淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2507201313122400
中文論文名稱 奈米網狀孔隙薄膜的製備暨核殼奈米粒子高分子電解質的合成於 燃料電池質子交換薄膜與薄膜電極組之研究
英文論文名稱 Nano-network porous membrane preparation and core-shell nano-particulate polymeric electrolyte synthesis for application to fuel cell proton exchange membrane and membrane electrode assembly
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系博士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 101
學期 2
出版年 102
研究生中文姓名 林俊良
研究生英文姓名 Chun-Liang Lin
學號 894360063
學位類別 博士
語文別 中文
口試日期 2013-07-09
論文頁數 157頁
口試委員 指導教授-林達鎔
委員-邱文英
委員-鄭廖平
委員-張裕棋
委員-董崇民
委員-余子隆
委員-鄭國忠
中文關鍵字 聚二偏氟乙烯  沉澱聚合  核殼高分子電解質微粒子  薄膜電極組件  離子交換當量 
英文關鍵字 PVDF-HFP  precipitation polymerization  core-shell polyelectrolyte particle  membrane electrode assembly, ionic exchanged capacity 
學科別分類 學科別應用科學化學工程
學科別應用科學材料工程
中文摘要 本研究的工作主要可分成三個部分。第一個部分,PVDF-HFP網狀連續性孔隙形態薄膜,提出探討兩種程序機制:溶劑固態萃取程序與凝膠輔助浸漬沈澱程序。藉由PVDF-HFP與PMMA摻混形成混合非結晶結構的薄膜,經由甲苯溶劑的膨潤與移除PMMA過程,形成奈米微凝膠的分相形態後,隨著PMMA經由甲苯溶劑擴散移除,促使PVDF-HFP分子鏈段結晶沈澱分相,此為溶劑固態萃取程序。PVDF-HFP / DMAc的鑄膜溶液中添加入非溶劑,從高溫環境冷卻至室溫後,產生微結晶構成物理性凝膠化形態,浸漬於水沈澱槽中,溶劑與沈澱溶液相互擴散質傳,抑制液液分相行為與降低結晶速率,高分子以束狀形態網狀交織構成薄膜,此為凝膠輔助浸漬沈澱程序。
第二個部分,沈澱聚合程序合成高分子微粒子程序,使用TMPTA、GMA、AMPS與SSNa等單體,經由單體的反應性與溶解度參數的差異性,在異丙醇與水的共溶劑的反應系統,應用於核殼結構結構的高分子電解質微粒子的製備,藉由調控單體組成比例,以獲得不同粒徑大小與離子交換當量能力的產物。高度交聯結構的核體與殼層自由伸展低交聯度的磺酸官能基分鏈段,提供高分子電解質具備高質子傳導且低醇水溶液膨潤的特性。
第三個部分,藉由前述的兩部分的工作成果進行製備燃料電池中質子交換薄膜(PEM)與薄膜電極模組件(MEA)。研究中,將網狀奈米連續性孔隙結構的PVDF-HFP薄膜的成膜技術,載入高電導性的碳黑,製備多孔結構的高導電性的碳黑高分子複合薄膜;填入殼核結構的高分子電解質微粒子,製備高質子傳導能力的質子交換薄膜(PEM)。PVDF-HFP、殼核結構的高分子電解質微粒子與金屬觸媒混合,塗佈於質子交換薄膜成為高活性觸媒表現的觸媒塗佈薄膜(CCM)。
英文摘要 This research work consists of three parts. The first part concerns the investigation of network porous membrane formation mechanism. In this part, we studied two methods of membrane preparation: the one is “selective extraction of compatible blend film” and the other is “gelation-assited immersion precipitation”. In the former case, the amorphous blend film is swelled by toluene to induce firstly gel phase due to nano-crystal nucleation of PVDF-HFP, and then further dissolution and consecutive extraction of PMMA is followed by recrystallization of PVDF-HFP to form the network structure of porous membrane. In the latter one, the dope containing PVDF-HFP and DMAc was modified by introducing a certain quantity of non-solvent, IPA. The modified solution from high temperature being cooled down to ambient one was cast on a glass plate and let in a closed box. It transformed into gel through PVDF-HFP crystal nucleation due to the presence of non-solvent IPA. The gel plate was then immersed in de-ionized water bath where relatively slow inter-diffusion was undertaken between good and poor solvents. The liquid-liquid demixing was inhibited and slow crystallization constrined between cross-linking points enhance the the precipitation of polymer into wispy network morphology.
In the second part, we investigate the polymeric particles synthesized by photo-initiated precipitation polymerization, where monomers were TMPTA, GMA, AMPS and SSNa, to prepare core-shell polyelectrolyte, According to different reactivity and solubility of monomers in the co-solvent system composed of IPA and water, particle size and ionic exchange capacity (IEC) depend on the feed ratio of monomers. The central core has high cross-linking density, while the shell, kept relatively thin and less cross-linking density, is composed mainly of chains with side-group of sulfonic acid that provides high proton conductivity and low swelling in alcohol and water.
