§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2507201414453100
DOI 10.6846/TKU.2014.01037
論文名稱(中文) C末端殘基如何改變兩親性螺旋摺疊:CD和NMR的研究
論文名稱(英文) How C-terminal residue alters the helix folding of an amphipathic antimicrobial peptide: CD and NMR study
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 102
學期 2
出版年 103
研究生(中文) 曾雅琳
研究生(英文) Ya-Lin Tseng
學號 601160061
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2014-07-10
論文頁數 170頁
口試委員 指導教授 - 李長欣(cshlee@mail.tku.edu.tw)
委員 - 李長欣
委員 - 鄧金培(jpdeng@mail.tku.edu.tw)
委員 - 錢嘉琳(chyan@mail.ndhu.edu.tw)
關鍵字(中) C末端
兩親性
摺疊
CD
NMR
關鍵字(英) Folding
antimicrobial peptide
C-terminal
CD
NMR
第三語言關鍵字
學科別分類
中文摘要
如何從蛋白質序列摺疊成其獨特的三維結構,一直是重要的研究課題之一。在其他文獻報告指出,蛋白質的C末端殘基會影響蛋白質的摺疊行為。由於蛋白質的胺基酸數目較多,實驗的複雜性較高,為了降低實驗的複雜性,此論文中選用胺基酸數目較少的MP-B胜肽(14個胺基酸)及其衍生物,將其溶於30% TFE的水溶液中,溫度為310 K,利用CD和NMR進行研究,觀察胜肽的C末端殘基對於蛋白質摺疊行為的影響。
從CD實驗中說明,MP-B及其衍生物在30% TFE溶液中會形成α-helix結構。利用不同溫度的DOSY實驗觀察MP-B及其衍生物的疏水性與寡聚體之間的關係,並討論寡聚狀態的熱穩定性。從抗菌活性實驗的結果發現MP-B及其衍生物的抗菌效果為MP-B > MP-BL15 > MP-B1-13。將MP-B及其衍生物的NOE距離限制放入結構計算中,統計每條胜肽的100個螺旋摺疊結構,並探討C末端對於摺疊結構熱穩定性的重要性。
統合所有的實驗結果,當胜肽C末端無序的殘基無法提供足夠的熵時,會以螺旋N端展開的方式來增加熵。胜肽具有較穩定的結構和寡聚狀態時,會有較佳的抗菌活性,因此,如欲設計一個具有抗菌活性的胜肽,其C末端殘基的作用具有很關鍵的影響。
英文摘要
One of the most interesting questions in biophysics is how protein sequences determine their unique three-dimensional structure. Previous studies reported that the residues at C-terminal can have effects on the protein folding behaviors. Since a large protein is highly complex, for simplicity, in this study we use MP-B (14 amino acids) and its analogues in 30% TFE-d3 aqueous solution as a model system. By using circular dichroism (CD) and NMR methods, we can get insight into how the C-terminal segment may influence the folding behavior of proteins.
Spectra of CD indicated that our peptides may form α-helical conformations in 30%TFE. Oligomerization and thermal stability of peptides were investigated by performing diffusional experiments with variable temperatures. The antimicrobial activity of MP-B1-13, MP-B and MP-BL15, is ordered as MP-B > MP-BL15 > MP-B1-13. 100 of structures of different kind foldings were calculated with NMR data to investigate the effects of C-terminal segment on folding.
Our results suggested that while the disordered residues at C-terminal can’t provide enough motional entropy, the helical N-terminal may be partially unfolded to increase the entropy. When peptides have more stable structure and oligomeric state, they may have greater antimicrobial activity. The results implied the disordered C-terminal residues may play a critical role for the structure and activity of a peptide. The knowledge is especially important while a peptide segment is designed or truncated for studies of structure and function.
