “A helical baffle for crossflow microfiltration”, J. Membrane Sci. 99, 31-42 (1995).
Iritani E., Y. Mukai and Y. Toyoda, “Properties of a filter cake formed in dead-end microfiltration of binary particulate mixtures”, Journal of chemical engineering of Japan, 35, 226 (2002).
Iritani E., Y. Mukai, Y. Kiyotomo, “Effects of electric field on dynamic behavior of dead-end inclined and downward ultrafiltration of protein solutions”, J. membrane sci., 164, 51(2000).
Iritani E., Y. Mukai and E. Hagihara, “Measurements and evaluation of concentration distribution in filter cake formed in dead-end ultrafiltration of protein solutions”, Chemical Engineering Science, 57, 53 (2002).
Iritani E., T. Hashimoto and N. Katagiri, “Gravity consolidation-sedimentation behaviors of concentrated TiO2 suspension”, Chemical Engineering Sci., 64, 4414 (2009).
Kim, B.S., H.N. Chang, “Effects of periodic backflushing on ultrafiltration Performance”, Bioseparation, 2, 9-23(1991).
Koenders M.A. and R.J. Wakeman, “The initial stages of compact formation from suspensions by filtration”, Chemical Engineering Sci., 51, 3897 (1996).
Koenders M.A., S. Reymann and R.J. Wakeman, “The intermediate stage of the dead-end filtration process”, Chemical Engineering Sci., 55, 3715 (2000).
Koenders M.A., E. Liebhart and R.J. Wakeman, “Dead-end filtration with torsional shear: experimental findings and theortical analysis”, Trans IChemE, 79, 249 (2001).
Laborie, S., C. Cabassud, L. Durand-Bourlier, J.M. Lainé, “Flux enhancement by a continuous tangential gas flow in ultrafiltration hollow fibres for drinking water production: effect of slug flow on cake structure”, presented at the 7th World Filtration Congress in Budapest, Hungary (1996).
Li, G. S., J. X. Xu, L. P. Li, H. Wang, X. X. Wang and X. Z. Fu, “Synthesis and photoluminescence of well-dispersible anatase TiO2 nanoparticles”, J. Colloid and Interface Sci., 318, 29-34 (2008).
Mercier-Bonin, M., Fonade, C. and Lafforgue-Delorme, C., “How slug flow can enhance the ultrafiltration flux in mineral tubular membrane”, J. Membrane Sci., 128, 103-113(1997).
Mikulášse P., P. Pospíšil, P. Doleček, J. Cakl, “Gas-liquid two-phase flow in microfiltration mineral tubular membranes: relationship between flux enhancement and hydrodynamic parameters”, Desalination, 146, 103-109 (2002).
Mikulášse P., P. Doleček, D. Šmídová, P. Pospíšil, “Crossflow microfiltration of mineral dispersions using ceramic membranes”, Desalination, 163, 333-343 (2004).
Mikulášse P., P. Pospíšil, R. J. Wakeman, I. O. A. Hodgson, “Shear stress-based modeling of steady state permeate flux in microfilm -tration enhanced by two-phase flows”, Chem. Eng. J. 97, 257-263 (2004)
Millward, H. R., Bellhouse, B. J. and Walker, G., “Screw-thread flowpromoters: an experimental study of ultrafiltration and microfiltration performance”, J. Membrane Sci., 106, 269-279 (1995).
Mir, L., “Positive-charged ultrafiltration membrane for the separation of cathodic/electro deposition paint composition”, U. S. Parent., 4, 412 (1983).
Molinari, R., M. Mungari, E. Drioli, A. D. Paola and V. Loddo, “Study on a photocatalytic membrane reactor for water purification”, Catalysis Today, 55, 71-78 (2000).
Morawski, A. W. and S. Mozia, “Hybridization of photocatalysis and membrane distillation for purification of wastewater”, Catalysis Today, 118, 181-188 (2006).
Morel, G., A. Gracina and J. Lachise, “Enhanced nitrate ultrafiltration by cationic surfactant”, J. Membrane Sci., 56, 1-12 (1991).
Moritz, T., S. Benfer, Árki, G. Tomandl, “Influence of the surface charge on the permeate flux in the dead-end filtration with ceramic membranes”, Sepaaration and Purification Technology, 25, 501-508(2001).
Mozia, S., “Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review”, Separation and Purification Technology, 73, 71-91 (2010).
Mulder, M., “Basic principle of membrane technology”, Kluwer Academic Publishers. Taiwan (1991),
Nabetani, H., M. Nakajima, A. Watanabe, S. Nakao, S. Kimura, “Effects of osmotic pressure and adsorption on ultrafiltration of ovalbumin”, AIChE J. 36, 907-915 (1990).
Nel, R. G., S. F. Oppenheim, V.G.J. Rodgers, “Effect of solution properties om solute permeate flux in bovine serum albumin-IgG ultrafiltration”, Biotechnol. Prog. 10, 539-542 (1994).
