§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2508201108311100
DOI 10.6846/TKU.2011.00923
論文名稱(中文) 應用於紫外光交聯高折射率有機-無機混成薄膜之二氧化鈦溶膠的製備與分析
論文名稱(英文) Preparation and characterization of TiO2 sol for UV-cured high-refractive-index organic-inorganic hybrid thin films
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 99
學期 2
出版年 100
研究生(中文) 林佳穎
研究生(英文) Chia-Ying Lin
學號 698400198
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2011-07-21
論文頁數 70頁
口試委員 指導教授 - 張朝欽
委員 - 陳慶鐘
委員 - 鄭廖平
委員 - 游洋雁
委員 - 張朝欽
關鍵字(中) 光學塗膜
二氧化鈦
高折射率
紫外光交聯
有機-無機混成
關鍵字(英) optical coatings
organic-inorganic nanocomposites
UV-curable
high refractive index
titanium dioxide
第三語言關鍵字
學科別分類
中文摘要
本研究利用紫外光交聯二氧化鈦溶膠混和壓克力單體在PMMA基材上成功製備出混成薄膜。使用溶膠-凝膠法在室溫且無添加表面活性劑下,合成二氧化鈦奈米粒子。藉由加熱回流程序,二氧化鈦奈米粒子轉變為部分結晶型態。所製備的二氧化鈦溶膠可提供旋轉塗佈製備混成薄膜時操作的控制。高折射率複合薄膜含有高比例的二氧化鈦奈米粒子和良好的透明性。在T1-sol中的二氧化鈦粒子雖然已有產生部分結晶但光催化能力並不好。這可能是由於有限程度的結晶二氧化鈦僅能降解部分有機分子。所有複合薄膜表現出良好的附著力,折射率隨二氧化鈦比例增加分佈在1.66-1.82範圍之間。這些結果證明所製備的二氧化鈦複合薄膜在光學元件上有應用的潛力,如防反射塗層。二氧化鈦溶膠的特性將藉由DLS、TEM、XRD和UV-Vis吸收來鑑定,而二氧化鈦複合薄膜則進行UV-Vis吸收、FTIR、N&K、TGA、SEM、AFM和接觸角的分析。
英文摘要
In this study, UV-cured hybrid optical thin films were successfully prepared on PMMA substrates using TiO2 sols and acrylic monomers. TiO2 nanoparticles were synthesized via a sol-gel route at room temperature. Through the heat reflux process, the TiO2 nanoparticles became partial crystalline. The prepared TiO2 sols can provide operating control for the preparation of hybrid thin films by spin coating. Transparent high-refractive-index thin films were obtained with high TiO2 content. Photocatalytic ability of synthesized TiO2 nanoparticles was poor while some crystal structure existed. This may resulted from limited crystallinity of TiO2, and avoided a distinct degradation of organic moieties in the hybrids. TiO2 sols were characterized by DLS, TEM, XRD, and UV-Vis absorption, while TiO2 hybrid thin films were analyzed by UV-Vis absorption, FTIR, N&K, TGA, SEM, AFM, and contact angle. All hybrid thin films showed good adhesion to the PMMA substrate with refractive index falling over the range 1.66-1.82. These results suggested the potential application of present TiO2 hybrid films in optical devices, such as anti-reflective coatings.
