§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2508201012595900
DOI 10.6846/TKU.2010.00895
論文名稱(中文) 利用毛細管電泳分析在不同界面活性劑中所合成的金奈米粒子
論文名稱(英文) Analysis of Gold Nanoparticles Synthesized in Different Surfactants by Capillary Electrophoresis
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 98
學期 2
出版年 99
研究生(中文) 蔡鎮鴻
研究生(英文) Jhen-Hong Tsai
學號 697160249
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2010-07-19
論文頁數 187頁
口試委員 指導教授 - 吳俊弘(cwu@mail.tku.edu.tw)
委員 - 鄭建中(cccheng@mail.ncyu.edu.tw)
委員 - 鄧金培(jpdeng@mail.tku.edu.tw)
關鍵字(中) 毛細管電泳
金奈米粒子
界面活性劑
關鍵字(英) Capillary electrophoresis
Gold nanoparticles
Surfactant
第三語言關鍵字
學科別分類
中文摘要
從不同帶電性穩定劑中所合成的金奈米粒子(AuNPs),經由中性界面活性劑(Hex-OPE-PEO)在其表面進行修飾反應後,可以利用微胞電動層析法(MEKC)加以分析。利用此方法,我們可以測定表面帶有不同穩定劑的AuNPs之大小和分布情形。在本論文中我們利用此電泳技術研究分別以陰離子型、陽離子型、中性以及兩性離子型界面活性劑為穩定劑所合成的AuNPs的性質。
   我們發現,反應物混合方法會影響所合成AuNPs的性質。例如,在陰離子(SDS)系統中使用一次加入合成法可以得到粒徑分布較窄的結果;反之,在陽離子(CTAB)系統中使用分段逐次合成法所得產物之再現性與保存穩定性較佳。在陰、陽離子型界面活性劑中添加飽和芘,都可以在合成過程中有效抑制AuNPs成長反應,得到粒徑較小的產物。
   在雙界面活性劑中(中性F127+陽離子或陰離子型界面活性劑)合成AuNPs,若添加還原劑(NaBH4),易形成粒徑分布廣的產物;若只由F127擔任還原劑,則所得粒徑大小可由F127濃度控制,且分布較小。在兩性離子型界面活性劑(TDAPS)系統中,除了在低濃度(0.1 mM)TDAPS中,否則改變NaBH4濃度、TDAPS濃度或合成方法,對於所合成粒徑並無顯著影響。我們發現在SDS中以一次添加合成法合成AuNPs時,當提高還原劑濃度或在低溫進行合成反應,會得到較小粒徑AuNPs。此外,在SDS系統中使用晶種促進成長法合成AuNPs時,似乎應在適當濃度晶種中以分次少量方式添加HAuCl4和NaBH4,降低新晶種的形成,而在原添加晶種上成長,如此才能合成粒徑分布較窄的AuNPs。
英文摘要
Gold nanoparticles (AuNPs) synthesized in surface stabilizers with different charge polarities can be analyzed by micellar electrokinetic chromatography (MEKC) after undergoing surface modification reaction with a neutral surfactant (Hex-OPE-PEO). By using this approach, the particle sizes and distributions of AuNPs capped with different stabilizers can thus be determined. In the thesis, we utilized this CE-based method to study the properties of AuNPs synthesized in anionic, cationic, neutral, and zwitterionic surfactants, respectively.   
     We found that mixing reactants in different ways would result in AuNPs with different properties. For example, in the anionic (SDS) system, one-pot synthetic method could produce AuNPs with narrower distribution. On the other hand, in the cationic (CTAB) system, stepwise addition method would generate AuNPs with better reproducibility and storage stability. With the addition of saturated pyrene in anionic and cationic surfactants, particle growth reaction could be suppressed and smaller size of AuNPs would be obtained.
