淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2508201013050900
中文論文名稱 枯草桿菌懸浮液之微過濾結垢特性
英文論文名稱 Fouling characteristic in microfiltration of bacillus subtilis suspension
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 98
學期 2
出版年 99
研究生中文姓名 王鐘逸
研究生英文姓名 Chung-Yi Wang
學號 697400157
學位類別 碩士
語文別 中文
口試日期 2010-07-16
論文頁數 76頁
口試委員 指導教授-黃國楨
委員-李篤中
委員-童國倫
委員-莊清榮
委員-鄭東文
委員-黃國楨
中文關鍵字 枯草桿菌  蛋白質  多醣體  生化分離 
英文關鍵字 Bacillus subtilis  Protein  Polysaccharide  Bio-separation 
學科別分類
中文摘要 本研究在探討枯草桿菌(Bacillus subtilis)之微過濾結垢特性,實驗採用恆壓系統分別對未添加培養基與添加培養基之枯草桿菌懸浮液進行過濾實驗,了解生物發酵槽產品之過濾行為的差異。實驗結果發現,未添加培養基之懸浮液之過濾曲線可區分為三個階段:第一階段:過濾一開始呈線性關係;第二階段:隨著過濾進行則變成一先凹再凸的反曲曲線;第三階段:過濾後期則又大致呈線性關係,且斜率則與第一段之斜率相當。此現象表示在第二階段之阻力急遽上升,是因為此時於薄膜表面上的粒子受到壓縮變形,並且形成一緻密層(skin layer),使得大部分的壓降損失於此濾餅層,所以當在此層形成後,剩餘的壓降不足以再對隨後輸送至膜面的粒子產生壓縮,後期所形成的濾餅結構於是較為鬆散,該時期與第一階段相同,濾餅的阻力係來自於枯草桿菌細胞的堆積與重排。而過濾添加培養基之枯草桿菌懸浮液可發現,其過濾曲線會隨懸浮液中菌體以及膠羽濃度而有所不同。於低濃度下,當操作壓力越大時,其過濾曲線(dt/dv vs. v) 之切線斜率增加的趨勢越明顯,由經驗式所求得的壓縮係數分別為n=1.09與β=0.11,顯示出此濾餅具有很高的壓縮性。實驗結果亦顯示:欲收集相同的濾液體積,高壓操作所需要的時間反而越長,這表示在懸浮液中有膠羽存在時,影響濾速的不止有壓力,濾餅的性質也是重要的影響因子。由於濾餅在高壓下被壓縮的更緊密,使得濾速反而會隨著壓力之增加而下降。當培養天數增加、懸浮液中膠羽量變多時,可發現在不同過濾壓力下之過濾曲線幾乎重疊,這是因為在高膠羽濃度下,透膜壓差之增加會使得濾餅孔隙度降低,而導致過濾總阻力隨之上升,抵消了因透膜壓差增加所提升的過濾驅動力。此外,並進行懸浮液與濾液端之蛋白質與多醣體的濃度分析。結果可發現,原懸浮液中蛋白質/多醣體的比例約為0.1~0.3。蛋白質在過濾過程中的阻擋率高達100%,表示懸浮液中的蛋白質都會被薄膜阻擋;而多醣體的阻擋率介於0.01~0.1%之間,表示懸浮液中大多數的多醣體皆能穿透薄膜。為了解過濾阻力來源,先藉由離心將原懸浮液分為上清液與殘留粒子,並各自重新懸浮後進行實驗。實驗結果顯示:殘留粒子懸浮液主要組成為菌體以及膠羽,其主要成分為萃取性胞外高分子物質(extractable EPS),其中絕大多數為蛋白質,由阻力串聯模式可知,殘留粒子懸浮液之濾餅阻力佔了將近99%。而上清液懸浮液之主要成分為可溶性胞外高分子物質(soluble EPS),其中絕大部分為多醣體,實驗結果顯示:上清液之濾餅阻力約佔了55%,而不可逆阻力約佔27%。此外,殘留粒子懸浮液之濾餅阻力比上清液懸浮液之濾餅阻力大了將近100倍,故過濾之主要阻力來源為菌體以及膠羽所構成之濾餅層。
英文摘要 Fouling characteristic in microfiltration of bacillus subtilis suspension was studied. In order to understand the filtration behavior of fermentation bio-products. Bacillus subtilis suspensions were prepared under two different culture conditions, and used in dead-end cake filtration. In the condition of no culture medium addition, the trend for filtration curve of dt/dv vs. v can be divided into three distinct parts. In the early period of filtration, the filtration curve is a straight line. This reveals that the average specific cake filtration resistance is constant. The increase in filtration resistance is caused by the cake formation and the rearrangement of particles in cake. The tangent slope of filtration curve drastic increases in the second period. This is because the deformation and compression of bacillus subtilis cells result in a sudden decrease in cake porosity and consequently an increase in filtration resistance. A skin layer with compact structure may be formed next to the membrane surface. Because most solid compressive pressures are depleted by the skin layer, the filtration curve in the third period is then similar to that in the first period. The filtration curve significantly varies with the concentrations of Bacillus subtilis and floc when medium is added during culture. The tangent slope of filtration curve becomes sharper under higher filtration pressure at low cell concentration, the compressibility factors obtained by empirical equations are n=1.09 and β=0.1, respectively. These indicate that the cakes have extremely high compressibility. The results also show that the filtration time should be longer to receive a given filtrate volume under higher filtration pressure. When flocs exist in the suspension, the filtration flux is affected by not only filtration pressure but also the cake properties. Because the cake is compressed to be more compact under higher pressure, the flux contrarily decreases with increasing pressure. At high floc concentration, the filtration curves almost overlap whatever the pressure is. An increase in transmembrane pressure leads to lower cake porosity and to higher total filtration resistance. The increase in driving force by increasing pressure is therefore offset by the resistance increase. Besides, the concentrations of protein and polysaccharide in the suspension and filtrate