§ 瀏覽學位論文書目資料
系統識別號 U0002-2508200910024600
DOI 10.6846/TKU.2009.01411
論文名稱(中文) 二氧化矽/高分子複合材料之製備與其在低介電薄膜及耐磨易潔塗膜之應用
論文名稱(英文) Preparation of silica/polymer composites for application in low dielectric films and abrasion resistant easy-to-clean coatings
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系博士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 97
學期 2
出版年 98
研究生(中文) 黃淑惠
研究生(英文) Shu-Hui Huang
學號 891360025
學位類別 博士
語言別 繁體中文
第二語言別
口試日期 2009-07-27
論文頁數 167頁
口試委員 指導教授 - 鄭廖平
委員 - 鄭廖平
委員 - 陳慶鐘
委員 - 陳信龍
委員 - 董崇民
委員 - 林達鎔
關鍵字(中) 二氧化矽
紫外光硬化
溶膠-凝膠
低介電常數
易潔
關鍵字(英) silica
UV-curing
sol-gel
low dielectric constant
easy-to-clean
第三語言關鍵字
學科別分類
中文摘要
本研究利用溶膠凝膠法製備有機無機混成材料,依此法開發出低介電常數聚亞醯胺(PI)薄膜與耐磨易潔塗膜。低介電常數聚亞醯胺薄膜乃以聚醯胺酸/二氧化矽/感光劑的配方所調配而成,此配方於亞醯胺化過程中將使感光劑裂解,進而使PI薄膜產生奈米級孔洞,此薄膜結構明顯降低PI薄膜的介電常數至1.82,此外,PI薄膜隨二氧化矽比例提升,可明顯降低熱膨脹係數α1約15 μm/moC與α2約250 μm/moC,本結果具有低介電薄膜應用上的潛力。
耐磨易潔塗膜配方是DPHA/二氧化矽/氟矽氧烷使用溶膠凝膠法所製備而成,塗膜硬化過程中有機/無機產生相分離現象,使水的接觸角提升到156o,且由於DPHA/二氧化矽因分散良好使自潔塗膜更具有高透光性、密著與硬度等特性。本結果適合於基材的保護與自潔之應用。
英文摘要
In this research, the organic/inorganic hybrids were prepared by sol-gel method, and it applied on the low dielectric constant polyimide (PI) film and abrasion resistant easy-to-clean coatings. The low dielectric PI films were prepared by various polyamic acid/ SiO2/ photosensitive cross-linking agent ratio. The photosensitive cross-linking agent was degraded at imidiation stage. The conditions induce nanoporous structure in PI film, which decrease dielectric constant to 1.82. Beside, the PI films were decrease α1 ca. 15 μm/moC and α2 ca. 250 μm/moC with SiO2 ratio. The results have applied low dielectric constant film in potential. 
The application of abrasion resistant easy-to-clean coatings were prepared by DPHA/SiO2/ fleuron siloxane component. The fleuron siloxane were bonding on silica surface in process. It improving both the abrasion resistance and the easy-to-clean of the hydrophobic coating. The contact angle were increase to 156o. Excellent results were obtained: the adhesiveness reached 5/5, the pencil hardness 7H, and the abrasion resistance 5% tranparacy loss. Apparently, the present synthesized hybrids demonstrate super properties that make them potential substitutes to conventional high-temperature or UV coatings.