     In the binary surfactant system (i.e., neutral F127 + cationic or anionic surfactant), AuNPs with broad size distribution would be produced if another reductant (e.g., NaBH4) was added. Without adding additional reductant, F127 could serve as the only reductant in the system as well as the usual surface stabilizer. In so doing, the size of AuNPs could be regulated by F127 concentration and narrower size distribution would be obtained. In the zwitterionic surfactant (TDAPS), except at low TDAPS concentration (0.1 mM), particle size would not be affected by NaBH4 concentration, TDAPS concentration, and reactant mixing method. In the SDS system of one-pot synthetic method, increasing reductant concentration or lowering reaction temperature would reduce particle size. Furthermore, when the seed-mediated method was used in the SDS system, it seemed that multi-step additions of small amounts of HAuCl4 and NaBH4 into appropriate concentration of seeds would decrease the formation of new seeds and enable the particle growth on the added seeds, and therefore produce AuNPs with narrower distribution.
第三語言摘要
論文目次
中文摘要……………………………………………………………..I
英文摘要……………………………………………………………..II
目錄……………………………………………………………..IV
緒論……………………………………………………………..1
1.1 前言…...……………………………………………………………..1
1.2 金奈米粒子簡介………..…….……………………………………..2
1.3 毛細管電泳介紹………..……………………………………...……5
1.4 毛細管電泳對於金奈米粒子的分離機制..…………...…..………..9
1.5 本章參考資料..…………………………………………………….12
第二章 實驗部分………………………………………………………17
2.1 儀器………………………………………………………………...17
2.1.1 毛細管電泳儀……………………………………………………17
2.1.2 毛細管……………………………………………………………17
2.1.3 穿透式電子顯微鏡………………………………………………17
2.1.4 去離子水處理器…………………………………………………18
2.1.5 高速離心機………………………………………………………18
2.1.6 UV-vis光譜儀…………………………………………………….18
2.2 藥品部分…………………………………………………………...19
2.2.1 金奈米粒子樣品…………………………………………………19
2.2.2 毛細管電泳緩衝溶液……………………………………………19
2.2.3 合成金奈米試劑…………………………………………………19
2.2.4 金奈米粒子表面修飾劑…………………………………………20
2.3 實驗步驟…………………………………………………………...21
2.3.1 聚丙烯醯胺塗層步驟……………………………………………21
2.3.2 金奈米粒子合成步驟……………………………………………22
(1) 分段逐次合成法…..……………………………………………….22
(2) 一次加入合成法…..……………………………………………….22
(3) 在界面活性劑中添加飽和的芘(pyrene)來合成金奈米粒子.…...22
(4) 在陰離子界面活性劑系統中使用晶種成長合成方法(seed-mediated method)合成金奈米粒子.…………………………23
2.3.3 Hex-OPE-PEO的合成步驟………………………………………24
2.3.4 金奈米粒子修飾步驟……………………………………………25
2.3.5 毛細管電泳實驗步驟……………………………………………26
2.3.6 TEM樣品製備步驟………………………………………………26
2.4 本章參考資料……………………………………………………...27
第三章 結果與討論……………………………………………………30
3.1利用毛細管電泳結合表面修飾劑分析不同方式合成的金奈米粒子
   ............................................................................................................30
3.1.1前言..………………………………………………………………30
3.1.2利用中性界面活性劑作為金奈米粒子的表面修飾劑..................32
     3.1.2.1 利用Hex-OPE-PEO作為表面修飾劑..............................32
3.1.2.2最佳電泳條件與電泳再現性.............................................33
3.1.3鑑定不同合成方式所得到的金奈米粒子………………………..36
