淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2507201710021400
中文論文名稱 干擾效應下的極值分佈特性
英文論文名稱 Interference effects on distribution feature of extreme pressures
校院名稱 淡江大學
系所名稱(中) 土木工程學系碩士班
系所名稱(英) Department of Civil Engineering
學年度 105
學期 2
出版年 106
研究生中文姓名 曾育凡
研究生英文姓名 Yu-Fan Tseng
學號 604380021
學位類別 碩士
語文別 中文
口試日期 2017-07-13
論文頁數 90頁
口試委員 指導教授-羅元隆
委員-王人牧
委員-陳若華
中文關鍵字 極值風壓  非超越機率分布  Reverse-Weibull函數  形狀參數  設計風載重理論 
英文關鍵字 Extreme wind pressure  Non-exceedance probability distribution  Reverse-Weibull distribution  Shape parameter  Design wind load theory 
學科別分類 學科別應用科學土木工程及建築
中文摘要 現今科技日益進步,隨著人口急速增長,土地資源的緊缺,使得都會區的建築物不斷向上發展,加上我國處於多颱風及地震之地理位置,因此高層建築在設計上不僅要考慮到耐震,風力對結構物的影響是相當重要的一環。建築物高度超過一百公尺,因振動周期較長,對風的影響較為顯著,尤其地震力隨著高度的增加而降低,建築物的結構設計將受風力控制,屆時風載重的設計為重要的問題,而藉由縮尺風洞實驗,將設計風載重及其分佈估計更為準確,必能提高高層建築的安全性。
本研究以壓力量測法對高寬比6之矩柱模型進行表面風壓量測,其中包含31種不同干擾建物位置與不含干擾建物配置之實驗,觀察主要建物之風壓分佈變化,並繪製成累積機率密度分佈(非超越機率)的形式,以Reverse-Weibull函數擬合曲線之形狀參數,計算曲線的變異係數,另外根據局部設計風載重理論可知,在建築物使用週期的考量下,設計風載重的目標超越機率(設計百分比)由極值風速的機率密度分佈函數與極值風壓係數的累積機率密度分佈函數的乘冪所決定,因此可以推估每一個風壓孔的最佳設計百分比及最佳設計風壓係數,並與國外規範中常見以Cook-Mayne值作為設計的結果進行比較。一般來說,Cook and Mayne(1985)所提出的78%非超越機率設計百分比是基於Gumbel分佈曲線的假設;若以本研究所得到的結果而言,局部風載重的設計值會隨著不同極值分佈曲線而有所調整,才能得到較合理的設計值。此外,非超越機率的分佈曲線呈現非高斯的特性與我國規範假設不同,透過本實驗能增加干擾效應下之氣動力資料,有利於我國建築耐風設計規範的修訂。
英文摘要 With the rapid growth in construction technology and increasing population in the metropolitan area, high-rise buildings have been developed to reach higher and higher altitude. However, Taiwan island is located in a typhoon and monsoon sensitive area. It is important to consider not only the earthquake excitations but also the strong wind effects. When the building height is over 100 meters, the resistant wind load design is even prior to earthquake load. By means of physical scaling test, it is promising a more reliable safety design for high-rise buildings.
In this study, pressure measurement method is adopted for a square prism high-rise building model with aspect ratio of 6. There are in total 31 interference effect cases and one isolated case included. Local surface pressures are recorded for 100 field scale hours in order to examine their extreme value distributions and identification by Reverse-Weibull function. Based on the basic design wind load theory, the optimum design fractile for each pressure is found and its associated optimum design pressure coefficient is decided and compared to the design value based on Cook and Mayne concept. It is suggested from this study that Cook and Mayne coefficient is conservative for high-rise buildings with or without the interference effects.