第三語言摘要
論文目次
目錄
目錄 .......................................................................................................................................... I
圖目錄 .................................................................................................................................... V
表目錄 ................................................................................................................................XIV
縮寫表.................................................................................................................. XVIII
第一章 緒論 .............................................................................................................. 1
1.1 蛋白質結構 (protein structure) ...................................................................... 1
1.1-1 蛋白質的三維結構 ...................................................................................... 1
1.2 蛋白質摺疊 (protein folding) .......................................................................... 7
1.3 寡聚蛋白質的摺疊與聚集 (oligomeric protein folding and
association) ...................................................................................................................... 11
1.4 抗菌胜肽(antimicrobial peptides) ................................................................ 12
1.5 Mastoparan-B (MP-B) 介紹 ............................................................................ 13
1.6 研究目的 ................................................................................................................. 14
第二章 實驗原理................................................................................................... 15
2.1 固相胜肽合成法 (Solid-Phase Peptide Synthesis, SPPS) ................ 15
2.2 圓二色旋光光譜儀 (Circular Dichroism Spectrometer, CD) ......... 20
2.2-1 圓二色光譜儀原理 .................................................................................... 20
2.2-2 多胜肽的各種二級結構與其CD 光譜 ............................................ 22
2.2-3 計算α-helix 含量 ...................................................................................... 23
2.3 二維核磁共振 (Two dimensional nuclear magnetic resonance, 2D
NMR) ................................................................................................................................. 24
2.3-1 Correlation Spectroscopy, COSY .......................................................... 28
2.3-2 Total Correlation Spectroscopy, TOCSY ........................................... 31
2.3-3 Nuclear Overhauser Effect Spectroscopy, NOESY ........................ 33
2.4 Diffusion Ordered Spectroscopy, DOSY .................................................... 35
2.4-1 擴散 (Diffusion) ......................................................................................... 35
2.4-2 脈衝磁場梯度核磁共振 (Pulsed field gradient NMR,
PFG-NMR) .................................................................................................................. 35
2.4-3 自結合(Self-association) ................................................................... 36
2.5 分子動力學 (Molecular dynamics) ............................................................ 38
2.5-1 NMR 弛緩 (NMR Relaxation) .............................................................. 38
2.5-2 NMR 弛緩與動力學的關係.................................................................... 39
2.5-3 弛緩參數 (Relaxation Parameters) 和光譜密度函數
(spectral density function) 之間的關係 ......................................................... 40
2.5-4 無模型法則 (Model-free approach) ................................................... 42
第三章 實驗材料與方法..................................................................................... 46
3.1 實驗材料 ................................................................................................................. 46
3.2 實驗方法 ................................................................................................................. 51
3.2-1 固相胜肽合成 .............................................................................................. 52
3.2-2 胜肽純化與分子量鑑定 .......................................................................... 54
3.2-3 圓二色旋光光譜儀 .................................................................................... 56
3.2-4 抗菌活性 ........................................................................................................ 57
3.2-5 核磁共振實驗 .............................................................................................. 60
3.2-6 結構計算 ........................................................................................................ 65
3.2.7 無模型法則 (Model-free approach) 計算....................................... 69
3.2-8 黏度實驗 ........................................................................................................ 73
第四章 實驗結果................................................................................................... 74
4.1 圓二色旋光光譜 .................................................................................................. 74
4.2 抗菌活性 ................................................................................................................. 77
4.3 NMR 光譜的判定 ................................................................................................ 80
4.4 DOSY 光譜 ........................................................................................................... 126
4.5 結構計算 ............................................................................................................... 137
4.6 胜肽分子的動力學行為 ................................................................................ 143
第五章 討論 .......................................................................................................... 147
5.1 利用 CD 和NMR 研究胜肽的螺旋摺疊結構 .................................... 147
5.2 改變胜肽C 末端殘基對於其疏水性和疏水力矩的影響 ............... 152
5.2-1 疏水性 (H) .................................................................................................. 154
5.2-2 疏水力矩 (μH) .......................................................................................... 157
5.3 胜肽的自結合狀態對於螺旋摺疊的影響 ............................................. 159