3.1.4結論………………………………………………………………..41
3.2表面修飾劑濃度對於由陽離子界面活性劑中所合成金奈米粒子
   的粒徑影響........................................................................................42
3.2.1前言………..……………………………………………………....42
3.2.2使用不同Hex-OPE-PEO濃度修飾金奈米粒子表面……....……43
3.2.3結論………………………………………………………………..48
3.3以毛細管電泳分析在陽離子界面活性劑中所合成的金奈米粒子
   ………………………………………………………………………51
3.3.1前言………………………………………………………………..51
3.3.2在陽離子界面活性劑中合成的金奈米粒子……………………..51
     3.3.2.1利用hexadecyltrimethylammonium bromide (CTAB)
           作為金奈米粒子穩定劑…………………………………51
     3.3.2.2在CTAB系統下提高還原劑濃度對於合成金奈米粒子
   的影響…..………………………………………………..55
     3.3.2.3在hexadecyltrimethylammonium bromide系統下比較使
           用分段逐次合成法和一次加入合成法的差別……..…..60  
     3.3.2.4觀察改變不同反離子對於合成金奈米粒子的影響…….62
3.3.2.5觀察改變不同碳鏈長度對合成金奈米粒子的影響…….66
     3.3.2.6在陽離子界面活性劑系統中添加飽和芘(pyrene)對於合     
           成金奈米粒子之影響……………………………………74
3.3.3結論……………………………………………………………….81
3.4以毛細管電泳分析在混合系統(mix micelle system)中合成的金奈米粒子……………………………………………………………..83
3.4.1前言….……………………………………………………………83
3.4.2利用CTAB-F127混合之雙界面活性劑系統合成金奈米粒子.....84
3.4.3利用SDS-F127混合之雙界面活性劑系統合成金奈米粒子……94
3.4.4利用SDeS-F127混合之雙界面活性劑系統合成金奈米粒子…102
3.4.5 結論………...……...………………………………..…………..111
3.5以毛細管電泳分析在兩性離子界面活性劑中所合成的金奈米粒子
   ……………………………………………………………………..112
3.5.1 前言..............................................................................................112
3.5.2 在TDAPS界面活性劑中合成金奈米粒子................................112
3.5.3 結論………………………………………...…………………...118
3.6以毛細管電泳分析在陰離子界面活性劑中所合成的金奈米粒子
   ……………………………………………………………………..119
3.6.1 前言..............................................................................................119
3.6.2在陰離子型界面活性劑中改變不同濃度NaBH4以分段逐次合成法來合成金奈米粒子…………………………………………...120
3.6.3在陰離子型界面活性劑中改變不同合成溫度以分段逐次合成法來合成金奈米粒子……………………………………………...123
3.6.4在陰離子型界面活性劑中改變不同的合成方法來合成金奈米粒子………………………………………………………………...126
3.6.5 在SDS中以一次加入合成法合成金奈米粒子………………..127
3.6.6 在SDeS中以一次加入合成法來合成金奈米粒子…..………..133
3.6.7 結論……………………………………………………………..143
3.7以毛細管電泳分析在陰離子系統中,使用晶種促進成長法   
   (seed-mediated method)來合成金奈米粒子……………………...144
3.7.1前言................................................................................................144
3.7.2成長溶液中含有芘(pyrene)對合成金奈米粒子之影響….…….145
3.7.3 改變還原劑種類對合成金奈米粒子之影響…………..………166
3.7.4 改變合成方法對於金奈米粒子之影響…..……..…….……….174
3.7.5 結論……………………………………………………………..179
3.8 本章參考資料…………………………………………………….182
參考文獻
第一章
1.Perez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzan, L. M.; Mulvaney, P. “Gold nanorods: Synthesis, characterization and applications” Coord. Chem. Rev. 2005, 249, 1870.
2.Connor, E. E.; Mwamuka, J.; Gole, A.; Murphy, C. J.; Wyatt, M. D. “Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity” Small 2005, 1, 325.
3.Cortesi, R.; Esposito, E.; Menegatti, E.; Gambari, R.; Nastruzzi, C. “Effect of cationic liposome composition on in vitro cytotoxicity and protective effect on carried DNA” Int. J. Pharm. 1996, 139, 69.