論文目次 目錄
第一章緒論 1
1.1 研究動機 1
1.2 研究方法 1
1.3 研究內容 2
1.4 論文架構 3
第二章文獻回顧 4
2.1 風洞實驗 4
2.1.1 大氣紊流邊界層 4
2.1.2 阻塞效應 4
2.1.3 雷諾數效應 5
2.2 干擾效應之於主要建物的影響 5
2.2.1 干擾效應於主要建物的風力影響 5
2.2.2 局部風力影響之定性描述 6
2.3 極值分析理論於風工程研究之應用 7
2.3.1 設計風速 7
2.3.2 設計氣動力參數 7
2.4 相關極值之氣動力案例研究 8
第三章 理論背景 10
3.1 大氣邊界層特性 10
3.1.1 平均風速剖面 10
3.1.2 紊流強度剖面 11
3.1.3 紊流長度尺度 11
3.2 風對結構體之作用 12
3.2.1 氣動力現象 12
3.2.2 相似性原則 13
3.3 隨機數據理論 15
3.4 機率分布 17
3.4.1 機率密度分佈函數 17
3.4.2 極值分布 18
3.5 設計風載重理論 20
3.5.1 基本理論 20
3.5.2 範例說明 21
3.5.3 極值分布形狀參數對設計百分比之影響 24
第四章 實驗設置與數據處理分析 26
4.1 實驗設置 26
4.1.1 風洞 26
4.1.2模型 26
4.1.3 量測儀器 27
4.1.4 大氣邊界層流場模擬 28
4.2 訊號處理與數據處理 29
4.2.1 數據採樣 29
4.2.2 風壓訊號之管線修正 30
4.2.3 數據處理分析 31
第五章 實驗結果與討論 32
5.1 模型孔位控制 32
5.1.1 平均風壓係數 33
5.1.2 不同干擾位置之模型孔位控制與特性 34
5.2 極值分佈特性 35
5.2.1 形狀參數 35
5.2.2 變異係數 36
5.3 設計百分比 37
5.3.1 最佳設計百分比與Cook and Mayne係數比較 37
5.3.2 設計風壓係數之誤差百分比 38
5. 4 干擾效應下之最佳設計風壓係數 38
5.4.1 樓層橫向比較 38
5.4.2 模型四面比較 39
5.4.3 角隅縱向比較 39
5.4.4 干擾因子 40
第六章 結論與建議 41
6.1 結論 41
6.2 建議 42
參考文獻 43
附表 48
附圖 50
表目錄
表3-1 不同地況之指數律參數 48
表3-2 不同地況之地表粗糙長度尺度 [58] 48
表3-3 地表粗糙長度尺度對應之β 48
表4-1 風壓模型之樓層高度配置 48
表4-2 本研究風洞實驗所假設之相似性比例縮尺與參數設定 49
圖目錄
圖3-1 紊流長度尺度參數C、m與高度Z0關係圖 50
圖3-2 鈍體分離流及渦漩示意圖 50
圖3-3 Reverse-Weibull在不同τ值下的尾端性狀變化 51
圖3-4 各種不同τc(-0.2 ~ 0.3)於τv=0時之最佳非超越機率百分比分布圖 52
圖4-1淡江大學風工程研究中心第一號大氣邊界層風洞實驗室 52
圖4-2主建物與干擾建物模型示意圖及照片 53
圖4-3座標版配置示意圖 53
圖4-4 IFA-300智慧型風速儀、探針及校正儀 54
圖4-5 壓力量測系統 54
圖4-6 壓力訊號處理系統(RADBASE3200) 54
圖4-7 64頻道壓力感應器模組 55
圖4-8淡江大學第一號大氣邊界層風洞實驗室擾流板與粗糙元素擺設示意圖 55
圖4-9地況B之平均風速剖面及紊流強度 56
圖4-10 風壓管之管線修正使用之頻率域轉換函數 (Amplitude ratio、Phase difference) 56
圖5-1 矩形建築物受風面示意圖 57
圖5-2主建物模型迎風面孔號312(上圖為取最大、下圖為取最小風壓係數) 57
圖5-3 單棟平均風壓係數等高線分布圖 58
圖5-4 干擾建物於主建物前方系列之平均風壓係數等高線分布圖 61
圖5-5 干擾建物於主建物斜前方系列之平均風壓係數等高線分布圖 65
圖5-6 干擾建物於主建物左方系列之平均風壓係數等高線分布圖 68
圖5-7 干擾建物於主建物斜後方系列之平均風壓係數等高線分布圖 71
圖5-8 干擾建物於主建物後方系列之平均風壓係數等高線分布圖 73
圖5-9干擾建物位於主建物前方(x/B,y/B)迎風面(a面)方塊圖 74
圖5-10干擾建物位於主建物斜前方(x/B,y/B)迎風面(a面)方塊圖 74
圖5-11干擾建物位於主建物左方(x/B,y/B)迎風面(a面)方塊圖 75
圖5-12干擾建物位於主建物斜後方(x/B,y/B)迎風面(a面)方塊圖 75
圖5-13干擾建物位於主建物後方(x/B,y/B)迎風面(a面)方塊圖 76
圖5-14不同干擾配置下模型四面之形狀參數橫向比較 78
圖5-15不同干擾配置下模型四面之變異係數橫向比較 80
圖5-16不同干擾配置下模型四面之最佳設計百分比橫向比較 82
圖5-17不同干擾配置下之最大誤差百分比橫向比較 84
圖5-18不同干擾配置下之最佳設計風壓係數橫向比較 86
圖5-19不同干擾配置下之最佳設計風壓係數面向比較 88
圖5-20模型角隅縱向示意圖 89
圖5-21不同干擾配置之最佳設計風壓係數縱向比較 89
圖5-22不同干擾配置之最大設計(正/負)風壓係數干擾因子比較 90
參考文獻 [1] Cook, N. J.,Mayne, J.R. (1980) “A Refined Working Approach to the Assessment of Wind Loads for Equivalent Static Design”, Journal of Wind Engineering and Industrial Aerodynamic, Vol.6(1-2), pp.125-137.