5.4 胜肽的兩親性對於抗菌活性的重要性 .................................................. 161
5.5 胜肽的動力學行為........................................................................................... 162
第六章 結論 .......................................................................................................... 164
第七章 參考資料................................................................................................. 166
圖目錄
圖1-1:天然胺基酸的結構示意圖。 ..................................................................... 2
圖1-2:20 種天然胺基酸結構。 .............................................................................. 3
圖1-3:胺基酸利用胜肽鍵連結形成長鏈聚合物。 ...................................... 4
圖1-4:蛋白質的二級結構。 .................................................................................... 4
圖1-5:Ramachandran plot。 ..................................................................................... 5
圖1-6:蛋白質的三級結構。 .................................................................................... 5
圖1-7:蛋白質的四級結構。 .................................................................................... 6
圖1-8:蛋白質的摺疊機制。 .................................................................................... 9
圖1-9:漏斗能量表面。 ............................................................................................ 10
圖1-10:蛋白質大小和時間尺度的關係圖。 ................................................. 10
圖2-1:利用連接試劑將胜肽的C 端接到Resin 上。 ................................ 16
圖2-2:連接試劑。 ...................................................................................................... 16
圖2-3:胺基酸的N 端加上Fmoc 保護基,以防止其他反應發生。 . 17
圖2-4:胺基酸側鏈的保護基。 ............................................................................. 17
圖2-5:胺基酸的活化與耦合。 ............................................................................. 18
圖2-6:胺基酸去保護。 ............................................................................................ 18
圖2-7:切除Resin 和側鏈上的保護基。 .......................................................... 19
圖2-8:光通過偏光過濾器產生平面偏極光。 ............................................... 20
圖2-9:偏極光示意圖。 ............................................................................................ 21
圖2-10:多胜肽的五種不同二級結構之CD 光譜。 .................................. 23
圖2-11:二維核磁共振實驗的脈衝序列。 ...................................................... 24
圖2-12:施加一個90°x 脈衝。 ............................................................................... 24
圖2-13:線性遞增的t1 時間。 ............................................................................... 25
圖2-14:FID 經傅立葉轉換,從time domain 轉換成frequency domain。
.................................................................................................................................................. 27
圖2-15:COSY 的脈衝序列。 ................................................................................ 28
圖2-16:COSY 光譜的雙自旋系統示意圖。 .................................................. 30
圖2-17:TOCSY 的脈衝序列。 ............................................................................. 31
圖2-18:TOCSY 光譜的自旋系統示意圖。.................................................... 32
圖2-19:雙自旋系統 (I、S) 的偶極耦合。 ................................................... 33
圖2-20:NOESY 的脈衝序列。 ............................................................................. 33
圖2-21:兩個相鄰胺基酸之間質子的距離。 ................................................. 34
圖2-22:局部與總體的物理模型示意圖。 ...................................................... 44
圖3-1:實驗流程圖。 ................................................................................................. 51
圖3-2:固相胜肽合成流程圖。 ............................................................................. 53
圖3-3:純化後MP-B1-13 的HPLC 層析圖。 ................................................... 55
圖3-4:MP-B1-13 的MALDI-TOF MS 圖譜。 ................................................. 55
圖3-5:理想的劑量反應曲線。 ............................................................................. 59
圖4-1:MP-B 在溫度300 K 下,不同TFE 濃度的CD 光譜。 ............ 74
圖4-2:胜肽在30% TFE / 70% H2O 溶液中,溫度分別為283 K、298
K、300 K 和310 K 的CD 光譜疊圖。 ............................................................... 75
圖4-3:MP-B1-13 對E.coli 的劑量反應曲線。 ................................................ 77
圖4-4:MP-B 對E.coli 的劑量反應曲線。 ...................................................... 78
圖4-5:MP-BL15 對E.coli 的劑量反應曲線。 ................................................. 78
圖4-6:MP-B1-13 在30% TFE-d3 / 70% H2O,310 K 的TOCSY 光譜。
.................................................................................................................................................. 81
圖4-7:MP-B 在30% TFE-d3 / 70% H2O,310 K 的TOCSY 光譜。 . 82
圖4-8:MP-BL15 在30% TFE-d3 / 70% H2O,310 K 的TOCSY 光譜。
.................................................................................................................................................. 83
圖4-9:MP-B1-13 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜的
Hα HN 交叉峰區塊。 ...................................................................................................... 84
圖4-10:MP-B 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜的
Hα-HN 交叉峰區塊。 ...................................................................................................... 85
圖4-11:MP-BL15 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜的
Hα-HN 交叉峰區塊。 ...................................................................................................... 86
圖4-12:MP-B1-13 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜
的Hβ-HN 交叉峰區塊。 ............................................................................................... 87
圖4-13:MP-B 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜的
Hβ-HN 交叉峰區塊。 ...................................................................................................... 88
圖4-14:MP-BL15 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜的
Hβ-HN 交叉峰區塊。 ...................................................................................................... 89
圖4-15:MP-B1-13 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜
的HN-HN 交叉峰區塊。 ............................................................................................... 90