are analyzed. The ratio of protein/polysaccharide in the original suspension is ca 0.1 - 0.3. The rejection of protein is as high as 100%, while that of polysaccharide ranges from 0.01 to 0.1%. These results indicate that all proteins will be retained by the membrane, but most polysaccharides can penetrate through the membrane into filtrate. In order to understand the sources of filtration resistances, the original suspension is separated into supernatant and residue using centrifuge. The major components in the residue are cells and flocs, in which contain a significant amount of proteins. According to the resistance-in-series model, the cake resistance for the residue suspension is nearly 99% of the overall resistance. The major components existed in the supernatant suspension is soluble extracellular polymer substances (EPS), most of which is polysaccharides. The cake resistance is 55% and the irreversible resistance is 27% of the overall resistance for the supernatant suspension. However, the cake resistance for the residue suspension is ca 100 times higher then that for supernatant suspension. It could be said that the major resistances in the filtration of bacillus subtilis suspension is causing by the cake layer formed by cells and flocs.
論文目次 目錄
頁次
中文摘要................................................ Ⅰ
英文摘要................................................ Ⅱ
目 錄................................................... Ⅳ
圖目錄................................................Ⅶ
表目錄................................................Ⅹ
第一章 緒論.............................................. 1
1-1 前言........................................... 1
1-2 實驗動機與目標................................ 5
第二章 文獻回顧.......................................... 7
2-1 可變形粒子之過濾特性........................... 7
2-2 濾餅的性質.....................................10
2-3 薄膜生物反應器.................................11
2-3-1 薄膜生物反應器的結垢因子.................13
2-4 枯草桿菌.......................................19
2-4-1 枯草桿菌簡介.............................19
2-4-2 枯草桿菌的用途...........................19
2-5 聚集團內含水率量測.............................21
第三章 理論............................................. 24
3-1 阻力串聯模式................................... 24
3-2 濾餅之過濾比阻、孔隙度和固體壓縮關係............ 25
第四章 實驗裝置與方法....................................26
4-1 實驗物料........................................26
4-2 實驗裝置與儀器..................................27
4-2-1 實驗設備.................................27
4-2-2 分析儀器.................................28
4-3 實驗步驟........................................30
4-3-1 緩衝溶液與懸浮液之配置...................30
4-3-2 恆壓過濾之實驗步驟.......................30
4-4 胞外聚合物分析..................................32
第五章 實驗結果與討論....................................35
5-1 恆壓過濾特性曲線................................35
5-1-1 未添加培養基之枯草桿菌懸浮液恆壓過濾曲線.35
5-1-2 添加培養基之枯草桿菌懸浮液恆壓過濾曲線...43
5-2 恆壓過濾之結垢阻力分析..........................51
第六章 結論..............................................60
符號說明.................................................62
參考文獻.................................................64
附錄.....................................................70
附錄A 實驗物料與濾膜種類............................70
附錄B 薄膜阻力:Rm之求法............................72
附錄C 濾餅中粒子內外部孔隙度求法....................73
附錄D 緩衝溶液的配置................................76
圖目錄
頁次
第一章
Fig. 1- 1 The classification of membrane filtration process. 2
Fig. 1- 2 Schematics of dead-end filtration and cross-flow filtration 3
第二章
Fig. 2- 1 An idealized plot of fraction density versus pressure for particle compaction showing the four overlapping stages (German,1989) 9
Fig. 2- 2 Four kinds of blocking phenomena in the membrane. 15
Fig. 2- 3 Effect of the main membrane fouling factor (Chang等人2002) 16
Fig. 2- 4 A conceptual visualization of the moisture distribution in sludge 21
Fig. 2- 5 The Drying Apparatus(Tsang & Vesilind,1990) 22
Fig. 2- 6 Drying curve for identifying four different types of water in sludge(Tsang & Vesilind,1990). 23
第三章
Fig. 3- 1 Overview of various types of resistance in membrane filtration. 24