4.Mirska, D.; Schirmer, K.; Funari, S. S.; Langer, A.; Dobner, B.; Brezesinski, G. “Biophysical and biochemical properties of a binary lipidmixture for DNA transfection” Colloid Surf., B 2005, 40, 51.
5.Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods” J. Am. Chem.Soc. 2006, 128, 2115.
6.Huang, X. H.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. “Cancer cells aAssemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface raman spectra: A potential cancer diagnostic marker” Nano Lett. 2007,7, 1591.
7.Ding, H.; Yong, K. T.; Roy, I.; Pudavar, H. E.; Law, W. C.; Bergey, E. J.; Prasad, P. N. “Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging” J. Phys. Chem. C 2007, 111, 12552-12557.
8.Yu, C. X.; Nakshatri, H.; Irudayaraj, J. “Identity profiling of cell surface markers by multiplex gold nanorod probes” Nano Lett. 2007, 7, 2300.
9.Yu, C. X.; Varghese, L.; Irudayaraj, J. “Surface modification of cetyltrimethylammonium bromide-capped gold nanorods to make molecular probes” Langmuir 2007, 23, 9114.
10.Turkevich, J.; Stevenson, P. C.; Hillier, J. “A study of the nucleation and growth processes in the synthesis of colloidal gold” Discuss. Faraday Soc. 1951, 11, 55. 
11.Frens, G. “Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions” Nature (London): Phys. Sci. 1973, 241, 20. 
12.Xia H.; Bai S.; Hartmann J.; Wang D. “Synthesis of monodisperse quasi-spherical gold nanoparticles in water via silver(I)-assisted citrate reduction” Langmuir 2010, 26, 3585.
13.Zsigmondy, R.; Thiessen, P. A. Das kolloide Gold; Akad. Verlagsges:    Leipzig, 1925.
14.Turkevich, J.; Hillier, J. “Electron microscopy of colloidal systems”
Anal. Chem. 1949, 21, 475.
15.Overbeek, J. Th. G. “Monodisperse colloidal systems, fascinating and useful” Adv. Colloid Interface Sci. 1982, 15, 251.
16.Wiesner, J.; Wokaun, A. “Anisometric gold colloids. Preparation, characterization, and optical properties” Chem. Phys. Lett. 1989, 157, 569.
17.Schneider, S.; Halbig, P.; Grau, H.; Nickel, U. “Reproducible preparation of silver sols with uniform particle size for application in surface-enhanced Raman spectroscopy” Photochem. Photobiol. 1994, 60, 605.
18.Watzky, M. A.; Finke, R. G. “Nanocluster size-control and "magic number" investigations. Experimental tests of the "living-metal polymer" concept and of mechanism-based size-control predictions leading to the syntheses of Iridium(0) nanoclusters centering about four sequential magic numbers” Chem. Mater. 1997, 9, 3083.
19.Brown, K. R.; Natan, M. J. “Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces” Langmuir 1998, 14, 726.
20.Brown, K. R.; Walter, D. G.; Natan, M. J. “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape” Chem. Mater. 2000, 12, 306.
21.Henglein, A.; Giersig, M. “Formation of colloidal silver nanoparticles. Capping action of citrate” J. Phys. Chem. B 1999, 103, 9533.
22.Henglein, A. “Radiolytic Preparation of Ultrafine Colloidal Gold Particles in Aqueous Solution: Optical Spectrum, Controlled Growth, and Some Chemical Reactions” Langmuir 1999, 15, 6738.
23.Teranishi, T.; Miyake, M. “Size control of palladium nanoparticles and their crystal structures” Chem. Mater. 1998, 10, 594.
24.Teranishi, T.; Hosoe, M.; Tanaka, T.; Miyake, M. “Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition” J. Phys. Chem. B 1999, 103, 3818.
25.Jana, N. R.; Gearheart, L.; Murphy, C. J. “Seeding growth for control of 5-40 nm diameter gold nanoparticles” Langmuir 2001, 17, 6782.