第三語言摘要
論文目次
目錄
中文摘要.............................................................................................................Ⅰ
英文摘要……………………………………………………………………...Ⅱ
目錄....………………………………………………………………………...Ⅳ
表目錄………………………………………………………………………...Ⅷ
圖目錄………………………………………………………………………...Ⅸ

第一章 緒論…………………………………………………………………...1
1.1前言………………………………………………………………………...1
1.2研究動機…………………………………………………………………...2
1.3研究架構及目標…………………………………………………………...3

第二章 文獻回顧……………………………………………………………...7
2.1 前言……………………………………………………………………......7
2.2 溶膠凝膠法………………………………………………………………..8
2.2.1二氧化矽-高分子複合薄膜……......…………......…………….…...8
2.2.2二氧化矽-高分子複合薄膜之製備方式………………………......13
2.3 紫外光聚合方式………………………………………………………....15
2.4 薄膜物性…………………………………………………………………18

第三章 二氧化矽/聚亞醯胺之低介電薄膜………………………………...20
3.1 摘要…………………………………………………………………….....20
3.2 簡介…………………………………………………………………….....21
3.2.1 聚亞醯胺之合成…..……………………………….......…………..21
3.2.1.1縮合型聚亞醯胺…………………..........………………....24
3.2.1.2加成型聚亞醯..…………………………................…..…..29
3.2.1.3改質型聚亞醯胺………………………………....…..…...29
3.2.2 聚亞醯胺應用….……………………..………………………….30
3.2.2.1 聚亞醯胺之應用…………....…………………………..30
3.2.2.2 感光型聚亞醯胺……………....………………………..31
3.2.2.3 低熱膨脹係數薄膜……………………………………..32
3.2.2.4 低介電薄膜…………………………………………......35
3.3 實驗步驟…………………...…………………..………………….…....38
3.3.1藥品…….…………………………………..……………………..38
3.3.2實驗裝置…………….……………………..……………………..44
3.3.3 二氧化矽聚亞醯胺複合材料之形成……..……….…………….45
3.3.3.1 聚亞醯胺酸與二氧化矽溶膠之製備.....……………….45
3.3.3.2紫外光硬化反應與亞醯胺化反應…….................……..45
3.4 複合材料之物性分析	………………………………………………....50
3.4.1傅立葉轉換紅外線(Fourier Transform Infrared, FTIR)光譜化學結構分析……………………….............................................................50
3.4.2場放射掃描式電子顯微鏡(Field emission scanning electron microscope, FESEM)結構型態分析……....................……....………………………………..........50
3.4.3 熱性質分析	........................………………...……….……….......51
3.4.3.1 熱重損失分析(Thermal gravimetric analyzer, TGA)......51
3.4.3.2 動態機械分析(Dynamic mechanical Analyzer, DMA)...51
3.4.3.3 熱機械分析(Thermomechanical  Analyzer, TMA)........52
3.4.4 介電常數(Dielectric constant Analyzer, DEA) ..................52
3.5結果與討論...............................................................................................53
3.5.1化學反應結構.................................................................................53
3.5.2聚亞醯胺與二氧化矽/聚亞醯胺複合材料之形態........................54
3.5.3複合材料之熱穩定性和尺寸穩定性.............................................57
3.5.3.1 熱降解行為......................................................................57
3.5.3.2 動態機械行為...............................................................59
3.5.3.3 線性膨脹係數...............................................................60
3.5.4介電常數分析..............................................................................61
3.6 結論.......................................................................................................62

第四章 耐磨易潔塗料...............................................................................78
4.1摘要........................................................................................................78
4.2 文獻回顧...............................................................................................80
4.2.1 自潔能力的表面定義..................................................................80
4.2.2 超疏水原理及機制......................................................................81
4.2.3 超疏水表面粗糙度......................................................................83
4.2.4 超疏水表面粗糙度製備..............................................................89
4.2.5 奈米粉體表面改質......................................................................92
4.2.6 功能性塗裝材料與技術..............................................................94
4.3 研究方法與實驗步驟...........................................................................95
4.3.1藥品..............................................................................................96
4.3.2實驗規劃流程.............................................................................101
4.3.3 二氧化矽/感光壓克力矽氧烷易潔塗膜之製備.......................102
4.3.3.1二氧化矽膠體溶液之製備...........................................102