第四章
Fig. 4- 1 A schematic diagram of “dead-end” microfiltration system. 27
Fig. 4- 2 A schematic diagram of filter chamber. 28
Fig. 4- 3 phenol-sulfuric acid method. 33
Fig. 4- 4 Bradford method. 33
Fig. 4- 5 The absorbance vs. concentration of Glucose. 34
Fig. 4- 6 The absorbance vs. concentration of BSA. 34
第五章
Fig. 5- 1 The microscope of Bacillus subtilis suspension.(× 3600X, 2hr) 36
Fig. 5- 2 The microscope of Bacillus subtilis suspension.(× 3600X, 24hr) 36
Fig. 5- 3 The microscope of Bacillus subtilis suspension.(× 3600X, 2 day) 37
Fig. 5- 4 The microscope of Bacillus subtilis suspension.(× 3600X, 3 day) 37
Fig. 5- 5 Filtration curves of v vs. t under various filtration pressures. 39
Fig. 5- 6 Filtration curves of dt/dv vs. v under various filtration pressures. 40
Fig. 5- 7 Filtration curves of dt/dv vs. v under various concentration. 40
Fig. 5- 8 The side view of cake formed by Bacillus subtilis measured by SEM.(×30.00KX、P=100kPa、t=30min、culture time=1 day). 41
Fig. 5- 9 The relationships between αav and t under various filtration pressures. 42
Fig. 5- 10 The relationships between and P under various culture time. 43
Fig. 5- 11 The microscope of Bacillus subtilis suspension.(added medium, × 3600X, 1 day). 44
Fig. 5- 12 The microscope of Bacillus subtilis suspension.(added medium, × 900X, 24hr). 44
Fig. 5- 13 The microscope of Bacillus subtilis suspension.(added medium, × 1800X, 2day). 45
Fig. 5- 14 The microscope of Bacillus subtilis suspension.(added medium, × 1800X, 3day). 45
Fig. 5- 15 Filtration curves of dt/dv vs. v under various filtration pressures.(added medium). 47
Fig. 5- 16 Filtration curves of dt/dv vs. v under various culture time and filtration pressures.(added medium). 48
Fig. 5- 17 The relationships between and P under various culture time. 49
Fig. 5- 18 The relationships between 1- and P under various culture time. 49
Fig. 5- 19 The top view of the cake formed by Bacillus subtilis measured by SEM.( added medium, ×4.00KX、P=100kPa、t=60min、culture time=1 day). 50
Fig. 5- 20 The top view of the cake formed by Bacillus subtilis floc measured by SEM.( added medium, ×4.00KX、P=100kPa、t=60min、culture time=1 day). 50
Fig. 5- 21 The side view of the cake formed by Bacillus subtilis measured by SEM.( added medium, ×4.00KX、P=100kPa、t=60min、culture time=1 day). 51
Fig. 5- 22 The Rt of various culture condition.(operation time=3600 sec). 54
Fig. 5- 23 The Rt of various culture condition.(filtrate=50ml). 55
Fig. 5- 24 The Rt of various culture condition.(filtrate=100ml). 56
Fig. 5- 25 The Rt of various culture condition.(filtrate=150ml). 56
Fig. 5- 26 Filtration curves of dt/dv vs. v under various filtration pressures.(no medium, culture time=2day). 57
Fig. 5- 27Filtration curves of dt/dv vs. v under various filtration pressures.(no medium, culture time=3day). 57
Fig. 5- 28 The supernatant suspension resistance distribution. 59
Fig. 5- 29 The Rt、Rc、Rif of various operation condition.(residue suspension). 59
附錄
Fig.A-2 Durapore membrane.............................................................................71
Fig.C-1 The drying curve for the filtration cake of Bacillus subtilis……….....73
表目錄
頁次
第一章
Table 1- 1 Relative sizes of bacterial contaminants.(Scott,1998) 6
第四章
Table 4- 1 Component of the suspention 26
Table 4- 2 The operating condition in this study. 31
第五章
Table 5- 1 The number and OD660 of Bacillus subtlis at different culture time. 46
Table 5- 2 The concentration of protein/polysaccharide in the suspension under various culture time.(1、2、4 day). 52
Table 5- 3 The concentration of protein/polysaccharide in the filtrate under various culture time and filtration pressures. . 53
Table 5- 4 The Rif of supernatant and resuspended residual pellets. 58
附錄
Table D-1 Preparation of the buffer solutions………………………………...76
參考文獻 參考文獻
Aim, R. B. and P. L. Goff, “Effect de Paroi Dans Les Empile-ments Desordonnes de Spheres et Application a la Porosite de Melange Binaires”, Powder Tech., 1, 281 (1968).