The third part contributes to integrate the results of the two previous parts for the preparation of PEM (proton exchange membrane) and MEA (membrane electrode assembly) of fuel cell. Here, PVDF-HFP and core-shell polyelectrolyte, and carbon black nano-particle loaded with or without Pt catalyst were the principal materials. The network porous structure of carbon black film, which could serve as electron-conducting layer permitting the inlet of fuel, was prepared with PVDF-HFP and carbon black particle. PVDF-HFP and core-shell polyelectrolyte were used to prepare PEM. And three components, PVDF-HFP, Pt loaded carbon black particle, and core-shell polyelectrolyte, were used in the formation of porous and continuously inter-connected phase of each, the most sophisticate structure of catalyst layer. The catalyst coated membrane (CCM), the combination of PEM and catalyst layer, was prepared by forming catalyst layer on PEM. The conductivity of each layer proves to be comparable to commercial one
論文目次 中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 IV
圖目錄 VII
表目錄 X
第一章 研究之背景及目的.............................................................................................1
1-1 背景 ..................................................................................................................1
1-2 目的 ..................................................................................................................1
1-3 研究目標………………………………………………………………….…...2
1-4 研究步驟與方法…….………………………………………………………...2
第二章 網狀奈米連續性孔隙結構的高分子薄膜的製備機制探討.............................4
2-1 簡介與文獻回顧 ..............................................................................................4
2-1-1 浸漬沈澱分相法 .......................................................................................4
2-1-2 摻合膜膨潤萃取誘導結晶分相法 ...........................................................4
2-1-3 凝膠輔助浸漬沈澱分相法 .......................................................................6
2-1-4 高分子溶液凝膠 .......................................................................................6
2-1-5 SAXS分析高分子凝膠............................................................................7
2-2 實驗方法與步驟................................................................................................9
2-2-1藥品 .............................................................................................................9
2-2-2製備流程 ...................................................................................................10
2-2-3實驗設備與檢測儀器 ...............................................................................11
2-3 結果與討論......................................................................................................14
2-3-1 溶劑萃取製備程序 .................................................................................14
2-3-1-1 PVDF-HFP/PMMA摻混薄膜 ..........................................................14
2-3-1-2 PVDF-HFP多孔型薄膜 ...................................................................17
2-3-1-3 PVDF-HFP多孔型薄膜形成機制 ...................................................21
2-3-1-4 不同摻混比萃取後的多孔薄膜.......................................................22
2-3-1-5 熱行為與機械性質分析...................................................................23
2-3-2 凝膠輔助浸漬沈澱程序 ........................................................................28
2-3-2-1 PVDF-HFP/DMAc/IPA相圖 ...........................................................28
2-3-2-2 X-ray光譜分析結構形態 ................................................................29
2-3-2-2-A XRD分析 ................................................................................29
2-3-2-2-B SAXS分析 ...............................................................................31
2-3-2-3 高分子凝膠化機構..........................................................................38
2-3-2-4 PVDF-HFP多孔型薄膜 ..................................................................40
2-3-2-5 凝膠輔助浸漬沈澱程序機制..........................................................43
2-4 結論…………………………………………………………….……………44
2-4-1 溶劑萃取製備程序 ................................................................................44
2-4-2 凝膠輔助浸漬沈澱程序 ........................................................................45
第三章 殼核結構的高分子電解質微粒子製備檢測...................................................46