26.Jana, N. R.; Gearheart, L.; Murphy, C. J. “Wet chemical synthesis of high aspect cylindrical nanorods” J. Phys. Chem. B 2001, 105, 4065.
27.Nikoobakht, B.; El-Sayed, M. A. “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method” Chem. Mater. 2003, 15, 1957.
28.Liu, M. Z.; Guyot-Sionnest, P. “Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids” J. Phys. Chem. B 2005, 109, 22192.
29.Muhammad Iqbal, Yong-Il Chung, Giyoong Tae. “An enhanced synthesis of gold nanorods by the addition of Pluronic (F-127) via a seed mediated growth process” J. Mater. Chem. 2007, 17, 335.
30.Gao, J.; Bender, C. M.; Murphy, C. J.; “Dependence of the gold nanorod aspect ratio on the nature of the directing surfactant in aqueous solution” Langmuir 2003, 19, 9065.
31.Smith, D. K.; Miller, N. R.; Korgel, B. A. “Iodide in CTAB prevents gold nanorod formation” Langmuir 2009, 25, 9518.
32.Toshio Sakai ; Alexandridis, P. “Mechanism of gold metal ion reduction, nanoparticle growth and size control in aqueous amphiphilic block copolymer solutions at ambient conditions” 
   J. Phys. Chem. B 2005, 109, 7766.
33.Deng, J. P.; Mou, C. Y “Effect of pyrene additive on the growth of gold nanoparticles in aqueous sodium alkyl sulfate micellar solutions” J. Chin. Chem.Soc., 2006, 53, 1263.
34.Deng, J. P.; Wu, C.; Yang, C. H.; Mou, C. Y. “Pyrene-assisted synthesis of size-controlled gold nanoparticles in sodium dodecyl Sulfate micelles” Langmuir 2005, 21, 8947.
35.Huang, H. Z.; Yang, X. R. “Synthesis of chitosan-stabilized gold nanoparticles in the absence/presence of tripolyphosphate” Biomacromolecules 2004, 5, 2340.
36.Linlin Wu, Chunsheng Shi, Liangfei Tian, Jin Zhu. “A one-pot method to prepare gold nanoparticle chains with chitosan” J. Phys. Chem. C, 2008, 112, 319
37.Hunter, R. J. Foundations of Colloid Science, Clarendon Press: Oxford, 1989, Vol. 1, Chapter 6.
38.Yang C. H.; “Using capillary electrophoresis for single point mutation DNA analysis and characterization of gold nanopaticles synthesized by different methods” 淡江大學博士論文 2007.
39.David N. Heiger, 高效毛細管電泳導論 惠普公司出版, 1993.
40.Colyar, C. L.; Tang, T.; Chien, N.; Harrison, D. J. “Clinical potential of microchip capillary electrophoresis systems” Electrophoresis 1997, 18, 1733.
41.Liu, F. K.; Wei, G. T. “Adding sodium dodecylsulfate to the running electrolyte enhances the separation of gold nanoparticles by capillary electrophoresis” Anal. Chim. Acta 2004, 510, 77.
第二章
1.Tsai, F. Y.; Tub, H. L. ; Mou, C. Y. ‘‘Nonionic fluorescent oligomeric surfactant for ordered mesoporous silica structure’’ J. Mater. Chem. 2006, 16, 348. 
2.Peuravuori, J.; Lepane, V.; Lehtonen, T.; Pihlaja, K. “Comparative study for separation of aquatic humic substances by capillary zone electrophoresis using uncoated, polymer coated and gel-filled capillaries” J.Chromatogr. A 2004, 1023, 129.
3.Deng, J. P.; Wu, C.; Yang, C. H.; Mou, C. Y. “Pyrene-assisted synthesis of size-controlled gold nanoparticles in sodium dodecyl sulfate micelles” Langmuir 2005, 21, 8947.