圖4-16:MP-B 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜的
HN-HN 交叉峰區塊。 ..................................................................................................... 91
圖4-17:MP-BL15 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜的
HN-HN 交叉峰區塊。 ..................................................................................................... 92
圖4-18:MP-B1-13 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜
的Hα-HN 交叉峰區塊。 ............................................................................................... 94
圖4-19:MP-B 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜的
Hα-HN 交叉峰區塊。 ...................................................................................................... 95
圖4-20:MP-BL15 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜的
Hα-HN 交叉峰區塊。 ...................................................................................................... 96
圖4-21:MP-B1-13 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜
的Hβ-HN 交叉峰區塊。 ............................................................................................... 97
圖4-22:MP-B 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜的
Hβ-HN 交叉峰區塊。 ...................................................................................................... 98
圖4-23:MP-BL15 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜的
Hβ-HN 交叉峰區塊。 ...................................................................................................... 99
圖4-24:MP-B1-13 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜
的Hγ-HN 交叉峰區塊。.............................................................................................. 100
圖4-25:MP-B 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜的
Hγ-HN 交叉峰區塊。 .................................................................................................... 101
圖4-26:MP-BL15 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜的
Hγ-HN 交叉峰區塊。 .................................................................................................... 102
圖4-27:MP-B1-13 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜
的Hα-Hβ 交叉峰區塊。 .............................................................................................. 103
圖4-28:MP-B 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜的
Hα-Hβ 交叉峰區塊。 .................................................................................................... 104
圖4-29:MP-BL15 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜的
Hα-Hβ 交叉峰區塊。 .................................................................................................... 105
圖4-30:MP-B1-13 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜
的Hα-Hγ 交叉峰區塊。顯示dαγ(i, i+3)的NOE 訊號。 .............................. 106
圖4-31:MP-B 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜的
Hα-Hγ 交叉峰區塊。 .................................................................................................... 107
圖4-32:MP-BL15 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜的
Hα-Hγ 交叉峰區塊。 .................................................................................................... 108
圖4-33:MP-B1-13 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜
芳香環側鏈區域。 ....................................................................................................... 109
圖4-34:MP-B 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜芳香
環側鏈區域。 ................................................................................................................. 110
圖4-35:MP-BL15 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜芳
香環側鏈區域。 ............................................................................................................ 111
圖4-36:MP-B1-13 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜
尾端胺基區域。 ............................................................................................................ 112
圖4-37:MP-B 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜尾端
胺基區域。 ....................................................................................................................... 113
圖4-38:MP-BL15 在30% TFE-d3 / 70% H2O,310 K 的NOESY 光譜尾
端胺基區域。 ................................................................................................................. 114
圖4-39:二次化學位移 (secondary chemical shift)。 ............................... 119
圖4-40:MP-B1-13 在30% TFE-d3 / 70% H2O,溫度310 K 時的NOE
訊號。 ................................................................................................................................. 120
圖4-41:MP-B 在30% TFE-d3 / 70% H2O,溫度310 K時的NOE 訊號。
................................................................................................................................................ 121
圖4-42:MP-BL15 在30% TFE-d3 / 70% H2O,溫度310 K 時的NOE 訊
號。 ...................................................................................................................................... 121
圖4-43:MP-B1-13 在30% TFE-d3 / 70% H2O,溫度310 K 的1H-13C
HSQC 光譜。 .................................................................................................................. 122
圖4-44:MP-B 在30% TFE-d3 / 70% H2O,溫度310 K 的1H-13C HSQC
光譜。 ................................................................................................................................. 123
圖4-45:MP-BL15 在30% TFE-d3 / 70% H2O,溫度310K的1H-13C HSQC
光譜。 ................................................................................................................................. 124
圖4-46:MP-B1-13 在30% TFE-d3 / 70% H2O,八個不同溫度下的DOSY
光譜疊圖。 ....................................................................................................................... 127
圖4-47:MP-B 在30% TFE-d3 / 70% H2O,八個不同溫度下的DOSY
光譜疊圖。 ....................................................................................................................... 128
圖4-48:MP-BL15 在30% TFE-d3 / 70% H2O,八個不同溫度下的DOSY
光譜疊圖。 ....................................................................................................................... 129
圖4-49:MP-B1-13 在30% TFE-d3 / 70% H2O,310 K 下的DOSY 光譜