3-1 簡介與文獻回顧 ...........................................................................................46
3-1-1 高分子微粒子 ........................................................................................46
3-1-2 高分子微粒子製備 ................................................................................47
3-1-3 乳化聚合法 .............................................................................................47
3-1-4 沈澱聚合法 .............................................................................................48
3-1-4-A 沈澱聚合製備微粒子的機制 ........................................................48
3-1-4-B 核殼微粒子的製備 .........................................................................50
3-1-5 製備高分子微粒子的程序控制條件 .....................................................53
3-1-5-A 單體濃度對於製備微粒子的影響 ................................................53
3-1-5-B 溶劑的影響 .....................................................................................54
3-2 實驗方法與步驟 ............................................................................................57
3-2-1 藥品 .........................................................................................................57
3-2-2 製備流程 .................................................................................................59
3-2-3 實驗設備與檢測儀器 .............................................................................60
3-3 結果與討論 ....................................................................................................65
3-3-1 高分子電解質微粒子 .............................................................................65
3-3-2 PTMPTA高分子微粒子 ..........................................................................65
3-3-2-A IPA/Water共溶劑組成比例的影響 ................................................66
3-3-2-B 反應時間的影響 .............................................................................69
3-3-2-C TMPTA濃度的影響 ............................................................................70
3-3-3 PTMPTA共聚合微粒子 ..........................................................................73
3-3-4 紅外線光譜檢測分析 .............................................................................75
3-3-5 殼核結構的高分子電解質微粒子 .........................................................78
3-3-6 一階段式進料沈澱聚合程序 .................................................................79
3-3-6-A TMPTA與AMPS的組成比例的影響 .............................................80
3-3-6-B 單體濃度的影響 .............................................................................84
3-3-7 多階段式進料沈澱聚合程序 .................................................................85
3-3-7-A 不同反應時間的影響 ....................................................................86
3-3-7-B 殼層組成的修飾 .............................................................................86
3-3-8 紅外線光譜分析 .....................................................................................87
3-3-9 滴定檢測 .................................................................................................90
3-3-10 元素分析檢測 .......................................................................................93
3-3-11 熱重量損失分析檢測 ...........................................................................95
3-3-12 P(TMPTA-SSSNa-AMPS)高分子電解質微粒子 ................................97
3-3-12-A PTMPTA-PSS高分子微粒子 .......................................................97
3-3-12-B PTMPTA-PSSA-PAMPS高分子微粒子 ....................................100
3-4 結論 ..............................................................................................................103
第四章 MEA元件的製備與組裝 ..............................................................................105
4-1 簡介與文獻回顧 ..........................................................................................105
4-1-1 燃料電池 ...............................................................................................105
4-1-2 質子交換薄膜燃料電池 .......................................................................106
4-1-3 薄膜電極組件(MEA) ......................................................................107
4-1-4 質子交換薄膜(PEM) ......................................................................109
4-1-5 觸媒塗佈薄膜(CCM) ......................................................................110
4-1-6 氣體擴散薄膜(碳紙/碳布) ..............................................................112
4-2 實驗方法與步驟 ..........................................................................................114