Bouhabila, E. H., Aim, R. B. and Buisson, H. “Microfiltration of activated sludge using submerged membrane with air bubbling (application to wastewater treatment).”, Desalination, 118, 315-322. (1998)

Chang, I. S., Le-Clech, P., Jefferson, B. and Judd, S. “Membrane fouling in MBRs for wastewater treatment.”, J. Environ. Eng., 128:11 (2002).

Dubois.M., Gilles,K.A., Hamilton, J.K., Rebers, P.A., Smith,F., “Calorimetric method for determination of sugars and related substances”, Anal. Chem. 28, 350-356(1956).

Fane, A. G., Fell, C. J. D. and Nor, M. T. “Ultrafiltration/Activated sludge system-development of a predictive model.”, Polym. Sci.Technol., 13, 631-658 (1981).

German,R. M., “Particle Packing Characteristics”, Chap. 9, Metal Powder Industries Federation, Princeton, New Jersey, 219-252 (1989).

Hwang, K.J., Lyu, S.Y., Chen F.F.,“ The preparation and filtration characteristics of Dextran-MnO2 gel particles”, Powder Technol 161,41-47(2006).


Hwang, K.J., Wang, Y.S., “Cross-flow Micorfiltration of Soft Porous Submicon Particles”, J. Chin. Inst. Chem. Engrs 34,161-169 (2003).

Hermans P.H., Bredee H.L., “Principles of the mathematical treatment of constant pressure filtration”, J. Soc. Chem. Ind. 55 (1936).

Hodgson, P. A., Leslie, G. L., Schneider, R. P., Fane, A. G., Fell, C. J. D. and Marshall, K. C. “Cake resistance and solute rejection inbacterial microfiltration: The role of the extracellular matrix.”, J. Membr. Sci., 79, 35-53 (1993).

Juang, R.S,, Chen, H.L., Chen Y.S., “Membrane fouling and resistance analysis in dead-end ultrafiltration of Bacillus subtilis fermentation broths”, Separation and Purification Technology,63, 531-538 (2008)

Kim, J. S., C. H. Lee and I. C. Chang, “Effect of Pump Shear on the Performance of a Crossflow Membrane Bioreactor”, Wat. Res., 35, pp. 2137, (2001).

Lu, W.M., and K.J. Hwang, “Mechanism of Cake Formation in Constant Pressure Filtrations”, Sep. Technol., 3, 122-132 (1993).
Lu, W. M., Tung, K. L., Pan, C. H., Shih, C. P. and Hwang, K. J., “Crossflow microfiltration of deformable particles”, J. Membr. Sci., 41-44 (1998).