圖。 ...................................................................................................................................... 130
圖4-50:MP-B 在30% TFE-d3 / 70% H2O,310 K 下的DOSY 光譜圖。
................................................................................................................................................ 131
圖4-51:MP-BL15 在30% TFE-d3 / 70% H2O,310 K 下的DOSY 光譜
圖。 ...................................................................................................................................... 132
圖4-52:MP-B1-13、MP-B 和MP-BL15 在30% TFE-d3 / 70% H2O 溶液
中,不同溫度下的擴散係數。 .............................................................................. 136
圖4-53:MP-B1-13、MP-B 和MP-BL15 在30% TFE-d3 / 70% H2O 溶液
中,不同溫度下的自結合狀態。 .................................................................. 136
圖4-54:MP-B1-13 在100 個結構之中四種主要的螺旋摺疊結構,其骨
幹的疊圖。 ....................................................................................................................... 138
圖4-55:MP-B 在100 個結構之中四種主要的螺旋摺疊結構,其骨幹
的疊圖。 ............................................................................................................................ 139
圖4-56:MP-BL15 在100 個結構之中四種主要的螺旋摺疊結構,其骨
幹的疊圖。 ....................................................................................................................... 140
圖4-57:20 個最低能量結構的Ramachandran plot 圖。 ........................ 141
圖5-1:MP-B1-13、MP-B 與MP-BL15 的隨著溫度變化的α-helix 含量
(%)。 ................................................................................................................................... 147
圖5-2:C 末端胺基跟其他殘基之間的氫鍵長度。 ................................... 150
圖5-3:MP-B-COO-沒有尾端胺基與其他殘基之間的氫鍵。 .............. 151
圖5-4:滯留係數與HPLC 滯留時間的關係圖。 ....................................... 156
圖5-5:HPLC 滯留時間與疏水性的關係圖。 .............................................. 156
圖5-6:胜肽的兩親性示意圖。 ........................................................................... 158
圖5-7:MP-BL15 每個殘基的次序參數 (S2)。 .............................................. 163
圖5-8:MP-BL15 的假想的雙體模型。 .............................................................. 163
表目錄
表1-1:重要的類澱粉蛋白疾病及相關的蛋白質。 .............................. 7
表2-1:CD 光譜中多胜肽的五種不同二級結構之特定吸收波長。 . 22
表2-2:弛緩參數與光譜密度函數之間的關係。 ................................ 41
表2-3:Model 1 ~ 5 所對應的的動力學參數。 ................................... 44
表3-1:合成時所設定的活化、偶合、去保護時間。 ........................ 52
表3-2:純化樣品時HPLC 的梯度設定。 .......................................... 54
表3-3:圓二色旋光光譜儀的實驗參數。 ............................................ 56
表3-4:MP-B1-13 在30% TFE-d3 / 70% H2O,310 K 的參數設定。 .. 61
表3-5:MP-B 在30% TFE-d3 / 70% H2O,310 K 的參數設定。 ...... 61
表3-6:MP-BL15 在30% TFE-d3 / 70% H2O,310 K 的參數設定。 ... 62
表3-7:MP-B1-13 在30% TFE-d3 / 70% H2O,310 K 弛緩實驗的參數
設定。 ....................................................................................................... 62
表3-8:MP-B在30% TFE-d3 / 70% H2O,310 K 弛緩實驗的參數設定。
................................................................................................................... 63
表3-9:MP-BL15 在30% TFE-d3 / 70% H2O,310 K 弛緩實驗的參數設
定。 ........................................................................................................... 63
表3-10:T1 和T2 的延遲時間。 ............................................................ 64
表3-11:mfinput 變數。 ........................................................................ 69
表3-12:實驗溫度下所對照的純水黏度值 (cP)。 ............................. 73
表4-1:MP-B1-13、MP-B 和MP-BL15 不同溫度下的α-helix 含量。 . 76
表4-2:MP-B1-13、MP-B、MP-BL15 和MP-B-COO-的半抑制濃度
(IC50)。 ..................................................................................................... 79
表4-3:MPB1-13 的1H 化學位移表。濃度5 mM,在30% TFE-d3 / 70%
H2O 溶液中,pH 3.70,溫度310 K。 ................................................ 115
表4-4:MPB 的1H 化學位移表。濃度3.7 mM,在30% TFE-d3 / 70%
H2O 溶液中,pH 4.08,溫度310 K。 ................................................ 116
表4-5:MPBL15,濃4 mM,在30% TFE-d3 / 70% H2O 溶液中,pH 3.75,
溫度310 K 時的1H 化學位移表。 ...................................................... 117
表4-6:20 種常見的胺基酸在無序纏繞結構下,Hα 的化學位移範圍。
................................................................................................................. 118
表4-7:MP-B1-13、MP-B 和MP-BL15 的13Cα 化學位移表。在30% TFE-d3
/ 70% H2O 溶液中,溫度310 K。 ....................................................... 125
表4-8:MP-B1-13 在30% TFE-d3 / 70% H2O 的溶液中,各溫度下的擴
散系數 (D)、溶液黏度 (η) 及分子量。 ............................................ 133
表4-9:MP-B 在30% TFE-d3 / 70% H2O 的溶液中,各溫度下的擴散
系數 (D)、溶液黏度 (η) 及分子量。 ................................................ 134
表4-10:MP-BL15 在30% TFE-d3 / 70% H2O 的溶液中,各溫度下的擴
散系數 (D)、溶液黏度 (η) 及分子量。 ............................................ 135
表4-11:MP-B1-13、MP-B 和MP-BL15 和MP-B-COO-經XPLOR 計算
後的100 個結構統計表。 .................................................................... 142
表4-12:MP-B1-13、MP-B 和MP-BL15 的20 個最低能量結構的RMSD
值 (A )。 ................................................................................................. 142
表4-13:MP-B1-13 在30% TFE-d3 / 70% H2O,310 K 的弛緩參數R1、
R2、NOE 和次序參數S2。 ................................................................... 144
表4-14:MP-B 在30% TFE-d3 / 70% H2O,310 K 的弛緩參數R1、R2、
NOE 和次序參數S2。 ........................................................................... 145
表4-15:MP-BL15 在30% TFE-d3 / 70% H2O,310 K 的弛緩參數R1、
R2、NOE 和次序參數S2。 ................................................................... 146
表5-1:比較MP-B1-13 和MP-B 在283 K 和310 K 的dNN(i, i+1) NOE
訊號。 ..................................................................................................... 148
表5-2:Eisenberg plot 的疏水尺度。此疏水尺度是統合了其他文獻的
結果得到的值。 .................................................................................. 153
表5-3:Fauchere and Dliska 的疏水尺度。 ........................................ 153
表5-4:Whole-Residue 疏水尺度 。從水到POPC 界面的轉移自由能
(free energies of transfer, ΔG (kcal/mol))。 .......................................... 154
表5-5:胺基酸的滯留係數。 .............................................................. 155
參考文獻
1. Ramachandran, G. N. and Sassiekharan, V., Conformation of polypeptides and
proteins. Advan. Prot. Chem. 1968, 23, 283-437.