4-2-1 藥品 .......................................................................................................114
4-2-2 製備流程 ...............................................................................................115
4-2-3 實驗設備與檢測儀器 ...........................................................................116
4-3 結果與討論 ..................................................................................................120
4-3-1 疏水性高分子 .......................................................................................120
4-3-1-A PVDF微凝膠體 .............................................................................120
4-3-1-B PVDF-HFP微孔隙薄膜 .................................................................121
4-3-2 氣體擴散薄膜 .......................................................................................124
4-3-2-A 噴塗程序 ......................................................................................124
4-3-2-B 凝膠輔助乾式成膜 ......................................................................127
4-3-3 質子交換薄膜 ......................................................................................130
4-3-3-A 摻混/乾燥成膜 .............................................................................131
4-3-3-B 凝膠輔助乾式成膜 ..................................................................... 134
4-3-4 觸媒塗佈層 ..........................................................................................136
4-4 結論 ..............................................................................................................139
第五章 結論與建議.....................................................................................................140
參考文獻.......................................................................................................................141
附錄...............................................................................................................................146
附錄1 溶劑的溶解度參數表...............................................................................146
附錄2 高分子的溶解度參數表...........................................................................150
附錄3 高分子微粒子製備文獻整理...................................................................151
附錄4 核殼結構的微粒子製備文獻整理...........................................................153
附錄5 作者簡歷輿論文著述..............................................................................155


圖目錄
圖 2-1 不同比例摻混的PVDF-HPF/PMMA薄膜檢測XRD之光譜圖.................14
圖 2-2a 不同比例摻混的PVDF-HPF/PMMA薄膜檢測SXAS之光譜圖………...15
圖 2-2b 不同比例摻混的PVDF-HPF/PMMA薄膜的SAXS光譜,經過Lorentz-corrected Kratky plot數據處理….…………………………………16
圖 2-3 PVDF-HPF/PMMA摻混薄膜中結晶分相的示意圖………………………..17
圖 2-4 不同摻混比例的PVDF-HFP/PMMA薄膜經甲苯萃取的SEM影像……..19
圖 2-5 利用Levesque【48】實驗數據繪製的相圖…………………………………..21
圖 2-6 PVDF-HFP/PMMA摻混薄膜經過萃取程序形成多孔型薄膜示意圖..........22
圖 2-7 PVDF-HFP多孔型薄膜之DSC分析………………………………………..24
圖 2-8 PVDF-HPF多孔型薄膜拉力試驗………………………….……..…………27
圖 2-9 固定不同IPA比率時,高分子濃度與凝膠化溫度與關係圖……………….29
圖 2-10 不同室溫靜置時間的鑄膜溶液的XRD圖譜.................................................30
圖 2-11 PVDF-HFP薄膜的XRD圖譜…………………………………………….....30
圖 2-12 不同凝膠程序時間的鑄膜溶液SAXS圖譜(ln I(q) vs. q2)………………32
圖 2-13 在不同凝膠程序時間的鑄膜溶液的Rg的分佈圖………………………….33
圖 2-14 在不同凝膠程序時間鑄膜溶液的SAXS分析(ln I(q) vs. ln q)……………..34
圖 2-15 在不同凝膠程序時間鑄膜溶液的SAXS分析(I(q)q2 vs. q)……………….35
圖 2-16 PVDF-HFP/DMAc/IPA高分子凝膠溶液結構形態示意圖………………...36
圖 2-17 本實驗中鑄膜溶液中的高分子聚集分相成長的示意圖………………......36
圖 2-18 PVDF-HFP=20wt%時,不同IPA比率下的鑄膜溶液的SAXS圖譜 ……..37
圖 2-19 PVDF-HFP=20wt%時,不同IPA比率下的鑄膜溶液的P(r)的分佈圖 …...38
圖 2-20 高分子溶液系統添加入非溶劑後分相行為的示意圖……………………..39
圖 2-21 高分子鑄膜溶液三成份相圖………………………………………………..40
圖 2-22 不同組成鑄膜溶液製備的多孔型薄膜的SEM影像(低倍率)………....41
圖 2-23 不同組成鑄膜溶液製備的多孔型薄膜的SEM影像(高倍率)…………...41
圖 2-24 右圖為只有局部凝膠時,受到液液分相行為影響產生類球狀聚集
結構;圖為結晶主導的分相的薄膜結構…..……..…………...…………..42
圖 2-25 凝膠化鑄膜溶液進行浸漬沈澱程序的示意圖……………...……………...43
圖 3-1 TMPTA沈澱聚合製備微粒子反應示意圖…..……………………......…....65
圖 3-2 沈澱聚合反應程序示意……………………..….……………..…..………...66
圖 3-3 不同IPA/Water組成比例時,反應前後其溶液狀態的變化………………...67
圖 3-4 增加TMPTA濃度或降低IPA比例時,聚合反應後,反應溶液的
狀態變化示意圖………………………….…..……………………..….…,...68
圖 3-5 不同比例的IPA/water共溶劑的溶解度參數(δt).……………………...…....69
圖 3-6 不同反應時間的樣品於玻璃基材表面乾燥後的SEM影像…….……..…..70
圖 3-7 TMPTA濃度0.16~2.80wt%的83wt%的異丙醇水溶液中反應後狀..……...71
圖 3-8 A13樣品離心分離前(左)後(右)的SEM影像…….…………………..…...71
圖 3-9 不同TMPTA濃度反應溶液聚合後離心分離後產物的SEM影像..…….....72
圖 3-10 單核與多核的微粒子成長後的微粒子形態……….……………….……....73
圖 3-11 不同DVB單體濃度時製備的高分子微粒子的形態……………………...73