第三語言摘要
論文目次
本文目錄
本文目錄	III
圖目錄	V
表目錄	VIII
第一章 緒論	1
1-1 前言	1
1-2 研究動機與方法	2
第二章 文獻回顧	4
第三章 實驗部分	9
3-1 實驗藥品	9
3-2 實驗步驟	10
3-2-1 二氧化鈦溶膠的合成	10
3-2-2 製備高折射率光學塗膜	10
3-2-3 光催化實驗	11
3-3 實驗儀器	13
第四章 結果與討論	18
4-1 溶膠性質分析	18
4-1-1 溶膠粒子DLS分析	18
4-1-2 溶膠粒子TEM觀測	21
4-1-3 溶膠粒子XRD光譜分析	22
4-1-4 紫外光-可見光光譜分析	26
4-2 塗膜性質分析	29
4-2-1紫外光-可見光光譜分析	29
4-2-2 紅外線光譜分析(FTIR)	31
4-2-3 塗膜與光學性質	35
4-2-4 塗膜表面形態鑑定	39
4-2-5 塗膜熱性質分析	46
4-2-6 塗膜接觸角分析	49
第五章 結論	51
參考文獻	52
附錄	56

圖目錄

圖3-1 製備二氧化鈦混成塗膜及檢測流程圖	12
圖4-1 T-sol在不同溫度加熱1小時後的粒徑變化	19
圖4-2 T-sol在70 o C下隨加熱時間的粒徑分佈	19
圖4-3 T-sol在不同溫度下隨加熱時間的粒徑變化	20
圖4-4 T-sol溶膠粒子TEM及SAD影像	21
圖4-5 T-sol在70 o C加熱3 h的TEM及SAD影像	22
圖4-6 T-sol在70 o C加熱6 h的TEM及SAD影像	22
圖4-7 T-sol溶膠在70 o C不同加熱時間下的XRD光譜	24
圖4-8 T-sol溶膠在80 o C不同加熱時間下的XRD光譜	25
圖4-9 T-sol溶膠在70 o C不同加熱時間下的UV-Vis光譜	26
圖4-10 T-sol溶膠在80 o C不同加熱時間下的UV-Vis光譜	27
圖4-11 二氧化鈦粒子光催化表現圖	28
圖4-12 T1-sol (3h)溶膠塗膜的UV-VIS吸收光譜圖	29
圖4-13 T1D80與T1-100厚膜的UV-VIS穿透光譜圖	30
圖4-14 不同二氧化鈦含量T1-sol製備塗膜FTIR圖譜	33
圖4-15不同二氧化鈦含量T-sol塗膜FTIR圖譜	34
圖4-16 塗膜折射率隨二氧化鈦含量變化圖	38
圖4-17 純DPHA塗膜表面SEM圖	40
圖4-18 純DPHA塗膜截面SEM圖	40
圖4-19 TD80塗膜表面SEM圖	41
圖4-20 TD80塗膜截面SEM圖	41
圖4-21 T1D60塗膜表面SEM圖	42
圖4-22 T1D60塗膜截面SEM圖	42
圖4-23 T1D80塗膜表面SEM圖	43
圖4-24 T1D80塗膜截面SEM圖	43
圖4-25 T1R80塗膜表面SEM圖	44
圖4-26 T1R80塗膜截面SEM圖	44
圖4-27 T1D80塗膜表面AFM圖	45
圖4-28 T1DR80塗膜表面AFM圖	45
圖4-29 T1R80塗膜表面AFM圖	45
圖4-30 T1-sol塗膜TGA分析圖	47
圖4-31 T-sol塗膜TGA分析圖	48
圖4-32 T-sol經70 oC加熱後塗佈的薄膜及80 wt.%混成薄膜接觸角變化圖	49
圖4-33 T1-sol塗佈的薄膜接觸角隨二氧化鈦含量變化圖	50
圖A-1 T-sol在70 o C下不同加熱時間的粒徑分佈(intensity)	56
圖B-1 T-sol光學能階圖	57
圖B-2 T-sol在70 o C加熱1小時光學能階圖	57
圖B-3 T-sol在70 o C加熱2小時光學能階圖	58
圖B-4 T-sol在70 o C加熱3小時光學能階圖	58
圖B-5 T-sol在70 o C加熱6小時光學能階圖	59
圖C-1 T1R80塗膜的UV-VIS吸收光譜圖	60
圖C-2 T1DR80塗膜的UV-VIS吸收光譜圖	60
圖C-3 T1-sol (3h)溶膠塗膜的UV-VIS穿透光譜圖	61
圖C-4 T-sol溶膠塗膜的UV-VIS吸收光譜圖	61
圖C-5 T-sol溶膠塗膜的UV-VIS穿透光譜圖	62
圖C-6 T1R80塗膜的UV-VIS穿透光譜圖(厚膜)	62
圖C-7 T1DR80塗膜的UV-VIS穿透光譜圖(厚膜)	63
圖C-8 DPHA、TMPTA厚膜的UV-VIS穿透光譜圖	63
圖D-1有機單體DPHA、TMPTA塗膜FTIR圖譜	64
圖E-1 純DPHA塗膜表面AFM圖	65
圖F-1 T1-100塗膜TGA分析圖	66
圖F-2 T1D80塗膜TGA分析圖	66
圖F-3 T1D60塗膜TGA分析圖	67
圖F-4 T1D40塗膜TGA分析圖	67
圖F-5 T1D20塗膜TGA分析圖	68
圖F-6 T-100塗膜TGA分析圖	68
圖F-7 TD80塗膜TGA分析圖	69
圖F-8 TD60塗膜TGA分析圖	69

表目錄

表3-1 二氧化鈦混成感光性塗料配方	11
表4-1 T-sol溶膠在70 o C的UV-Vis光譜結果整理	27
表4-2 T-sol溶膠在80 o C的UV-Vis光譜結果整理	27
表4-3 二氧化鈦、壓克力酯類主要特性吸收峰表	32
表4-4 T-sol塗膜物性量測表	36
表4-5 T-sol不同加熱時間與塗膜不同硬烤時間物性量測表	36
表4-6 T1-sol塗膜物性量測表	37
表4-7 塗膜光澤度量測結果表	37
表4-8 T1-sol塗膜TGA分析整理表	47
表4-9 T-sol塗膜TGA分析整理表	48
表4-10 塗膜接觸角測試結果整理表	50