2. Chothia, C., The nature of the accessible and buried surfaces in proteins, J. Mol.
Biol. 1976, 105, 1-12.
3. Christian, B. A., Principles that govern the folding of protein chains. Science.
1973, 181, 223-230.
4. Levinthal, C., How to fold graciously. Mossbauer spectroscopy in biological
systems: proceedings of a meeting held at Allerton house, Monticello, Illinois.
(DeBrunner, J.T.P. and Munck, E. Eds.): University of Illinois press, Illinois,
1969.
5. Levinthal, C., Are there pathways for protein folding. J. Chim. Phys. Phys.-Chim.
Biol. 1968, 65, 44-45.
6. Mirny, L. and Shakhnovich, E., Protein folding theory: from lattice to all-atom
models. Annu. Rev. Biophys. Biomol. Struct. 2001, 30, 361-396.
7. Clementi, C., Nymeyer, H. and Onuchic, J. N., Topological and energetic factors:
what determines the structural details of the transition state ensemble and
'en-route' intermediates for protein folding? An investigation for small globular
proteins. J. Mol. Biol. 2000, 298, 937-953.
8. Yang, S., Domain swapping is a consequence of minimal frustration. Proc. Natl.
Acad. Sci. 2004, 101, 13786-13791.
9. Baldwin, R. L., On-pathway versus off-pathway folding intermediates. Fold Des.
1996, 1, R1-R8.
10. Leopold, P. E., Montal, M. and Onuchic, J. N., Protein folding funnels: a kinetic
approach to the sequence-structure relationship. Proc. Natl. Acad. Sci. 1992, 89,
8721-8725.
11. Dill, K. A., Ozkan, S. B., Shell, M. S. and Weikl, T. R., The protein folding
problem. Annu. Rev. Biophys. 2008, 37, 289-316.
12. Fersht, A. R. and Daggett, V., Protein folding and unfolding at atomic resolution.
Cell 2002, 108, 573-582.
13. Dinner, A. R., Sali, A., Smith, L. J., Dobson, C. M. and Karplus, M.,
Understanding protein folding via free-energy surfaces from theory and
experiment. Trends Biochem. Sci. 2000, 25, 331-339.
14. Doyle, C. M., Rumfeldt, J. A., Broom, H. R., Broom, A., Stathopulos, P. B.,
Vassall, K. A., Almey, J. J and Meiering, E. M., Energetics of oligomeric protein
folding and association. Arch. Biochem. Biophys. 2013, 531, 44-64.
15. Goodsell, D. S. and Olson, A. J., Structural symmetry and protein function. Annu.
Rev. Biophys. Biomol. Struct. 2000, 29, 105-153.
16. Schulz, G. E., The dominance of symmetry in the evolution of homo-oligomeric
proteins. J. Mol. Biol. 2010, 395, 834-843.
17. Ali, M. H. and Imperiali, B., Protein oligomerization: How and why. Bioorg.
Med. Chem. 2005, 13, 5013-5020.
18. Ganz, T., The role of antimicrobial peptides in innate immunity. Integr. Comp.
Biol. 2003, 43, 300-304.
19. Hultmark, D., Steiner, H., Rasmuson, T. and Boman, H. G., Insect immunity.
Purification and properties of three inducible bactericidal proteins from
hemolymph of immunized pupae of Hyalophora cecropia. Eur. J. Biochem. 1980,
106, 7-16.
20. Wimley, W. C., Describing the mechanism of antimicrobial peptide action with
the interfacial activity model, ACS Chem. Biol. 2010, 5, 905-917.
21. Lehrer, R. I., Lichtenstein, A. K. and Ganz, T., Defensins: antimicrobial and
cytotoxic peptides of mammalian cells. Annu. Rev. Immunol. 1993, 11, 105-128.
22. Zasloff, M., Magainins, a class of antimicrobial peptides from Xenopus skin:
Isolation, characterization of two active forms, and partial cDNA sequence of a
precursor. Proc. Natl. Acad. Sci. 1987, 84, 5449-5453.
23. Habermann E., Buchheim-lnstitute of Pharmacology Justus-Liebig-University
D-6300 Giessen Federal Republic of Germany. Science 1972, 177, 314-322.
24. http://aps.unmc.edu/AP/main.php
25. Tirrell, M. V., Promotion of peptide antimicrobial activity by fatty acid
conjugation. Bioconjugate Chem. 2004, 15, 530-535.