圖 3-12 不同莫爾單量比例(nGMA/nTMPTA)的反應溶液製備P(TMPTA-GMA)
微粒子…….……………………………………………………....74
圖 3-13 TMPTA與PTMPTA的紅外線光譜圖………….………………….…..…...75
圖 3-14a 不同反應時間的產物之紅外線光譜圖1…….……………………...……...77
圖 3-14b 不同反應時間的產物之紅外線光譜圖2…….……………………..............77
圖 3-15 本研究製備的高分子電解質結構示意……...…….………………………..79
圖 3-16 P(TMPTA-AMPS)反應示意圖…….…………………………………......….79
圖 3-17 TMPTA濃度固定(0.4wt%),聚合後反應溶液檢測DLS的檢測結果…80
圖 3-18 TMPTA與AMPS沈澱聚合程序反應生成物示意圖……………………...82
圖 3-19 TMPTA/AMPS反應系統,合成殼核結構微粒子的電子顯微鏡影像……83
圖 3-20 IPA=67wt%的反應溶液,不同TMPTA濃度時,反應溶液中不同
AMPS莫爾當量狀態,照光聚合反應後檢測粒徑大小的變化趨勢…….85
圖 3-21 第二階段聚合反應添加PEGDA後,改變殼層結構影響其粒徑大小..…87
圖 3-22 AMPS與PAMPS的紅外線光譜圖………………………………..….........88
圖 3-23 IPA=83wt% ,TMPTA=0.4wt% ,不同RAMPS比例時,反應產物
的紅外線光譜………..…………………………………………………..…..89
圖 3-24 IPA=83wt%,TMPTA=0.4wt%,R=0.4,不t1,加入定量AMPS
離心純化產物(15分鐘時分相)………………………………………...…89
圖 3-25 IPA=83wt%,TMPTA=0.4wt%,反應10分鐘後,加入不同比例
AMPS反應後產物(15分鐘分相)………………………………………..90
圖 3-26 AMPS滴定的濃度檢量線圖…………………………...…………..……......91
圖 3-27 不同反應溶液重量(60g/240g)與TMPTA濃度(0.8wt%/1.2wt%),
添加不同AMPS濃度時,反應後樣品的DLS檢測結果………..……......93
圖 3-28 PTMPTA 樣品TGA檢測重量損失微分圖譜………………………..……..96
圖 3-29 E09~E12樣品TGA檢測重量損失微分圖譜…………………….……...…..96
圖 3-30 SSNa與PSSNa的紅外線光譜圖…………………………………..………..98
圖 3-31 TMPTA/SSNa反應後,產物的FTIR光譜圖……………………..…….....99
圖 3-32 TMPTA/SSNa反應後,副產物的FTIR光譜圖……………………...…....99
圖 4-1 PVDF-HFP的Acetone高分子溶液(4wt%),加入不同比例的IPA …..…122
圖 4-2 不同比例PVDF/PVDF-HFP混合鑄膜溶液,所製備的多孔型薄膜
表面SEM觀測的形態………………….……………………………........123
圖 4-3 不同比例PVDF/PVDF-HFP混合鑄膜溶液,所製備的多孔型薄膜
截斷面SEM觀測的形態……………....……………………………...…..123
圖 4-4 市售碳紙的電子顯微鏡影像………………………………………........…124
圖 4-5 噴塗程序製備多孔型導電薄膜…………………………………………....125
圖 4-6 噴塗程序塗佈XC-72/PVDF(5/5)微凝膠溶液製備成多孔薄膜之
SEM影像………………………………………………………………….126
圖 4-7 市售碳紙與製備多孔型導電碳薄膜的交流阻抗圖譜…………….......…126
圖 4-8 不同添加碳黑比例時,製備的PVDF/PVDF-HFP(2/8)多孔型薄膜
表面SEM觀測形態…………………...………………………………….128
圖 4-9 添加碳黑不同比例(9~36wt%)時,製備的氣體擴散薄膜的交流
阻抗圖譜…………………………………………...………..………….…128
圖 4-10 添加碳黑不同比例(50~75wt%)時,製備的氣體擴散薄膜的交流
阻抗圖譜……………………………………………………………..…....129
圖 4-11 不同添加碳黑比例時,製備的PVDF/PVDF-HFP(2/8)多孔型薄膜
截斷面SEM觀測形態……………………………….……………...…129
圖 4-12 不同薄膜厚度的Nafion薄膜的交流阻抗圖譜………………………..130
圖 4-13 乾燥沈積程序製備PEM程序示意圖………………………………….131
圖 4-14 製備的質子交換薄膜的交流阻抗圖譜……………………….………..133
圖 4-15 製備的質子交換薄膜的上下表面FTIR-ATR光譜……………………133
圖 4-16 製備的質子交換薄膜的交流阻抗圖譜………………………….……..135
圖 4-17 本實驗中製備觸媒層結構示意圖………………………...……………136
圖 4-18 粒徑36 r.nm的高分子電解質微粒子,塗佈後玻璃基材表面的
SEM影像…….…………………………………………………...….…137
圖 4-19 高分子電解質微粒子與碳黑摻混分散後,塗佈後表面的SEM
影像…………………………………………………………………..…138
圖 4-20 高分子電解質微粒子的比率23wt%,塗佈表面的SEM影像…….....138


表目錄
表2-1 不同摻混比例的PVDF-HFP/PMMA薄膜經甲苯萃取的PMMA
移除效率……………………………………………………………………..18
表2-2 不同比例的摻混薄膜PMMA的連續性與分相的比例…………..…….…..20
表2-3 不同摻混比例萃取製備的PVDF-HPF多孔型薄膜之DSC分析的
熔點與結晶…………………………………………………………………..25
表2-4 PVDF-HFP 多孔型薄膜其結晶度的貢獻………………………………….26
表2-5 在不同凝膠程序時間的鑄膜溶液的SAXS分析所得Rg………………….33
表2-6 不同組成鑄膜溶液製備的多孔型薄膜的孔隙度………………….…,……40
表3-1 單體與溶劑的溶解度參數…………………………………………………..69
表3-2 不同反應時間樣品DLS檢測的結果……………………………………….70
表3-3 樣品A10~A13反應後直接量測DLS的結果………………………………72
表3-4 樣品B11~B13離心分離後量測DLS的結果………………………………74
表3-5 TMPTA的紅外線光譜標定特性官能基…………………………………....76
表3-6 不同反應時間產物的紅外線光譜,雙鍵(C=C)與酯基(C=O)訊號峰
之強度(intensity)與面積(area)的比較………………………………………77
表3-7 IPA=83wt%與67wt%,TMPTA=0.4wt%,不同AMPS濃度時,聚合後
反應溶液檢測DLS的檢測結果………………………………………….....81
表3-8 IPA=83wt%,TMPTA=0.4wt%,R=0.4時,第一階段TMPTA不同反應
時間(t1)後,添加AMPS,所製備產物的DLS檢測結果……………………86
表3-9 IPA=83wt%,TMPTA=0.8wt%,RAMPS=0.6,t1= 5min時,第二階段
多添加不同比例的PEGDA,所製備產物的DLS檢測結果……………….87
表3-10 AMPS的紅外線光譜標定特性官能基………………………………..…....88
表3-11 不同TMPTA/AMPS(t1= 0)反應溶液(60g)組成製備的產物滴定
檢測IEC值……………………………………………………………...…...92
表3-12 不同TMPTA/AMPS(t1= 0)反應溶液(240g)組成製備的產物滴定
檢測 IEC值………………………………………………………………….93
表3-13 Sulfanilic Acid、PTMPTA與AMPS之EA檢測值與理論值比較…………..94
表3-14 反應溶液240g,IPA=67wt%,TMPTA=0.8wt%,t1=0mim,一階段
反應不同AMPS濃度(RAMPS = nAMPS/nTMPTA)的產物……………...94
表3-15 E09~E12之EA檢測數據………………………………………………..….95
表3-16 E09~E12之EA數據計算求得Rp…………………………………………..95
表3-17 E09~E12樣品的PTMPTA(381~540℃)與PAMPS(181~380℃)
分子鏈段,分別的裂解損失訊號積分比值與計算求得Rp…………….….97
表3-18 TGA、滴定與EA檢測數據計算求得Rp………………………………......97
表3-19 SSNa的紅外線光譜標定特性官能基…………………………………....…98
表3-20 PA=67wt%,TMPTA=3.2wt%,不同AMPS與SSNa濃度時,
反應後產物的DLS檢測結果……………………………………………..101
表3-21 IPA=67wt%,TMPTA=3.2wt%,不同AMPS與SSNa濃度時,
反應後產物的滴定檢測結果………………………………………………101
表4-1 不同種類的燃料電池的構造與特性………………………………………105
表4-2 製備PEM與摻混的高分子電解質微粒子的IEC………………………..132
表4-3 製備PEM與摻混的高分子電解質微粒子的IEC與阻抗………………..135
表4-4 製備碳黑與高分子電解質微粒子摻混塗佈後的阻抗………………….138
參考文獻 1. F. J. Tsai, J. M. Torkelson, Macromolecules, 1990, 23,775-784.