[2] Armitt, J. & Counihan, J (1968) “The Simulation of the Atmospheric Boundary Layer”, Vol.2, pp.49-71
[3] Counihan, J. (1970) “An Improved Method of simulation Atmospheric Boundary Layer”, Atmospheric Environment, Vol.4, pp.159-275
[4] Counihan, J. (1970) “Further Measurement in a Simulated Atmospheric Boundary Layer”, Atmospheric Environment, Vol.4, pp.159-275
[5] Counihan, J. (1973) “Simulation of an Adiabatic Urban Boundary Layer in a Wind Tunnel”, Atmospheric Environment, Vol.7, pp.673-689
[6] Standen, N.M. (1972) “A Spire Array for Generating Thick Turbulent Shear Layers for Natural Wind Simulation in Wind Tunnels”, Rep. LTR-LA-94, National Aeronautical Establishment, Ottawa, Canada.
[7] Barret, R.V. (1972) “A Versatile Compact Wind Tunnel for Industrial Aerodynamics”, Technical note, Atmospheric Environment, Vol.6, pp.491-495.
[8] Cook, N.J. (1973) “On Simulating the lower Third of the Urban Adiabatic Boundary Layer in a Wind Tunnel”, Atmospheric Environment, Vol.7, pp.691-705.
[9] Cermak, J.E., Peterka, J.A. (1974) “Simulation of Atmospheric Flows in Short Wind Tunnel Test Sections”, Center for Building Technology, IAT, National Bureau of Standards Washington, D.C., June.
[10] Irwin, H.P.A.H., (1981) “The Design of Spire for Wind Simulation”, J. of Wind Engineering and Industrial Aerodynamics, Vol.7, pp.361-366.
[11] Jesen, M. (1958) “The Model Law for Phenomena in Natural Wind”, Ingeioen International Edition, Vol.2, No.4, pp.121-123.
[12] Whitbread, R.E (1963) “Model Simulation of Wind Effects on Structures”, Proceeding of Conference on Wind Effects on Buildings and Structres, pp.284-306.
[13] Biggs, J.M. (1954) “Wind Load on Truss Bridges”, ASCE, pp.879.
[14] Hunt, A. (1982) “Wind Tunnel Measurement of Surface Pressure on Cubic Building Models at Several Scales”, J. Wind Eng. Ind. Aero., Vol.10, pp.137-163.
[15] Nakamura, Y., Ohya, Y. (1984) “The effects of turbulence on the mean flow past two dimensional rectangular cylinders”, J. of Fluid. Mech., Vol.149, pp.255-273.
[16] Honer, F.S., Fluid Dynamic Drag. Published by the author, 148 Busted Drive. Midland Park. N.J.(1965)
[17] Architectural Institute of Japan (AIJ). (2004)
[18] 建築物結構荷重規範(GB 50009). (2012)
[19] 林倚仲,2005,“干擾效應對高層建築設計風力的影響”,淡江大學土木工程研究所碩士論文。
[20] Gu, M. (2004) “Mean interference effects among tall buildings”, Engineering Structures 26 1173-1183.