4.Zsigmondy, R.; Thiessen, P. A. Das kolloide Gold; Akad. Verlagsges: Leipzig, 1925.
5.Turkevich, J.; Hillier, J. “New method for the determination of azathioprine” Anal. Chem. 1949, 21, 475.
6.Overbeek, J. Th. G. “Monodisperse colloidal systems, fascinating and useful” Adv. Colloid Interface Sci. 1982, 15, 251.
7.Wiesner, J.; Wokaun, A. “Anisometric gold colloids.  Preparation, characterization, and optical properties” Chem. Phys. Lett. 1989, 157, 569.
8.Schneider, S.; Halbig, P.; Grau, H.; Nickel, U. “Reproducible preparation of silver sols with uniform particle size for application in surface-enhanced Raman spectroscopy”Photochem. Photobiol. 1994, 60, 605.
9.Watzky, M. A.; Finke, R. G. “Nanocluster size-control and "magic number" investigations. Experimental tests of the "living-metal polymer" concept and of mechanism-based size-control predictions leading to the syntheses of Iridium(0) nanoclusters centering about four sequential magic numbers’’Chem. Mater. 1997, 9, 3083.
10.Brown, K. R.; Natan, M. J. “Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces” Langmuir 1998, 14, 726.
11.Brown, K. R.; Walter, D. G.; Natan, M. J. “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape”
  Chem. Mater. 2000, 12, 306.
12.Henglein, A.; Giersig, M. “Formation of colloidal silver nanoparticles. Capping action of citrate” J. Phys. Chem. B 1999, 103, 9533.
13.Henglein, A. “Radiolytic preparation of ultrafine colloidal gold particles in aqueous solution: Optical spectrum, controlled growth, and some chemical reactions” Langmuir 1999, 15, 6738.
14.Teranishi, T.; Miyake, M. “Size control of palladium nanoparticles and their crystal structures” Chem. Mater. 1998, 10, 594.
15.Teranishi, T.; Hosoe, M.; Tanaka, T.; Miyake, M. “Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition” J. Phys. Chem.B 1999, 103, 3818.
16.Jana, N. R.; Gearheart, L.; Murphy, C. J. “Seeding growth for size control of 5-40 nm diameter gold nanoparticles” Langmuir 2001, 17, 6782.
17.Yang C. H.; “Using capillary electrophoresis for single point mutation DNA analysis and characterization of gold nanopaticles synthesized by different methods” 淡江大學博士論文 2007.
18.Huang J. S.; “Surface charge effects on the stability of gold nanoparticles in surfactant solutions” 淡江大學碩士論文 2009.
第三章
1.Yang C. H. “Using capillary electrophoresis for single point mutation DNA analysis and characterization of gold nanopaticles synthesized by different methods” 淡江大學博士論文 2007
2.Alivisatos, A. P. “Semiconductor clusters, nanocrystals, and quantum dots” Science 1996, 271, 933.
3.Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. 
“A DNA-based method for rationally assembling nanoparticles into macroscopic materials” Nature 1996, 382, 607.
4.Taleb, A.; Petit, C.; Pileni, M. P. “Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: A way to 2D and 3D self-organization” Chem. Mater. 1997, 9, 950.
5.Peschel, S.; Schmid, G. “First steps towards ordered monolayers of ligand-stabilized gold clusters” Angew. Chem. Int. Ed. Engl. 1995, 34, 1442.
6.Haruta, M. “When gold is not noble: Catalysis by nanoparticles” Chem. Rec. 2003, 3, 75.
7.Jana, N. R.; Gearheart, L.; Obare, S. O.; Murphy, C. J. “Anisotropic chemical reactivity of gold spheroids and nanorods” Langmuir 2002, 18, 922.
8.Zhang, Y.; Gu, C.; Schwartzberg, A. M.; Chen, S.; Zhang, J. Z. “Optical trapping and light-induced agglomeration of gold nanoparticle aggregates” Phys. Rev. B 2006, 73, 165405.