Poon, W. C. K., H. Sedgwick, K. Kroy, A. Salonen, M. B. Robertson, and S.U. Egelhaaf, “Non-equilibrium behavior of sticky colloidal particles: beads, clusters and gels”, The European Physical Journal E, 16, 77-80 (2005).
Rajeshwar, K., K. Sopajaree, S. A. Qasim and S. Basak, “An integrated flow reactor-membrane filtration system for heterogeneous photocatalysis. Part I: Experiments and modeling of a batch-recirculated photoreactor”, J. Applied Electrochemistry, 29, 533-539 (1999).
Rajeshwar, K., K. Sopajaree, S. A. Qasim and S. Basak, “An integrated flow reactor-membrane filtration system for heterogeneous photocatalysis. Part II: Experiments on the ultrafiltration unit and combined operation”, J. Applied Electrochemistry, 29, 1111-1118 (1999).
Taitel, Y., D. Bornea, and A. E. Dulker, “Modelling Flow Pattern Transition for Steady Upward Gas-liquid in Vertical Tubes”, AIChE J., 26, 345(1980).
Van Der Weal, M. J., I.G. Racz, “Mass transfer in corrugated-plate membrane Modules. I. Hyperfiltration Experiments”, J. Membrane Sci., 40, 243-260 (1989).
Vekilov, P. G., L. F. Filobelo and O. Gaklin, “Spinodal for the solution-to-crystal phase transformation”, The J. Chemical Physics, 123, 013904 (2005).
Vigneswaran, S., D. P. Ho and H. H. Ngo, “Photocatalysis-membrane hybrid system for organic removal from biologically treated sewage effluent”, Separation and Purification Technology, 68, 145-152 (2009).
Vigneswaran, S., D. P. Ho and H. H. Ngo, “Integration of photocatalysis and microfiltration in removing effluent organic matter from treated sewage effluent”, Separation Science and Technology, 45, 155-162 (2010).
Wang, S. S., “Effect of Solution Viscosity on Ultrafiltration”, J. Membrane Sci., 39, 187(1988).
Winzeler, H. B. and G. Belfort, “Enhanced performance for pressure-driven membrane processes: The argument for fluid instabilities”, J. Membrane Sci., 80, 35 (1993).
Winzeler, H.B., G. Belfort, “Enhanced performance for pressure driven membrane processes: the argument for fluid instabilitie-s”, J. Membrane Sci., 80, 35-47(1993).
Xi, W., S.U. Geissen, “Separation of titanium dioxide from photocatalytically treated water by cross-flow microfiltration”, Wat.Res. 35 (5), 1256-1262(2001).
Xue, X. D., J. F. Fu, W.F. Zhu, X. C. Guo, “Separation of ultrafine TiO2 from aqueous suspension and its reuse using cross-flow ultrafiltration (CFU)”, Desalination 225, 29–40(2008).
Yeh, H. M., and T. W. Cheng, “Resistance-in-series for membrane ultrafiltration in hollow-fibers of tube-and-shell arrangement”, Sep. Sci. Technol., 28, 1341 (1993).
Yeh, H. M., “Modified gel-polarization model for ultrafiltration in hollow-fiber membrane modules”, Sep. Sci. Technol., 31, 201-211 (1996).
Youm, K.H., A.G. Fane, D.E. Wiley, “Effects of natural convection instability on membrane performance in dead-end and cross-flow ultrafiltration”, J. Membr. Sci. 116, 229-241 (1996).
Zhangh, X. W., G. T. Li, Y. Z. Wang and J. H. Qu, “Microwave electrodeless lamp photolytic degradation of acid orange 7”, Journal of Photochemistry and Photobiology A: Chemistry, 184, 26-33 (2006).
Zhao Y.Q., “Settling behaviour of polymer flocculated water-treatment sludge I: analyses of settling curves”, Separation and purification technology, 35, 71(2004).
Zhao Y., Y. Zhang, W. Xing and N. Xu, “Treatment of titanium white waste acid using ceramic microfiltration membrane”, Chemical Engineering Journal, 111, 31 (2005).
呂宗昕, “圖解奈米科技與光觸媒”,商周出版(2003).
呂維明編著, “固液過濾技術”, 高立圖書有限公司(2004).
林世龍, “氣液兩相管式薄膜超過濾系統中流態與濾速之探討”, 淡江大學化學工程與材料工程研究所碩士論文(2002).
林凱尉, “無機管式薄膜過濾蛋白質溶液之探討”, 淡江大學化學工程與材料工程研究所碩士論文(2007).
林哲緯, “二氧化鈦奈米粒子溶液於無機管式薄膜過濾效能之研究”, 淡江大學化學工程與材料工程研究所碩士論文(2009).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-08-26公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-08-26起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信