4.3.3.2  疏水二氧化矽膠體溶液之製備................................102
4.3.3.3 感光性易潔塗膜之製備...............................................102
4.4物化性分析...........................................................................................105
4.4.1傅立葉紅外線光譜儀(Fourier infrared spectroscopy, FTIR)化學   結構分析.....................................................................................105
4.4.2固態核磁共振光譜儀 (Solid-state NMR).................................105
4.4.3  X射線光電子分析儀(XPS)....................................................106
4.4.4場放射掃描式電子顯微鏡(Field emission scanning electron microscope, FESEM)結構型態分析..............................................106
4.4.5熱重損失分析(Thermal gravimetric analyzer,TGA)...................107
4.4.6鉛筆硬度測試 (Hardness test).......................................................107
4.4.7密著度測試(Adhesion test).............................................................108
4.4.8耐磨測試(Abrasion resistance test)................................................108
4.4.9接觸角測試(Face contact angle meter)..........................................109
4.5 結果與討論..............................................................................................110
4.5.1 化學反應式....................................................................................110
4.5.2 化學結構鑑定................................................................................115
4.5.2.1傅立葉轉換紅外線吸收光譜 (FTIR)................................115
4.5.1.2 固態核磁共振光譜(solid state NMR)分析........................118
4.5.1.3 X射線光電子分析儀(XPS)................................................120
4.5.3型態學之研究與奈米顆粒之鑑定..................................................121
4.5.3.1偶合劑的影響......................................................................121
4.5.3.2結合劑的影響......................................................................121
4.5.3.3二氧化矽粉體添加量的影響..............................................122
4.5.4 熱重損失分析.................................................................................124
4.5.5 機械性質測試.................................................................................125
4.5.5.1硬度測試...............................................................................125
4.5.5.2耐磨測試...............................................................................126
4.5.5.3密著測試...............................................................................127
4.5.6接觸角測試.......................................................................................128
4.6 結論...........................................................................................................129

第五章 參考文獻............................................................................................160

 
表目錄
表3.1芳香族二酸酐對4,4’-oxydianiline (4,4’-ODA) 電子親合性與數率      常數.........................................................................................................27
表3.2 芳香族二胺對1,2,4,5-Benzenetetracarboxylic Dianhydride        (PMDA) 反應速率常數和鹼度pKa.....................................................28
表3.3聚亞醯胺與二氧化矽/聚亞醯胺複合材料之成分表............................49
表3.4二氧化矽/聚亞醯胺複合材料之熱裂解溫度........................................76
表3.5二氧化矽/聚亞醯胺複合材料之熱膨脹係數、玻璃移轉溫度與介          電常數....................................................................................................77
表4.1各種高分子物質表面對水的接觸角角度............................................86
表4.2 各種高分子物質表面自由能...............................................................87
表4.3壓克力系紫外光硬化二氧化矽-高分子混成耐磨易潔塗膜組成....104
表4.4 表面刻劃剝落面積分級表................................................................108
表4.5 官能基紅外線特性吸收峰對應波數位置表.....................................133
表4.6 TEOS水解縮合形成的分子結構與化學位移Si NMR光譜分析...133
表4.7 SIMT的分子結構與化學位移Si NMR光譜分析...........................135
表4.8 耐膜塗膜表面元素含量....................................................................139
表4.9在氮氣量測環境下純Poly(DPHA) 與DSIMT 的熱裂解溫度(Td)        與焦碳含量百分比..............................................................................151
表4.10 硬度測試表.......................................................................................153