[21] 盧博堅、鄭啟明、賴建志,1987,“邊界層中三方柱體群縱向與橫向排列所受風利之交互作用”,The Chinese Journal of Mechanics, Vol.11, pp.185-193.
[22] English, J. (1990) “Shielding factors from wind-tunnel studies of prismatic structures”, Journal of Wind Engineering and Industrial Aerodynamics, 36, 611-619.
[23] Blessmann, J., and Riera, J.D. (1985) “Wind excitation of neighboring tall buildings”, Journal of Wind Engineering and Industrial Aerodynamics, 18, 91-103.
[24] Kareem, A. (1987) “The effect of aerodynamic interference on the dynamic response of prismatic structures”, J. Wind Eng. Ind. Aero., Vol.25, pp.365-372.
[25] Sakamoto, H., Haniu, H. (1988) “Effect of free-stream turbulence on Characteristics of fluctuating forces acting on two square prisms in tandem arrangement”, Trans. ASME, Vol.110, 140-146.
[26] Sakamoto, H., Haniu, H. (1988) “Aerodynamic forces acting on two square prisms placed vertically in a turbulent boundary layer”, Journal of Wind Engineering and Industrial Aerodynamics, 31, 41-66.
[27] English, E.C. (1985) “Shielding factors from Wind-Tunnel studies of Mid-Rise and High-Rise structures”, Proceedings Fifth U.S. Conference on Wind Engineering.
[28] Khanduri, A.C., Stathopoulos, T., Bendard, C. (1998) “Wind-induced interference effects on buildings-a review of the state-of-the-art”, Eng. Struct., 20(7), 617-630.
[29] Khanduri, A.C., Stathopoulos, T., Bendard, C. (2000) “Generalization of wind-induced interference effects for two buildings”, WindStruct., 3, 255-266.
[30] Kim, W., Tamura, Y., Yoshida, A. (2011) “Interference effects on local peak pressures between two buildings”, J. Wind Eng. Ind. Aerodyn., 99, 584-600.
[31] Hui, Y., Tamura, Y., Yoshida, A. (2012) “Mutual interference effects between two high-rise building models with different shapes on local peak pressure coefficients”, J. Wind Eng. Ind. Aerodyn., 104-106, 98-108.
[32] Kim, W.S., Tamura, Y., Yoshida, A. (2013) “Simultaneous mearsurement of wind pressures and flow patterns for buildings with interference effect”, Advances Struct. Eng. 16(2), 287-305.
[33] Hui, Y., Yoshida, A., Tamura, Y. (2013) “Interference effects between two rectangular-section high-rise buildings on local peak pressure coefficients”, J. Fluid and Struct., 37, 120-133.
[34] Hui, Y., Tamura, Y., Yoshida, A., Kikuchi, H. (2014) “Pressure and flow field investigation of interference effects on external pressures between high-rise buildings”, J. Wind Eng Ind. Aerodyn., 115, 150-161.
[35] Kim, W.S., Tamura, Y., Yoshida, A. (2015) “Interference effects on aerodynamic wind forces between two buildings”, J. Wind Eng Ind. Aerodyn., 147, 186-201
[36] Kasperski, M. (2009) “Specification of the design wind load-A critical review of code concepts”, J. Wind Eng Ind. Aerodyn., 97, 335-357.
[37] Gumbel, E. J.(1958), Statistics of Extremes, Columbia University Press, New York.
[38] Harris, R.I. (1996) “Gumbel Re-visited: a New Look at Extreme Value Statistics Applied to Wind Speeds”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.59, pp.1-22.
[39] Pickands, J. (1975) “Statistical Inference Using Order Statistics”, Ann. Stat., Vol.3, pp.119-131.
[40] Simiu, E., Heckert, N.A. (1996) “Extreme Wind Distribution Tails: A ‘‘Peaks Over Threshold’’ Approach”, Journal of Structure Engineering, Vol.122(5), pp.539-547.
[41] Cook, N.J. (1982) “Towards Better Estimation of Extreme Winds”, Journal of Wind Engineering and Industrial Aerodynamic, Vol.9, pp.295-323.
[42] Harris, R.I. (1999)“Improvements to the Method of Independent Storms”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.80, pp.1-30
[43] Harris, R.I., Cook, N.J. (2014) “The Parent Wind Speed Distribution: Why Weibull?”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.131, pp.72-87.