表G-1 T1D60塗膜元素分析表	70
參考文獻
1.	H. Althues, J. Henle, S. Kaskel, “Functional inorganic nanofillers for transparent polymers”, Chemical Society Reviews, 2007, 36, 1454-1465.
2.	W. Caseri, “Inorganic nanoparticles as optically effective additives for polymers”, Chemical Engineering Communications, 2009, 196, 549-572.
3.	C. Lü, B. Yang, “High refractive index organic-inorganic nanocomposites: Design, synthesis and application”, Journal of Materials Chemistry, 2009, 19, 2884-2901.
4.	L.-H. Lee, W.-C. Chen, “High-refractive-index thin films prepared from trialkoxysilane-capped poly(methylmethacrylate)-titania materials”, Chemistry of Materials, 2001, 13, 1137-1138.
5.	C.-C. Chang, W.-C. Chen, “High-refractive-index thin films prepared from aminoalkoxysilane-capped pyromellitic dianhydride-titania hybrid materials”, Journal of Polymer Science, Part A: Polymer Chemistry, 2001, 39, 3419-3427.
6.	C.-M. Chang, C.-L. Chang, C.-C. Chang, “Synthesis and optical properties of soluble polyimide/titania hybrid thin films”, Macromolecular Materials and Engineering, 2006, 291, 1521-1528.
7.	Y.-Q Rao, S. Chen, “Molecular composites comprising TiO2 and their optical properties”, Macromolecules, 2008, 41, 4838-4844.
8.	H.-W. Su, W.-C. Chen, “High refractive index polyimide -nanocrystalline-titania hybrid optical materials”, Journal of Materials Chemistry, 2008, 18, 1139-1145.
9.	H.-W. Su, W.-C. Chen, “Photosensitive high-refractive-index poly(acrylic acid)-graft-poly(ethylene glycol methacrylate) Nanocrystalline Titania hybrid films”, Macromolecular Chemistry and Physics, 2008, 209, 1778-1786.
10.	W.-L. Chang, H.-W. Su, W.-C. Chen, “Synthesis and properties of photosensitive polyimide-nanocrystalline titania optical thin films”, European Polymer Journal, 2009, 45, 2749-2759.
11.	A. Matsuda, T. Sasaki, K. Tadanaga, M. Tatsumisago, T. Minami, “Photocatalytic micropatterning of transparent ethylsilsesquioxane -titania hybrid films”, Chemistry of Materials, 2002, 14, 2693-2700.
12.	H. Segawa, S. Adachi, Y. Arai, K. Yoshida, “Fine patterning of hybrid titania films by ultraviolet irradiation”, Journal of the American Ceramic Society, 2003, 86, 761-764.
13.	W.-S. Kim, K.-B. Yoon, B.-S. Bae, “Nanopatterning of photonic crystals with a photocurable silica-titania organic-inorganic hybrid material by a UV-based nanoimprint technique”, Journal of Materials Chemistry, 2005, 15, 4535-4539.