9.Henglein, A. “Physicochemical properties of small metal particles in solution: "microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition” J. Phys. Chem. 1993, 97, 5457.
10.Siebrands, T.; Giersig, M.; Mulvaney, P.; Fischer, Ch.-H. “Steric exclusion chromatography of nanometer-sized gold particles” Langmuir 1993, 9, 2297.
11.Wilcoxon, J. P.; Martin, J. E.; Provencio, P. “Size distributions of gold nanoclusters studied by liquid chromatography” Langmuir 2000, 16, 9912.
12.Grabar, K. C.; Brown, K. R.; Keating, C. D.; Stranick, S. J.; Tang, S.    
L.; Natan, M. J. “Nanoscale Characterization of Gold Colloid Monolayers: A Comparison of Four Techniques” Anal. Chem. 1997, 69, 471.
13.Krug, J. T.; Wang, G. D.; Emory, S. R.; Nie, S. “Efficient Raman enhancement and intermittent light emission observed in single gold nanocrystals” J. Am. Chem. Soc. 1999, 121, 9208.
14.Wei, G. T.; Liu, F. K.; Wang, C. R. C. “Shape separation of nanometer gold particles by size-exclusion chromatography” Anal. Chem. 1999, 71, 2085.
15.Sau, T. K.; Murphy, C. J. “Seeded high yield synthesis of short Au nanorods in aqueous solution” Langmuir 2004, 20, 6414-6420.
16.Deng, J. P.; Wu, C.; Yang, C. H.; Mou, C. Y. “Pyrene-assisted synthesis of size-controlled gold nanoparticles in sodium dodecyl Sulfate micelles” Langmuir 2005, 21, 8947.
17.Toshio Sakai, and Paschalis Alexandridis. “Mechanism of gold metal ion reduction, nanoparticle growth and size control in aqueous amphiphilic block copolymer solutions at ambient conditions” J. Phys. Chem. B, 2005, 109, 7766.
18.Paschalis Alexandridis, Josef F. Holzwarth, and T. Alan Hatton. “Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: Thermodynamics of copolymer association” Macromolecules, 1994, 27 , 2414.
19.Toshio Sakai, and Paschalis Alexandridis. “Single-step synthesis and stabilization of metal nanoparticles in aqueous Pluronic block copolymer solutions at ambient temperature” Langmuir, 2004, 20, 
8426.
20.Toshio Sakai, and Paschalis Alexandridis. “Spontaneous formation of gold nanoparticles in poly(ethylene oxide)-poly(propylene oxide) solutions: solvent quality and polymer structure effects” Langmuir, 2005, 21, 8019.
21.Muhammad Iqbal, Yong-Il Chung and Giyoong Tae. “An enhanced synthesis of gold nanorods by the addition of Pluronic (F-127) via a seed mediated growth process” J. Mater. Chem., 2007, 17, 335.
22.Toshio Sakai, and Paschalis Alexandridis. “Mechanism of gold metal ion reduction, nanoparticle growth and size control in aqueous amphiphilic block copolymer solutions at ambient conditions” J. Phys. Chem. B, 2005, 109, 7766.
23.Soler-Illia, G. J. de A. A.; Crepaldi, E. L.; Grosso, D.; Sanchez, C.
“Block copolymer-templated mesoporous oxides” Curr. Opin.    Colloid Interface Sci. 2003, 8, 109.
24.Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.;  
   Chmelka, B. F.; Stucky, G. D. “Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores” Science  
   1998, 279, 548.
25.Han, Y.-J.; Kim, J. M.; Stucky, G. D. “Preparation of noble metal
   nanowires using hexagonal mesoporous silica SBA-15” Chem.  
   Mater. 2000, 12, 2068.