Meng, F., Zhang, H., Yang, F., Li, Y., Xiao, J. and Zhang, X. “Effect of filamentous bacteria on membrane fouling in submerged membrane reactor”, J. Membr. Sci., 272, 161-168 (2006).

Madaeni S., Fane A., and Wiley D.“Factors influencing critical flux in membrane filtration of activated sludge.”, J. Chem. Technol. Biotechnol., 74, 539-543 (1999).

Nakhla, G, Kim M.G., “Comparative studies on membrane fouling between two membrane-based biological nutrient removal systems”, J. Membr. Sci. ,331, 91-99 (2009).

Pieracci, J., Crivello, J. V. and Belfort, G. “Photochemical modi-fication of 10 kDa polyethersulfone ultrafiltration membranes for reduction of biofouling. ”, J. Membr. Sci., 156, 223-240 (1999).

Pollice, A., Brookes, A., Jefferson, B. and Judd, S. “Sub-critical flux fouling in membrane bioreactors - a review of recent literature.”, Desalination, 174, 221-230 (2005).



Pan, J. R,, Su, Y.C., Huang,C., Lee, H.C. “Effect of sludge characteristics on membrane fouling in membrane bioreactors”, J. Membr. Sci.,349, 287-294 (2010).

Rosenberger, S. and Kraume, M. “Filterability of activated sludge in membrane bioreactors. ”, Desalination, 146, 373-379 (2002).

Rojas, M. E. H., Kaam R. V., Schetrite, S. and Albasi, C. “Role and variations of supernatant compounds in submerged membrane bioreactor fouling. ”, Desalination, 179, 95-107 (2005).

Suzuki, M. and T. Oshima, “Estimation of the Co-ordination number in a two-component mixture of cohesive spheres”, Powder Technol., 36(2), 181-188 (1983).

Sandrin, C., Peypoux, F., Michel, G. “Coproduction of surfactin and iturin A, lipopeptides with surfactant and antifungal properties, by Bacillus subtilis”, Biotechnol. Appl. Biochem., 12, 370-375(1990).

Sorensen, P.B. and J.A. Hansen, “Extreme Solid Compressibility in Biological Sludge Dewatering”, Water Sci. and Technol., 28(1), 133 (1993).



Smith, C. V., D. D. Gregorio and R. M. Talcott, “The Use of Ultrafiltration Membrane for Activated Sludge Separation.”, 24thAnnual Purdue Industrial Waste Conference, Purdue University, Lafayette, Indiana,U.S.A.,1300 (1969).

Stephenson, T., Judd, S., Jefferson, B. and Brindle, K. “Membrane Bioreactors for Wastewater Treatment.” IWA, London. (2000)

Shimizu, Y., Rokudai, M., Tohya, S., Kayaware, E., Yazawa, T., Tanaka, H. and Eguchi, K. “Filtration characteristics of charged alumina membranes for methanogenic waste.”, J. Chem. Eng., 22, 635-641 (1989).

Tsang, K. R. and Vesilind, P. A., “Moisture Distribution in Sludge”, Wat. Sci., Technol., 22, 135-142 (1990).

Tatara, Y., “Large Deformations of a Rubber Sphere under Diametral Compression-Part 1: Theoretical Analysis of Press Approach, Constant Radius and Lateral Extension”, JSME, Series A, 36(2), 190 (1993).

Tiller, F. M., S. Haynes, JR., and W. M. Lu, “The Role of Porosity in Filtration VII Effect of Side-Wall Friction in Compression -Permeability Cells”, A.I.Ch.E. J., 18(1), 13-20 (1972).


Visvanathan, C., Aim, R. B. and Parameshwaran, K. “Membrane separation bioreactors for wastewater treatment.”, Critical Reviews in Environ. Sci. Technol., 30, 1-48. (2000).

Visvanathan, C., Yang, B. S., Muttamara, S. and Maythanukhraw, R. “Application of air backflushing technique in membrane bioreactor.”, Water Sci. Technol., 36, 259-266 (1997).

童國倫,“可變形粒子之過濾與濾布堵塞機構之研究〞博士論文,台灣大學化工系 (1998)。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2015-08-26公開。
  • 同意授權瀏覽/列印電子全文服務,於2015-08-26起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信