2. Lin DJ, Chang CL, Lee CK, Cheng LP. Eur Polym J 2006;42:356.
3. Lin DJ, Beltsios K, Chang CL, Cheng LP. J Polym Sci: Polym Phys 2003;41:1578.
4. Gancarz I, Pozniak G, Bryjak M, Tylus W. Eur Polym J 2002;38:1937.
5. Akthakul A, McDonald WF, Mayes AM. J Membr Sci 2002;208:147.
6. Lyngaae-Jorgensen J, Utracki LA. Makromol Chem Macromol Symp 1991;48–49:189.
7. Avgeropoulos GN, Weissert FC, Biddison PH, Bo‥hm GCA. Rubber Chem Technol 1975;49:93.
8. Tsebrenko MV, Razanova NM, Vinogradov GV. Polym Engng Sci 1980;20:1203.
9. Mekhilef N, Verhoogt H. Polymer 1996;37:4069.
10. Tchoudakov R, Breuer O, Narkis M, Siegmann A. Polym Engng Sci 1996;36:1336.
11. Levon K, Marglina A, Patashinsky AZ. Macromolecules 1993;26:4061.
12. Gubbles F, Je’roˆme R, Teyssie’ Ph, Vanlathem E, Deltour R, Calderone A, et al. Macromolecules 1994;27:1972.
13. Mijovic, J.; Sy, J.; Kwei, T. K. Marcromolecules 1997, 30, 3024.
14. T. T. Wang and T. Nishi, Macromolecules, 1977, 10, 421-425.
15. D. C. Douglass, V. J. Mc Brierty, Macromolecules, 1978, 11, 766-773
16. B.R. Hahn, O. Herrmann-Schonherr and J.H. Wendorff, Polymer, 1987, 28, 201.
17. M. Wolf and J. H. Wendorff, Polymer, 1989, 30, 1524-1529.
18. Heng-Huey Yang, Chang Dae Han and Jin Kon Kim, Polymer, 1994, 35, 1503-1511.
19. Hirohisa Yoshida, Hozumi Sasaki, Palash Kanti Bala, Eiko Ito, Polymer, 1995, 36, 4805-4810.
20. Guy Levesque, Sylvie Pimbert, Denis Jouannet, Polymer, 1997, 38,5137-5147.
21. Noureddin Moussaif, Robert Je’roˆme, Macromolecules, 1997, 30, 658-659.
22. L.H.Sperling, introduction to physical polymer science, third ed. Wiley, New York, 2001.
23. Hikmet, R. M.; Callister, S.; Keller, A. Polymer 1989, 30,2118.
24. Berghmans, M.; Thijs, S.; Cornette, M.; Berghmans, H.;Schryver, F. C. D.; Moldenaers, P.; Mewis, J., Macromolecules 1994, 27, 7669.
25. Tanaka, F. Macromolecules 1990, 23, 3784.
26. Tanaka, F. Macromolecules 1990, 23, 3790.
27. Tanaka, F.; Stockmayer, W. H. Macromolecules 1994, 27, 3943.
28. Guenet, J.-M.; Lotz, B.; Wittmann, J.-C. Macromolecules 1985, 18, 420.
29. Domszy, R. C.; Alamo, R.; Edwards, C. O.; Mandelkern, L. Macromolecules 1986, 19, 310.
30. Matsuo, E. S.; Orkisz, M.; Sun, S. T.; Li, Y.; Tanaka, T. Macromolecules 1994, 27, 6791.
31. Burghard, W. R.; Yilmaz, L.; McHugh, A. J. Polymer 1987, 28, 2085.
32. Reuver, J.; Altena, F. W.; Smolders, C. A. J. Polym. Sci., Polym. Phys. 1986, 24, 793.
33. Hsiu-Jung Chiu, Hsin-Lung Chen, Macromolecules 1999, 32, 4969-4974
34. Nojima, S.; Satoh, K.; Ashida, T. Macromolecules 1991, 24, 942.
35. Nojima, S.; Kato, K.; Ono, M.; Ashida, T. Macromolecules 1992, 25, 1922.
36. Hugh O’Neill, William T. Heller, Katherine E. Helton, Volker S. Urban, Elias Greenbaum, J. Phys. Chem. B 2007, 111, 4211-4219.
37. Glatter, O.; Kratky, O. Small-angle X-ray Scattering; Academic Press: London, 1982
38. Wengui Weng, Zheng Li, Alex M. Jamieson, Stuart J. Rowan, Macromolecules 2009, 42, 236-246.
39. Yu. D. Zaroslov, V. I. Gordeliy, A. I. Kuklin, A. H. Islamov, O. E. Philippova, A. R. Khokhlov, G. Wegner, Macromolecules 2002, 35, 4466-4471.