表4.11密著度測試表....................................................................................155
表4.12 13F添加量對疏水性塗膜接觸角....................................................157
表 4.13 二氧化矽粉體添加量對疏水性塗膜接觸角與硬度的影響.........159
 

圖目錄
圖1.1研究架構流程..........................................................................................4
圖3.1聚亞醯胺之合成....................................................................................23
圖3.2杜邦生產之Kapton® 聚亞醯胺...........................................................24
圖3.3化學亞醯胺化之反應機構....................................................................25
圖3.4聚醯胺酸採親合性取代生成反應機構................................................26
圖3.5典型的負型成像之感光性聚亞醯胺....................................................33
圖3.6反應裝置................................................................................................44
圖3.7低介電薄膜之製備流程圖....................................................................47
圖3.8感光性二氧化矽/聚亞醯胺複材採溶膠凝膠法之合成.......................48
圖3.9二氧化矽/聚亞醯胺薄膜製備之FTIR 光譜圖...................................64
圖 3.10聚亞醯胺薄膜(PI5D2S-0)截面結構之SEM圖像............................65
圖3.11未添加DMM之聚亞醯胺薄膜(PI5D0S-0)截面結構之SEM圖像66
圖3.12純poly(DMM)之熱重損失分析圖.....................................................67
圖3.13截面結構之SEM圖像.......................................................................68
圖3.14二氧化矽/聚亞醯胺薄膜(PI5D2S-10)截面結構之SEM圖像.........69
圖3.15二氧化矽/聚亞醯胺薄膜(PI5D2S-20)截面結構之SEM圖像.........70
圖3.16二氧化矽/聚亞醯胺複合薄膜(PI5D2S-30)截面結構之SEM圖像..71
圖3.17二氧化矽/聚亞醯胺薄膜(PI5D2S-10)截面結構之SEM圖像..........72
圖3.18聚亞醯胺與複合材料之熱重損失分析..............................................73
圖3.19聚亞醯胺與複合材料之動態機械熱重..............................................74
圖3.20聚亞醯胺與複合材料之熱機械分析..................................................75
圖4.1蓮花葉表面結構....................................................................................82
圖4.2表面粗糙度對自潔效果之影響............................................................83
圖4.3液體在基材表面上之接觸角................................................................84
圖4.4規則性粗糙結構....................................................................................89
圖4.5耐磨易潔塗膜之製備實驗流程.........................................................101
圖4.6耐磨疏水塗層化學反應式.................................................................113
圖4.7疏水塗層成膜示意圖.........................................................................114
圖4.8 SIMT反應之IR吸收光譜.................................................................130
圖4.9 SIMT添加13F參與反應之IR吸收光譜.........................................131
圖4.10 SIMT73-13F-1與DPHA混成圖膜之IR吸收光譜.......................132
圖4.11 純TEOS經水解、縮合反應之固態 29Si NMR 吸收光譜..........135
圖4.12 TEOS/MTMO水解縮合之結構與化學位移Si NMR光譜分析...136
圖4.13純D7SIMT73未添加13F之ESCA能譜.......................................137
圖4.14 D7SIMT73中13F不同含量之ESCA能譜....................................138
圖4.15 D7SIMT73-13F表面F原子含量.....................................................140
圖4.16 8F 改質D7SIMT73之ESCA能譜..................................................141
圖4.17奈米混成顆粒SIMT73之TEM圖像..............................................142
圖4.18奈米混成塗膜截面之SEM...............................................................143
圖4.19奈米混成塗膜截面之SEM...............................................................144
圖4.20 SIMT膠體溶液摻混二氧化矽粉體之粒徑分布..............................145
圖4.21 SIMT7313F摻混不同添加量二氧化矽顆粒上表面結構之SEM...146
圖4.22 SIMT7313F摻混不同添加量二氧化矽顆粒上表面結構之AFM...147
圖4.23純Poly(MTMO)之熱重損失分析......................................................148
圖4.24純Poly(DPHA)之熱重損失分析.......................................................149
圖4.25純Poly(DPHA) 與DSIMT隨DPHA不同含量之熱重損失分析..150
圖4.26混成塗膜DSIMT13F二氧化矽含量對硬度影響............................152
圖4.27混成塗膜隨不同DPHA含量磨耗圈數與穿透損失之關係............154
圖4.28 13F添加量對疏水性塗膜接觸角......................................................156
圖4.29二氧化矽粉體添加量對疏水性塗膜接觸角.....................................158
參考文獻
1.	Huang, X., Ma, Z., Wang, Y., Jiang, P., Yin, Y., Li, Z. Journal of Applied Polymer Science. 113 (2009)3577.
2.	Hashemi, P., Shamizadeh, M., Badiei, A., Poor, P.Z., Ghiasvand, A.R., Yarahmadi, A. Analytica Chimica Acta 646 (2009) 1.