14.	C.-Y Jia, W. Que, W.-G. Liu, “Preparation and optical properties of sol-gel derived photo-patternable organic-inorganic hybrid films for optical waveguide applications”, Thin Solid Films, 2009, 518, 290-294.
15.	X. Luo, C. Zha, B. Luther-Davies, “Preparation and optical properties of titania-doped hybrid polymer via anhydrous sol-gel process”, Journal of Non-Crystalline Solids, 2005, 351, 29-34.
16.	W. Du, H. Wang, W. Zhong, L. Shen, Q. Du, “High refractive index films prepared from titanium chloride and methyl methacrylate via a non-aqueous sol-gel route”, Journal of Sol-Gel Science and Technology, 2005, 34, 227-231.
17.	M. Kusabe, H. Kozuka, S. Abe, H. Suzuki, “Sol-gel preparation and properties of hydroxypropylcellulose-titania hybrid thin films”, Journal of Sol-Gel Science and Technology, 2007, 44, 111-118.
18.	M. Sun, W. Que, X. Wu, “Preparation and trans-cis isomerization of azobenzene-containing TiO2/ormosils hybrid films derived at a low temperature sol-gel process for photonic applications”, Journal of Sol-Gel Science and Technology, 2009, 50, 415-420.
19.	M. Mennig, P.-W. Oliveira, H. Schmidt, “Interference coatings on glass based on photopolymerizable nanomer material”, Thin Solid Films, 1999, 351, 99-102.
20.	C.-C. Chen, D.-J. Lin, T.-M. Don, F.-H. Huang, L.-P. Cheng, “Preparation of organic-inorganic nano-composites for antireflection coatings”, Journal of Non-Crystalline Solids, 2008, 354, 3828-3835.
21.	R.J Nussbaumer, W.R Caseri, P. Smith, T. Tervoort, “Polymer-TiO2 nanocomposites: A route towards visually transparent broadband UV filters and high refractive index materials”, Macromolecular Materials and Engineering, 2003, 288, 44-49.
22.	Y. Liu, C. Lü, M. Li, L. Zhang, B. Yang, “High refractive index organic-inorganic hybrid coatings with TiO2 nanocrystals”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 328, 67-72.
23.	Y. Imai, A. Terahara, Y. Hakuta, K. Matsui, H. Hayashi, N. Ueno, “Transparent poly(bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles”, European Polymer Journal, 2009, 45, 630-638.
24.	J.-L. Hang Chau, H.-W. Liu, W.-F. Su, “Fabrication of hybrid surface-modified titania-epoxy nanocomposite films”, Journal of Physics and Chemistry of Solids, 2009, 70, 1385-1389.
25.	N. Nakayama, T. Hayashi, “Preparation and characterization of TiO2-ZrO2 and thiol-acrylate resin nanocomposites with high refractive index via UV-induced crosslinking polymerization”, Composites Part A: Applied Science and Manufacturing, 2007, 38, 1996-2004.
26.	N. Nakayama, T. Hayashi, “Synthesis of novel UV-curable difunctional thiourethane methacrylate and studies on organic-inorganic nanocomposite hard coatings for high refractive index plastic lenses”, Progress in Organic Coatings, 2008, 62, 274-284.
27.	J.-G. Liu, Y. Nakamura, T. Ogura, Y. Shibasaki, S. Ando, M. Ueda, “Optically transparent sulfur-containing polyimide-TiO2 nanocomposite films with high refractive index and negative pattern formation from poly(amic acid)-TiO2 nanocomposite film”, Chemistry of Materials, 2008, 20, 273-281.
28.	Y. Rao, B. Antalek, J. Minter, T. Mourey, T. Blanton, G. Slater, L. Slater, J. Fornalik, “Organic solvent-dispersed TiO2 nanoparticle characterization”, Langmuir, 2009, 25, 12713-12720.
29.	A. Antonello, G. Brusatin, M. Guglielmi, V. Bello, G. Mattei, G. Zacco, A. Martucci, “Nanocomposites of titania and hybrid matrix with high refractive index”, Journal of Nanoparticle Research, 2011, 13, 1697-1708.
30.	B.-T. Liu, S.-J. Tang, Y.-Y. Yu, S.-H. Lin, “High-refractive-index polymer/inorganic hybrid films containing high TiO2 contents”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 377, 138-143.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信