淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2508200815083600
中文論文名稱 含界層裂紋之雙層壓電材料受反平面動力點載荷之暫態效應
英文論文名稱 Transient response of an interface crack subjected to dynamic anti-plane concentrated loading in piezoelectric bimaterials
校院名稱 淡江大學
系所名稱(中) 航空太空工程學系碩士班
系所名稱(英) Department of Aerospace Engineering
學年度 96
學期 2
出版年 97
研究生中文姓名 陳冠志
研究生英文姓名 Kuan-Chih Chen
學號 695430750
學位類別 碩士
語文別 中文
口試日期 2008-07-21
論文頁數 108頁
口試委員 指導教授-應宜雄
委員-Chien-Ching Ma
委員-Chao-Hwa Liu
中文關鍵字 壓電材料  界面裂紋  應力強度因子 
英文關鍵字 piezoelectric material  interface crack  stress intensity factor 
學科別分類 學科別應用科學航空太空
中文摘要 本文研究內含電極邊界之界面裂紋的壓電複合材料動力破壞問題,解析一半無限長界面裂紋之六角雙異質壓電材料複合層版,於裂紋面上施載反平面動力點載荷之暫態效應,本文使用積分轉換法與Wiener-Hopf技巧推導壓電材料於拉普拉斯轉換域中之解,接著使用Cagniard-de Hoop方法來作拉普拉斯逆轉換得到時域中的全場暫態解析解,並求出應力強度因子與電位移強度因子等解析解。最後,將針對應力與電位移之暫態解做數值計算與討論。
英文摘要 In this study, the transient response of a semi-infinite interface crack between two dissimilar piezoelectric materials with the electrode boundary condition is investigated. The useful fundamental solutions are derived and the solutions can be determined by superposition of the fundamental solutions in the Laplace transform domain. The proposed fundamental problem is the problem of applying exponentially distributed traction (in Laplace transform domain) on the interface crack faces. The Cagniard-de Hoop method of Laplace inversion is used to obtain the transient solution in time domain. Exact transient Full-Field solution and exact transient solution of intensity factors to the problem with concentrated loads are derived. Finally, numerical results are evaluated and discussed in detail.
論文目次 目錄
目錄........................................................I
圖表目錄................................................III
附錄.....................................................IV
第一章 緒論........................................................1
1.1研究動機........................................................1
1.2文獻回顧...............................................3
1.3內容簡介...............................................6
第二章 理論基礎
2.1線性壓電控制與本構方程式.............................7
2.2拉普拉斯轉換與Cagniard-de Hoop method...............14
2.2.1拉普拉斯轉換(Laplace Transform).............14
2.2.2 Cagniard-de Hoop method......................15
2.3含靜止裂紋之雙異質壓電材料受反平面應力型負載基本解..15
2.4存在MT表面波 有實根之理論解析.......................26
2.5無MT表面波 無實根之理論解析...........................33
第三章 界面裂紋受反平面動力點載荷之暫態解析..............40
3.1問題描述............................................40
3.2 存在MT表面波之時域解...............................41
3.3 無MT表面波之時域解.................................58
第四章 數值計算與討論...................................72
第五章 成果與討論........................................75
5.1 本文結論...........................................75
5.2本文成果............................................76
5.3尚待研究方向........................................76
參考文獻.................................................78

圖表目錄
圖3-1 界面裂紋之問題描述.................................83
圖3-2 逆轉換路徑圖有剪力頭前波..........................84
圖3-3 逆轉換路徑圖無剪力頭前波..........................85
圖3-4 逆轉換路徑圖有剪力頭前波..........................86
圖3-5 逆轉換路徑圖無剪力頭前波..........................87
圖3-6 之雙異質壓電材料裂紋面施加動力點載荷波前圖.......88
圖3-7 時,有MT表面波圍線積分路徑圖......................89
圖3-8 時,有MT表面波圍線積分路徑圖......................90
圖3-9 時,無MT表面波圍線積分路徑圖......................91
圖3-10 時無MT表面波圍線積分路徑圖.......................92
表4.1壓電材料常數表......................................93
圖4-1a 積分路徑圖.......................................94
圖4-1b 積分路徑圖.......................................95
圖4-2受應力負載含界面裂紋ZnO與PZT4的應力強度因子.........96
圖4-3受應力負載含界面裂紋ZnO與PZT4的電位移強度因子.......97
圖4-4受應力負載含界面裂紋虛擬材料與PZT4的應力強度因子....98
圖4-5受應力負載含界面裂紋虛擬材料與PZT4的電位移強度因子..99
圖4-6數值積分示意圖.....................................100
附錄
附錄一..................................................101
參考文獻 Albert C. To, Shaofan Li and Steven D. Glaser (2005) “On scattering in dissimilar piezoelectric materials by a semi-infinite interfaceial crack ”Q.JI Mech.Appl.Math,Vol. 58, pp. 309-331.

Bleustein, J. L., (1968) “A new surface wave in piezoelectric materials,’ Applied Physics Letters, Vol. 13, pp. 412-413.

Chen, Z. T., (1998) “Crack tip field of an infinite piezoelectric strip under anti-plane impact,”Machenics Research Communications, Vol. 25, pp. 313-319.

Chen, Z. T., Karihaloo, B. L. and Yu, S. W., (1998) “A Griffith crack moving along the interface of two dissimilar piezoelectric materials,” International Journal of Fracture, Vol. 91, pp. 197-203.