26.Karanikolos, G. N.; Alexandridis, P.; Itskos, G.; Petrou, A.;
   Mountziaris, T. J. “Synthesis and size control of luminescent ZnSe
   nanocrystals by a microemulsion-gas contacting technique” Langmuir 2004, 20, 550.
27.Kim, J.-U.; Cha, S.-H.; Shin, K.; Jho, J. Y.; Lee, J.-C. “Preparation
   of Gold Nanowires and Nanosheets in Bulk Block Copolymer    
   Phases under Mild Conditions” Adv. Mater. 2004, 16, 459.
28.Wang, L.; Chen, X.; Zhan, J.; Sui, Z.; Zhao, J.; Sun, Z. “Controllable
   morphology formation of gold nano- and micro-plates in amphiphilic block copolymer-based liquid crystalline phase” Chem. Lett. 2004, 33, 720.
29.Menon, M. K.; Zydney, A. L. “Determination of effective protein   charge by capillary electrophoresis: effects of charge regulation in the analysis of charge ladders” Anal. Chem. 2000, 72, 5714.
30.Jana, N. R.; Gearheart, L.; Murphy, C. J. “Wet chemical synthesis of high aspect ratio cylindrical gold nanorods” J. Phys. Chem. B 2001, 105, 4065.
31.Nikoobakht, B.; El-Sayed, M. A. “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method” Chem. Mater. 2003, 15, 1957.
32.Zsigmondy, R.; Thiessen, P. A. Das kolloide Gold; Akad. Verlagsges:    Leipzig, 1925.
33.Turkevich, J.; Hillier, J. “Electron microscopy of colloidal systems”
Anal. Chem. 1949, 21, 475.
34.Overbeek, J. Th. G. “Monodisperse colloidal systems, fascinating and useful” Adv. Colloid Interface Sci. 1982, 15, 251.
35.Wiesner, J.; Wokaun, A. “Anisometric gold colloids. Preparation, characterization, and optical properties” Chem. Phys. Lett. 1989, 157, 569.
36.Schneider, S.; Halbig, P.; Grau, H.; Nickel, U. “Reproducible preparation of silver sols with uniform particle size for application in surface-enhanced Raman spectroscopy” Photochem. Photobiol. 1994, 60, 605.
37.Watzky, M. A.; Finke, R. G. “Nanocluster size-control and "magic number" investigations. Experimental tests of the "living-metal polymer" concept and of mechanism-based size-control predictions leading to the syntheses of Iridium(0) nanoclusters centering about four sequential magic numbers” Chem. Mater. 1997, 9, 3083.
38.	 Brown, K. R.; Natan, M. J. “Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces” Langmuir 1998, 14, 726.
39.	 Brown, K. R.; Walter, D. G.; Natan, M. J. “Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape”
Chem. Mater. 2000, 12, 306.
40.Henglein, A.; Giersig, M. “Formation of colloidal silver nanoparticles. Capping action of citrate” J. Phys. Chem. B 1999, 103, 9533.
41.Henglein, A. “Radiolytic Preparation of Ultrafine Colloidal Gold Particles in Aqueous Solution: Optical Spectrum, Controlled Growth, and Some Chemical Reactions” Langmuir 1999, 15, 6738.
42.Teranishi, T.; Miyake, M. “Size control of palladium nanoparticles and their crystal structures” Chem. Mater. 1998, 10, 594.
43.Teranishi, T.; Hosoe, M.; Tanaka, T.; Miyake, M. “Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic deposition” J. Phys. Chem. B 1999, 103, 3818.
44.Rodriguez-Fernandez, J.; Perez-Juste, J.; Mulvaney, P.; Liz-Marzan, L. M. “Spatially-Directed Oxidation of Gold Nanoparticles by Au(III)-CTAB Complexes” J. Phys. Chem. B 2005, 109, 14257.
論文全文使用權限
校內
紙本論文於授權書繳交後3年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後3年公開
校外
同意授權
校外電子論文於授權書繳交後3年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信