26. Ho, C. L. and Hwang, L. L., Structure and biological activities of a new
mastoparan isolated from the venom of the hornet Vespa basalis. Biochem. J.
1991, 274, 453-456.
27. Yu, K., Relationship between the tertiary structures of mastoparan B and its
analogs and their lytic activities studied by NMR spectroscopy. J. Peptide Res.
2000, 54, 51-62.
28. Scaloni, F., Gianni, S., Federici, L., Falini, B. and Brunori, M., Folding
mechanism of the C-terminal domain of nucleophosmin: residual structure in the
denatured state and its pathophysiological significance, FASEB J. 2009, 23,
2360-2365.
29. Ptitsyn, O. B., Protein folding: general physical model, FEBS Lett. 1981, 131,
197-202.
30. Zagrovic, B., Sorin, E. J. and Pande, V., β-hairpin folding simulations in
atomistic detail using an implicit solvent model, J. Mol. Biol. 2002, 313,
151-169.
31. Ohtomo, Y., Bergman, T., Johansson, B. L., Jornvall, H. and Wahren, J.,
Differential effects of proinsulin C-peptide fragments on Na +, K +-ATPase
activity of renal tubule segments. Diabetologia 1998, 41, 287-291.
32. Patapati, K. K. and Glykos, N. M., Order through disorder: hyper-mobile
C-terminal residues stabilize the folded state of a helical peptide. A molecular
dynamics study, PLoS ONE. 2010, 5, e15290.
33. Fields, P. A., Protein function at thermal extremes: balancing stability and
flexibility, Comp. Biochem. Physiol. A 2001, 129, 417-431.
34. Merrifield, R. B., Solid phase peptide synthesis. I. The synthesis of a
tetrapeptide. J. Am. Chem. Soc. 1963, 85, 2149-2154.
35. Stewart, J. M., Young, J. D., Solid pahse peptide synthesis. San Francisco:
W.H.Freeman, 1969.
36. Valeur, E. and Bradley, M., Amide bond formation: beyond the myth of coupling
reagents. Chem. Soc. Rev. 2009, 38, 606-631.
37. Albericio, F., Solid-Phase Synthesis: A Practical Guide. 1 ed., Boca Raton: CRC
Press, 2000.
38. Sabatino, G., Chelli, M., Brandi, A. and Papini, A. M., Analytical methods for
solid phase peptide synthesis. Curr. Org. Chem. 2004, 8, 291-301.
39. Kelly, S. M., Jess, T. J. and Price, N. C., How to study proteins by circular
dichroism. Biochim. Biophys. Acta. 2005, 1751, 119-139.
40. Rohl, C. A. and Baldwin, R. L., Comparison of NH exchange and circular
dichroism as techniques for measuring the parameters of the helix-coil transition
in peptides. Biochemistry 1997, 36, 8435-8442.
41. Berova, N., Nakanishi, K. and Woody, R. W., Circulardichroism: principles and
applications. Wiley-VCH: New York, 2000.
42. Keeler, J., Understanding NMR spectroscopy. 2nd ed.; Wiley, 2010.
43. Bax, A. and Davis, D. G., Assignment of complex 1H NMR spectra via
two-dimensional homonuclear Hartmann-Hahn spectroscopy. J. Am. Chem. Soc.
1985, 107, 2820-2821.
44. Ernst, R. R., Bodenhausen, G. and Wokaun, A., Principles of nuclear magnetic
resonance in one and two dimensions: oxford science publications, 1990.
45. Jeener, J., Meier, B. H., Bachmann, P. and Ernst, R. R, Investigation of exchange
processes by two‐dimensional NMR spectroscopy. J. Chem. Phys. 1979, 71,
4546-4553.
46. Zuiderweg, E. R. P., Nettesheim, D. G., Edlji, R. P., Mollison, K. W. and Greer, J.,
Secondary structure of complement component C3a anaphylatoxin in solution as
determined by NMR spectroscopy: Differences between crystal and solution
conformations. Proc. Natl. Acad. Sci. USA. 1988, 85, 5036-5040.
47. Wuthrich, K., NMR of proteins and nucleic acids: John Wiley and Sons, Inc.,
1986.
48. Stejskal, E. O. and Tanner J. E., Spin diffusion measurements: spin echoes in the
presence of a time dependent field gradient. J. Chem. Phys. 1965, 42, 288-292.
49. Morris, K. F. and Johnson, C. S., Diffusion-ordered two-dimensional nuclear
magnetic resonance spectroscopy. J. Am. Chem. Soc. 1992, 114, 3141-3142.
50. Price, W. S., Pulsed-field gradient nuclear magnetic resonance as a tool for
studying translational diffusion: part 1. Basic theory. Concepts Magn. Reson.
1997, 9, 299-336.