Chen,X.H., Ing,Y.S., and Ma,C.C.,(2007)“Transient analysis of dynamic crack propagation in piezoelectric materials”Journal of the Chinese Institute of Engineers, Vol 30, No.3, pp.491-502.

De Hoop, A. T., (1958) Representation theorems for the displacement in an elastic solid and their application to elastodynamic diffraction theory, Doctoral dissertation, Technische hoegschool, Delft.

Deeg, W. F., (1980) “The analysis of dislocation, crack and inclusion problems in piezoelectric solids,”Ph.D Thesis, Stanford University.

Gao, C.F.and Fan, W. X., (1999a) “A general solution for the plane problem in piezoelectric media with collinear cracks,” International Journal of Engineering Science, Vol. 37,pp. 347-363.

Gao, C. F. and Fan, W. X., (1999b) “Exact solutions for the inplane problem in piezoelectric materials with an elliptic or a crack,” International Journal of Solids and Structures, Vol. 36, pp. 2527-2540.

Gao, C. F. and Wang, M. Z., (2001) “Green’s function of an interfacial crack between two dissimilar piezoelectric media,” International Journal of Solids and Structures, Vol. 38, pp. 5323-5334.

Ing, Y. S. and Wang, M. J.,(2004)“Transient analysis of a mode-III crack propagating in a piezoelectric medium”International Journal of Solids and structures, Vol.41, pp. 6197-6214

Ing, Y. S. and Ma, C. C., (1997a) “Dynamic analysis of a propagating anti-plane interface crack,” Journal of engineering Mechanics, Vol.123, pp.783-791.

Kwon, J. H., Lee, K. Y. and Kwon, S. M., (2000) “ Moving crack in a piezoelectric ceramic strip under anti-plane shear loading,” Mechanics Research Communications, Vol. 27, pp. 327-332.

Li, X. F., Fan, T. Y., and Wu, X. F.,(2000)“A moving mode-III crack at the interface between two dissimilar piezoelectric materials ”International Journal of Engineering Science, Vol.38,pp.1219-1234.

Li, S., (2003) “On global energy release rate of a permeable crack in crack in piezoelectric ceramic,” Journal of Applied Mechanics, Vol. 70, pp. 246-252.

Ma, C. C., Chen, X. H. and Ing, Y. S.,(2007) “Theoretical transient analysis and wave propagation of piezoelectric bi-materials”International Journal of Solids and Structures,Vol. 44, pp.7110-7142.

Narita, F. and Shindo, Y., (1998a) “Layered piezoelectric medium with interface crack under anti-plane shear,” Theoretical and Applied Fracture Mechanics, Vol. 30, pp.119-126.

Narita, F. and Shindo, Y., (1998b) “Scattering of love waves by a surface-breaking crack in piezoelectric layered media,” JSME Int. J., Series A, Vol. 41, pp. 40-48.

Pak, Y. E., (1990) “Crack extension force in a piezoelectric material ,” Journal of Applied Mechanics, Vol. 57, pp.647-653.

Park, S. B. and Sun, C. T., (1995a) “Effect of electric field on fracture of piezoelectric ceramics,” International Journal of Fracture, Vol. 70, pp. 203-216.

Park, S. B. and Sun, C. T., (1995b) “Fracture criteria of piezoelectric ceramics,” Journal-American Ceramic Society, Vol. 78, pp. 1475-1480.

Parton, V. Z., (1976) “Fracture mechanics of piezoelectric materials.” Acta Astronaut, Vol. 3, pp. 671-683.

Shen, S., Kuang, Z. B. and Hu, S., (1999) “Interface crack problems of a laminated piezoelectric plate,” European Journal of Mechanics A/Solids, Vol. 18, pp. 219-238.

Shindo, Y. and Ozawa, E., (1990) “Dynamics analysis of a piezoelectric material,” In: Hsieh, R.K.T. (Ed.), Mechanical Modeling of New Electromagnetic Materials. Elsevier, Amsterdam, pp. 297-304.

Sosa, H., (1992) “On the fracture mechanics of piezoelectric solids,” International Journal of Solids and Structures, Vol. 29, pp. 2613-2622.

Suo, Z., Kuo, C. M., Barnett, D. M. and Willis, J. R., (1992) “Fracture mechanics of piezoelectric ceramics,” Journal of the Mechanics and Physics of Solids, Vol. 40, pp. 739-765.

Yang, F., (2001) “Fracture mechanical for a mode I crack in piezoelectric materials,” International Journal of Solids and Structures, Vol. 38, pp. 3813-3830.

Ueda, S., (2003) “Diffraction of antiplane shear waves in a piezoelectric laminate with a vertical crack,” European Journal of Mechanics A/Solids, Vol. 22, pp. 413-422.

Zhou, Z. G., and Wang, B.,(2006)“Investigation of behavior of mode-I interface crack in piezoelectric materials by using Schmidt method,”Applied Mathematics and Mechanics(English Edition),Vol. 27,pp. 871-882.

黃俊元 (2006),含界面裂紋之雙異質壓電材料暫態解析,淡江大學航空太空工程學所碩士論文。

蔡忠翰 (2005),含界層裂紋之彈壓電複合材料之動力破壞分析,淡江大學航空太空工程學所碩士論文。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2008-08-27公開。
  • 同意授權瀏覽/列印電子全文服務,於2008-08-27起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信