3.	Hashemi, P., Shamizadeh, M., Badiei, A., Poor, P.Z., Ghiasvand, A.R., Yarahmadi, A. 1. Işin, D., Kayaman-Apohan, N., Güngör, A. Progress in Organic Coatings 65 (2009) 477.
4.	Türünç, O., Kayaman-Apohan, N., Kahraman, M.V., Menceloǧlu, Y., Güngör, A. Journal of Sol-Gel Science and Technology 47 (2008)290.
5.	Caseri, W.R. Materials Science and Technology 22 (2006) 807.
6.	Zhang, Liqun, Wu, Youping, Wang, Yiqing, Wang, Yizhong, Zhang, Huifeng, Yu, Dingsheng, He, Jianyun Hecheng Xiangjiao Gongye/China Synthetic Rubber Industry 23 (200)71.
7.	R. Roy, J. Am. Ceram. Soc.54(1969)44.
8.	H. Dislich, Glastechn. Ber.44(1974) 1.
9.	G. L. Wilkes, B. Orler and H. Huang, Polym. Bul. (Berlin)1985, 14 , 557.
10.	Ellsworth, M.W., Novak, B.M. Journal of the American Chemical Society 113(2001)2756
11.	Ahmad, Z., Wang, S., Mark, J.E. Materials Research Society Symposium - Proceedings 346, pp. 127-134,1994
12.	Yang, J.-M., Jong, Y.-J., Hsu, K.-Y., Chang, C.H. 1997 Journal of Biomedical Materials Research 39 (1), pp. 86-91
13.	
14.	Schantz Zackrisson, A., Martinelli, A., Matic, A., Bergenholtz, J. Journal of Colloid and Interface Science 301(2006)137.
15.	Silvestri, B., Luciani, G., Costantini, A., Tescione, F., Branda, F., Pezzella, A. Journal of Biomedical Materials Research - Part B Applied Biomaterials 89 (2009)369.
16.	Pask, J.A., Zhang, X.W., Tomsia, A.P., Yoldas, B.E. Journal of the American Ceramic Society 70 (1987)704.
17.	R. K. Iler, The Chemistry of Slica, Wiley, New York, 1979.
18.	De Hek. H., A. Vrij, J.Colloid Interface Sci., 79(1981)89.
19.	K. Bridger, D. Fairhurst, B. Vincent, J. Colloid Interface Sci., 68(1979)190.
20.	A.P. philipse, a. vrij, J. of  Colloidal & Interface Sci., 128(1989)121.
21.	Ping, Z., Mingxia, X., Haibo, F., Lingxia, L. Materials Letters 63(2009) 2146.
22.	M. W. Daiels, L. F. Francis, J. Colloidal Interface Sci. 205(1998)1991.
23.	W. C. Chan. S. J. Lee, Polymer Journal 32(2000) 1.
24.	T. C. Chang, Y. T. Wang, Y. S. Hong, Y. S. Chiu, J. Polym. Sci.:Part A: Polymer Chemistry 38(2000) 1972.
25.	徐國財,張立德,奈米複合材料,化學工業出版社,2002
26.	G. F. Methford, B. Lake, US patent 5607729, 1997.
27.	Bower, G.M. and Frost, L.W., J. Polym. Sci., A1, 3135 (1963).
28.	Endrey, A.L., Can. Patent 659,328 (1962); Endrey, A.L., US Patent 3(1965)179.
29.	Kailani, M.H., Sung, C.S.P. Macromolecules,31(1998) 5779.
30.	Carey, F.A.; Sundberg, R.J. Advanced Organic Chemistry, 3rd Ed., Part A: Structures and Mechanisms; Plenum Press: 1993.