51. Yao, S., Howlett, G. J. and Norton, R. S., Peptide self-association in aqueous
trifluoroethanol monitored by pulsed field gradient NMR diffusion
measurements. J. Biomol. NMR 2000, 16, 109-119.
52. Jarymowycz, V. A. and Stone, M. J., Fast time scale dynamics of protein
backbones: NMR relaxation methods, applications, and functional consequences.
Chem. Rev. 2006, 106, 1624-1671.
53. Fischer, M. W. F., Majumdar, A. and Zuiderweg, E. R. P., Protein NMR
relaxation: theory, applications and outlook. Prog. Nucl. Magn. Reson. Spectrosc.
1998, 33, 207-272.
54. Abragam, A., Principles of nuclear magnetism. Clarendon press: Oxford, U.K.,
1961.
55. Lipari, G. and Szabo, A., Model-free approach to the interpretation of nuclear
magnetic resonance relaxation in macromolecules. 1. Theory and range of
validity. J. Am. Chem. Soc. 1982, 104, 4546-4559.
56. Lipari, G. and Szabo, A., Model-free approach to the interpretation of nuclear
magnetic resonance relaxation in macromolecules. 2. Analysis of experimental
results. J. Am. Chem. Soc. 1982, 104, 4559-4570.
57. Kay, L. E., Torchia, D. A. and Bax, A., Backbone dynamics of proteins as
studied by nitrogen-15 inverse detected heteronuclear NMR spectroscopy:
application to staphylococcal nuclease. Biochemistry 1989, 28, 8972-8979.
58. Mandel, A. M., Akke, M. and Palmer, A. G., Backbone dynamics of Escherichia
coli ribonuclease HI: correlations with structure and function in an active
enzyme. J. Mol. Biol. 1995, 246, 144-163.
59. Rautenbach, M., Gerstner, G. D., Vlok, N. M., Kulenkampff, J. and Westerhoff,
H. V., Analyses of dose–response curves to compare the antimicrobial activity of
model cationic α-helical peptides highlights the necessity for a minimum of two
activity parameters. Anal. Biochem. 2006, 350, 81-90.
60. Brunger, A. T., X-PLOR manual version 3.1.:Yale University New Haven,
Connecticut, 1992.
61. http://www.thermexcel.com/english/tables/eau_atm.htm
62. 黃詩捐, 利用CD 與NMR 研究Mastoparan-B 在TFE 與SDS 溶液中的結構
與動力學行為. 碩士論文: 淡江大學, 新北市, 2011.
63. Wishart, D. S., Sykes, B. D. and Richards, F. M., The chemical shift index: a fast
and simple method for the assignment of protein secondary structure through
NMR spectroscopy, Biochemistry 1992, 31, 1647-1651.
64. Gautier, R., Douguet, D., Antonny, B. and Drin, G., HELIQUEST: a web server
to screen sequences with specific α-helical properties: Bioinformatics Advance
Access published, 2008.
65. http://heliquest.ipmc.cnrs.fr/cgi-bin/ComputParamsV2.py
66. http://blanco.biomol.uci.edu/mpex/
67. Eisenberg, D., Weiss, R. M., Terwilliger, T. C. and William, W., Hydrophobic
moments and protein structure. Faraday Symp. Chem. Soc. 1982, 17, 109-120.
68. Fauchere, J. and Pliska, V., Hydrophobic parameters {pi} of amino-acid side
chains from the partitioning of N-acetyl-amino-acid amides. Eur. J. Med. Chem.
1983, 8, 369-375.
69. Keller, R. C. A., New user-friendly approach to obtain an Eisenberg plot and its
use as a practical tool in protein sequence analysis. Int. J. Mol. Sci. 2011, 12,
5577-5591.
70. Eisenberg, D., Weiss, R. M. and Terwilliger, T. C., The hydrophobic moment
detects periodicity in protein hydrophobicity. Proc. Natl. Acad. Sci. 1984, 81,
140-144.
71. Meek, J. L., Prediction of peptide retention times in high-pressure liquid
chromatography on the basis of amino acid composition. Proc. Natl. Acad. Sci.
USA 1980, 77, 1632-1636.
72. Guo, D., Mant, C., Taneja, A. K., Parker, J. M. R. and Hodges, R. S., Prediction
of peptide retention times in reversed-phase HPLC: determination of retention
coefficients of amino acid residues of model synthetic peptides. J. Chromatogr. A
1986, 359, 499-517.
73. Lee, C. S., Tung,W. C. and Lin,Y. H., Deletion of the carboxyl-terminal residue
disrupts the amino-terminal folding, self-association, thermal stability of an
amphipathic antimicrobial peptide, J. Pept. Sci. 2014, 20, 438-445.
74. Dathe, M. and Wieprecht, T., Structural features of helical antimicrobial peptides:
their potential to modulate activity on model membranes and biological cells.
Biochim. Biophys. Acta 1999, 1462, 71-87.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信