40. P. Jaya Prakash Yadav, A. K. Patra, P. U. Sastry, Binay. K. Ghorai, Pralay Maiti, J. Phys. Chem. B 2010, 114, 11420–11429.
41. Chun-Yu Chen, Shu-Hua Chan, Jian-Yi Li, Kuan-Han Wu, Hsin-Lung Chen, Jean-Hong Chen, Wen-Yao Huang, Macromolecules 2010, 43, 7305–7311.
42. Bourry D, Favis BD. J Polym Sci, Part B: Polym Phys 1998;36: 1889.
43. Saito, H.; Stu‥ hn, B. Macromolecules 1994, 27, 216.
44. Weis C, Leukel J, Borkenstein K, Maier D, Gronski W, Friedrich C, Honerkamp J. Polym Bull 1998;40:235–41.
45. Vinckier I, Laun HM. Rheol Acta 1999;38:274–86.
46. Steinmann S, Gronski W, Friedrich C. Polymer 2001;42:6619–29.
47. Galloway JA, Montminy MD, Macosko CW. Polymer 2002;43: 4715–22.
48. Guy Levesque, Sylvie Pimbert, Denis Jouannet, Polymer, 1997, 38,5137-5147.(27)
49. R. J. Roe, Methods of X-Ray and Neutron Scattering in Polymer Science, New York: Oxford (2000).
50. H.-J. Chiu, H.-L. Chena, J.S. Lin, Polymer, 2001, 42, 5749-5754.
51. R. J. Roe, Methods of X-Ray and Neutron Scattering in Polymer Science, Oxford , New York 2000.
52. G. Porod, O. Glatter, O. Kratky, Small-Angle X-ray Scattering, Academic Press Inc., London, 1980.
53. Guinier, A.; Fournet, G. Small-angle Scattering of X-rays; Wiley, New York, 1955.
54. Kuan-Yin Lin, Da-Ming Wang, and Juin-Yih Lai,Macromolecules,35, 6697-6706 (2002).
55. J. E. Eldridge and J. D. Ferry, J. Phys. Chem., 58, 992 (1954).
56. 羅祥林編著,功能高分子材料,化学工業出版社,2010。
57. Hu Zhenxing, Yang Xiaowei, Liu Junliang, Yan Yuping, Wang Ling, Zeng Yanwei, European Polymer Journal 47 (2011) 24–30.
58. M.I. Redondo, M.V. Garcia, E. Sanchez de la Blanca, M. Pablos, I. Carrillo, M.J. Gonzalez-Tejera, E. Enciso, Polymer 51 (2010) 1728e1736.
59. Xiao-Jun Xua, Fengxi Chen, Polymer 45 (2004) 4801–4810.
60. Jeffrey S. Downey, Geoff McIsaac, Randy S. Frank, Harald D. H. Sto1ver, Macromolecules 2001, 34, 4534-4541.
61. Qing Yan, Yaowen Bai, Zhe Meng, Wantai Yang, J. Phys. Chem. B 2008, 112, 6914–6922.
62. Antonio L. Medina-Castillo, Jorge F. Fernandez-Sanchez, Antonio Segura-Carretero, Alberto Fernandez-Gutierrez, Macromolecules 2010, 43, 5804–5813.
63. I. Koprinarov, A. P. Hitchcock, W. H. Li, Y. M. Heng, H. D. H. Sto1ver, Macromolecules 2001, 34, 4424-4429.
64. Guoliang Li, Gang Liu, E. T. Kang, K. G. Neoh, Xinlin Yang, Langmuir 2008, 24, 9050-9055.
65. K. F. Ni, G. R. Shan, Z. X. Weng, N. Sheibat-Othman, G. Fevotte, F. Lefebvre, E. Bourgeat-Lami, Macromolecules 2005, 38, 7321-7329.
66. Jeffrey S. Downey, Geoff McIsaac, Randy S. Frank, Harald D. H. Sto1ver , Macromolecules 2001, 34, 4534-4541.
67. C. M. Hansen, Solubility in the coatings industry, Sksnd. Tidskr. Faerg. Lack, 17, 69. 1971
68. Stephens, United states patent application publication, US 2006/0228386 A1.
69. George Socrates, Infrared and Raman Characteristic Group Tables and Charts, 3rd ed., John Wiley &sons Lte, 2001.
70. Scott, K.; Taama, W.M.; Argyropoulos, P.; J. Membr. Sci., 2000, 171, 119.
71. Shen, M.; Roy, S.; Kuhlmann, J. W.; Scott, K.; Lovell, K.; Hrsfall, J.A.; J. Membr. Sci., 2005, 251,121.
72. Saarinen, V.; Kallio, T.; Paronen, M.; Tikkanen, P.; Rauhala, E.; Kontturi, K.; Electrochem. Acta, 2005, 50, 3453.
73. 衣寶廉 編著,黄朝榮、林修正 校訂,燃料電池-原理與應用,五南文化事業機構,2009。
74. 黃鎮江 編著,燃料電池,全華圖書公司,2005。
75. 葉宗洸,燃料電池動態電化學反應模式之研究與建立,行政院原子能委員會核能研究所委託研究計畫期末報告, 2005.