31.	Svetlichnyi, V.M., Kalnins, K., Kudryavtsev, V.V., Koton, M.M. Dokl. Akad Nauk SSSR (Engl. Transl.) 237(1997) 693.
32.	Ghosh, M.K., Mittal, K.L. (eds.) Polyimides: Fundamentals and Applications; Marcel Dekker: 1996.
33.	.R. Rubner, Siemens Frosch, Entwickl-Ber. Bd, 5(1976)4.
34.	Wei-Jung Lin, Wen-Chang Chen, Polymer International, 53(2004)1245.
35.	SH. AL-KANDARY, A. A. M. ALI, Z. AHMAD, Journal of material science, 41 (2006) 2907
36.	Tomoko Miyagawa, Takafumi Fukushima, Toshiyuki Oyama, Takao Iijima, Masao Tomoi, Journal of Polymer Science Part A: Polymer Chemistry.41(2003)861
37.	Sheng-Huei Hsiao, Chin-Ping Yang, Sheng-Ching Huang, Journal of Polymer Science Part A: Polymer Chemistry. 42(2004)2377.
38.	N.H. Hendricks, DUMIC Conference, p17-26, (2000).
39.	Musto, P.; Ragosta, G.; Scarinzi, G.; Mascia, L. Polymer.45(2004) 1697
40.	Li, H. T.; Chuang, H. R.; Wang, M. W.; Lin, M. S. Polym. Int. 54(2000) 1416.
41.	Wang, H.; Zhong, W.; X, P.; Du, Q. Macromol. Mater. Eng. 289(2004) 793.
42.	Yena, C. T.; Chena, W. C.; Liawc, D. J.; Luc, H. Y. Polymer 44(2003) 7079.
43.	Li, W. S.; Shen, Z. X.; Zheng, J. Z.; Tang, S. H. Appl. Spectrosc. 52(1998) 985.
44.	Saeed, M. B.; Zhan, M. S. Eur. Polym. J. 42(2006)1844.
45.	Masscia, L.; Kioul, A. Polymer 36(1995) 3649.
46.	Lua, X.; Xub, J.; Wong, L. Synth. Met. 156(2006)117.
47.	Shantalii, T. A.; Karpova, I. L.; Dragan, K. S.; Privalko, E. G.; Privalko, V. P. Sci. Technol. Adv. Mater. 4(2003)115.
48.	Nun, E., M. Oles, B. Schleich. Lotus-Effect-Surfaces. Macromolecular Symposia. 187(2002)677.
49.	Ergenrother, P. M.; Watson, K. A.; Smith, J. G.; Connell, J. W.; Yokota, R. Polymer 43(2002) 5077.
50.	Yanga, S. Y.; Parka, C. E.; Jungb, M. S. Polymer 44(2003) 3243.
51.	Li, Y.; Fu, S. Y; Li, Y.Q.; Pan, Q.Y.; Xu, G.; Yue, C.Y. Compos. Sci. Technol. 67(2007) 2408.
52.	Tsai, M. H.; Whang, W. T. Polymer 42(2001) 4197.
53.	Hachisuka, H.; Ohara, T.; Ikeda, K. J. Membr. Sci. 116(1996) 265.
54.	G.-M. Chow, K. Gonsalves, Nanotechnology, ACS Symp. Ser. 622, American Chemical Society, Washington, DC, 1996.
55.	C.J. Brinker, G.W. Scherer, Sol–Gel Science, Academic Press, San Diego, 1990.
56.	S. Schiller, K. Goedecke, V. Kirchhoff, T. Kopte, in: Proc. 38th Annual Technical Conf. of the Society of Vacuum Coaters, Chicago, 1995, pp. 293–297.
57.	H. Schmidt, B. Seiferling, G. Philipp, K.-J. Deichmann, in: J.D. Mackenzie, 58. D.R. Ulrich (Eds.), Ultrastructure Processing of Advanced Ceramics, Wiley, New York, 1988, pp. 651–660.