[44] Stathopoulos, T. (1979) “Turbulent Wind Action on Low Rise Buildings (Ph.D.)”, University of Western Ontario, London, Ontario, Canada.
[45] Holmes, J.D., Melbourne, W.H., Walker, G.R. (1989)“A Commentary on the Australian Standard for Wind Loads AS1170 Part2”, Australian Wind Engineering Society, Melbourne.
[46] A. Kareem, J. Zhao, (1994)“Analysis of Non-Gaussian Surge Response of Tension Leg Platforms Under Wind Loads”,Journal of Offshore Mechanics and Arctic Engineering, Vol.116, pp.137-144.
[47] D. K. Kwon, A. Kareem, (2011)“Peak Factors for Non-Gaussian Load Effects Revisited”, J. Structural Eng., Vol.137(12), pp.1611-1619.
[48] S. R. Winterstein, T. Kashef, (2000)“Moment-based Load and Response Models with Wind Engineering Applications”, J. Sol. Energy Eng., Trans., ASME, Vol.122(3), pp.122-128.
[49] F. Sadek, E. Simiu, (2002)“Peak Non-Gaussian Wind Effects for Database-Assisted Low-rise Building Design”, J. Eng. Mech., Vol.128, pp.530-539.
[50] M. Huang, W. Lou, C. Chan, N. Lin, X. Pan, (2013)“Peak Distributions and Peak Factors of Wind-induced Pressure Processes on Tall Buildings”, J. Eng. Mech., Vol.139(12), pp.1744-1756.
[51] X. Peng, L. Yang, E. Gavanski, K. Gurley, D. Prevatt, (2014)“A Comparison of Methods to Estimate Peak Wind Loads on Buildings”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.126, pp.11-23.
[52] 羅元隆,林逸崧,(2016)“低矮建物屋頂表面極值風壓之特性分布探討”,全國風工程研討會論文。
[53] 朱佳仁,林坦誼,楊智凱,劉明怡,(2016)“半圓柱形溫室風壓係數之實驗研究”,農業工程學報62卷3期,pp.63-73.
[54] 詹政翰,2017,“不同矩柱表面之極值風壓分布及局部風載重設計”,淡江大學土木工程研究所碩士論文。
[55] A. G. Davenport, (1961) “The Relationship of Wind Structure to Wind Loading” , Proc. Symp. On Wind Effects on Buildings and Structures, Vol.1, National Physical Laboratory, Teddington, U.K. Her Majesty’s Stationary Office, London, pp.53-102.
[56] American National Standard A58.1-1982 Minimum American National Standard Institute, Inc., New York.
[57] Emil Simiu, Rebort H. Scanlan, (1986) “Wind Effects on Structures” 2nd edit.﹐John Wiley & Sons.
[58] J. Counihan, (1975) “Adiabatic Atmospheric Boundary Layers: A Review and Analysis of Data from the Period 1880-1972” , Atmospheric Environment, Vol.9, pp.871-905.
[59] W. H. Snyder, (1972) “Similarity criteria for the application of fluid models to the study of air pollution meteorology” ,Boundary Layer Meteorology, Vol.3, pp.113-134.
[60] J. E. Cermak, (1975) “Application of fluid mechanics to wind engineering” , A freeman-scholar lecture, Journal of Fluids Engineering, ASME, Vol.97, pp.9-38.
[61] A. A. Townsend, (1956) “The structure of turbulent shear flow” , Cambridge University Press, pp.53.
[62] J. E. Cermak, (1981) “Wind tunnel design for physical modeling of atmospheric boundary layer” , Journal of Engineering Mechanics, Vol.107, pp.623-642.
[63] M. Kasperski, (2009) “Specification of the design wind load—A critical review of code concepts” , Journal of Wind Engineering and Industrial Aerodynamic, Vol.97, pp.335-357.
[64] Bailey, P.A., Kwok, K.C.S. (1985) “Interference excitation of twin tall buildings”, J. Wind Eng. Ind. Aerodyn, 21, 323-338.
[65] Lo, Y.L., Kim, Y.C., Li, Y.C. (2016) “Downstream interference effect of high-rise buildings under turbulent boundary layer flow”, J. Wind Eng. Ind. Aerodyn, 159, 19-35.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2017-07-26公開。
  • 同意授權瀏覽/列印電子全文服務,於2017-07-26起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信