76. Young-Gab Chun, Chang-Soo Kim, Dong-Hyun Peck, Dong-Ryul Shin, Journal of Power source, 71 , (1998), 174.
77. S. Y. Cha., W. M. Lee, Journal of Electrochemical Socity, 146, (1999), 4055.
78. Deryn Chu, Rongzhong Jiang, Journal of Power Sources, 80, (1999), 226.
79. V. A. Paganin, E. A. Ticianelli, E. R. Gonzalez, Journal of Applied Electrochemistry, 26, (1996), 197.
80. Jian Zhang, Ge-Ping Yin, Zhen-Bo Wang, Qin-Zhi Lai, Ke-Di Cai, Journal of Power Sources, 165, (2007), 73.
81. Haolin Tang, Shenlong Wang, San Ping Jiang, Mu Pan, Journal of Power Sources, 170, (2007),140.
82. Yan Gao, Gilles P. Robertson, Dae-Sik Kim, Michael D. Guiver, Serguei D. Mikhailenko, Xiang Li, and Serge Kaliaguine, Macromolecules, 40, (2007), 1512.
83. K.B. Wiles, C.M. de Diego, J. de Abajo, J.E. McGrath, Journal of Membrane Science 294, (2007), 22.
84. X.Y. Shang, D. Shu, S.J. Wang, M. Xiao, Y.Z. Meng, Journal of Membrane Science 291, (2007), 140.
85. Zhu Jie, Tang Haolin, Pan Mu, Journal of Membrane Science, 312, (2008), 41.
86. Tang Haolin, Pan Mu, J. Phys. Chem. C, 112, (2008), 11556.
87. Gierke, T. D., Munn, G. E., Wilson, F. C., J. Polym. Sci. Polym. Phys. Ed. 19, (1981), 1687.
88. Xiao Zhang, Andreas Glusen, Ricard Garcia-Valls, Journal of Membrane Science, 276, (2006), 301-307.
89. Qunhui Guo, Peter N. Pintauro, Hao Tang, Sally O’Connor, Journal of Membrane Science, 154, (1999), 175-181.
90. Youngtai Woo, Se Young Oh, Yong Soo Kang, Bumsuk Jung, Journal of Membrane Science, 220, (2003), 31-45.
91. Jeong-Pi Shin, Bong-Jun Chang, Jeong-Hoon Kim, Soo-Bok Lee, Dong Hack Suh, Journal of Membrane Science, 251, (2005), 247-254.
92. K. D. Kreuer, Journal of Membrane Science, 185, (2001), 29-39.
93. Liangliang Sun, Ran Ran, Guixing Wang, Zongping Shao, Solid State Ionics 179, (2008) 960~965.
94. Lee SJ, Mukerjee S, McBreen J, Rho YW, Kho YT, Lee TH., Electrochimca Acta 43, (1998) 3693~701.
95. Wu Xu, Keith Scott, International Journal of Hydrogen Energy 35, (2010) 12029~12037.
96. Kun-Ho Kim , Kwan-Young Lee, International Journal of Hydrogen Energy 35, (2010) 2119~2126.
97. Sasikumar G, Ihm JW, Ryu H., Electrochimca Acta 50, (2004) 601~605.
98. Apichai Therdthianwong, Panuwat Ekdharmasuit, Supaporn Therdthianwong, Energy Fuels 24, (2010) 1191~1196.
99. Liangliang Sun, Ran Ran, Zongping Shao, International Journal of Hydrogen Energy 35, (2010) 2921~2925.
100. Riggs, J. P., Encyclopedia of Polymer Science and Engineering, 2nd ed., Vol. 2, 655-662, 1985.
101. Hussein Gharibi, Mohammad Zhiani, Ali Akbar Entezami, Rasol Abdullah Mirzaie, Mehdi Kheirmand a, Karim Kakaei, Journal of Power Sources 155,138, 2006.
102. Jui-Hsiang Lin, Wei-Hung Chen, Yen-Ju Su, and Tse-Hao Ko, Energy & Fuels, 22, 1200, 2008.
103. S. Bliznakov, Y. Liu, and N. Dimitrov, Langmuir, 25(8), 4760, 2009.
104. Jason M. Tang, Kurt Jensen, Mahesh Waje, Wenzhen Li, Paul Larsen, Kevin Pauley, Zhongwei Chen, Palanisamy Ramesh, Mikhail E. Itkis, Yushan Yan, and Robert C. Haddon, J. Phys. Chem. C, 111, 17901, 2007.
105. Wenzhen Li, Xin Wang, Zhongwei Chen, Mahesh Waje, and Yushan Yan, J. Phys. Chem. B, 110, 15353, 2006.
106. Leela Mohana Reddy and S. Ramaprabhu, J. Phys. Chem. C, 111, 16138, 2007.
107. Khazova, O. A., Mikhailova, A. A., Skundin, A. M., Tuseeva, E. K., Havranek, A., Wippermann, K., Fuel Cells, 2, 99 (2002).


論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-08-06公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-08-06起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信