58.	R.H. Brzesowsky, G. deWith, S. Van den Cruijsem, I.J.M. Snijkers-Hendrickx, W.A.M. Wolter, J.G. Van Lierop, J. Non-Cryst. Solids 241 (1998) 27.
59.	P. Innocenzi, M. Esposto, A. Maddalena, J. Sol-Gel Sci. Technol. 20
(2001) 293.
60.	P. Etienne, J. Denape, J.Y. Paris, J. Phalippou, R. Sempere, J. Sol-Gel.
Sci. Technol. 6 (1996) 287.
61.	P. Cheang, K.A. Khor, Mater. Sci. Eng. A345 (2003) 47.
62.	L.E. Nielsen, J. Appl. Polym. Sci. 10 (1966) 97.
63.	E. Reynaud, T. Jouen, C. Gauthier, G. Vigier, J. Varlet, Polymer 42
(2001) 8759.
64.	W. Sto¨ber, A. Fink, E. Bohn, J. Colloid Interface Sci. 26 (1) (1968) 62.
65.	S.-L. Chen, Colloids Surf., A Physicochem. Eng. Asp. 142 (1998) 59.
66.	A. Van Blaaderen, A.P.M. Kentgens, J. Non-Cryst. Solids 149
(1992) 161.
67.	K.D. Kim, H.T. Kim, J. Sol-Gel. Sci. Technol. 25 (2002) 183.
68.	R.K. Iller, The Chemistry of Silica, Wiley-Interscience, New York,
1979.
69.	I.N. Sneddon, Int. J. Eng. Sci. 23 (1965) 47.
70.	M. Abboub, M. Turner, E. Duguet, M. Fontanille, J. Mater. Chem. 7 (1997) 1527.
71.	D. Hoebbel, M. Nacken, H. Schmidt, J. Sol-Gel Sci. Technol. 19 (2000) 305.
72.	P.R. Underhill, G. Goring, D.L. Duquesnay, Int. J. Adhes. Adhes. 18 (1998) 307.
73.	P. Innocenzi, G. Brusatin, Chem. Mater. 12 (2000) 3726.
74.	D.K. Owens, R.C. Wendt, J. Appl. Polym. Sci. 13 (1969) 1741.
75.	F.M. Fowkes, J. Phys. Chem. 66 (1962) 382.
76.	J. Malzbender, J.M.J. den Toonder, A.R. Balkenende, G. de With, Mater. Sci. Eng., R Rep. 36 (2002) 47.
77.	G. Hochstetter, A. Jimenez, J.L. Loubet, J. Macromol. Sci., Phys. B38 (1999) 681.
78.	B. Paul, Trans. Metall. Soc. AIME 218 (1960) 36.
79.	J.-L. Bucaille, PhD thesis, Ecole Nationale Supe´rieure des Mines de Paris, France, 2001, in French.
80.	E. Chabert, PhD thesis, Institut National des Sciences Applique´es, Lyon, France, 2002, in French.
81.	C.L. Wu, M.Q. Zhang, M. Rong, K. Friedrich, Compos. Sci. Technol. 62 (2002) 1327.
82.	C. Becker, H. Krug, H. Schmidt, Mater. Res. Soc. Symp. Proc. 435 (1996) 237.
83.	S. Ahmed, F.R. Jones, J. Mater. Sci. 25 (1990) 4933.
84.	Y. Rharbi, B. Cabane, A. Vacher, M. Joanicot, F. Boue, Europhys. Lett. 46 (1999) 472.
85.	E. Reynaud, PhD thesis, Institut National des Sciences Applique´es, Lyon, France, 2000, in French.
86.	C. Xiang, H.-J. Sue, J. Chu, B. Coleman, J. Polym. Sci., B, Polym. Phys. 39 (2001) 47.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
校內書目立即公開
校外
不同意授權

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信