淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2507201223335300
中文論文名稱 使用田口最佳化法於二維均勻介質柱體逆散射的研究
英文論文名稱 Application of Taguchi’s Optimization Method to The Inverse Scattering of 2D Homogenous Dielectric Cylinder.
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 100
學期 2
出版年 101
研究生中文姓名 李炤賢
研究生英文姓名 Chao-Hsien Lee
電子信箱 gn01135675@hotmail.com
學號 699440268
學位類別 碩士
語文別 中文
口試日期 2012-07-10
論文頁數 75頁
口試委員 指導教授-李慶烈
委員-李慶烈
委員-丘建青
委員-黃建彰
中文關鍵字 差異型演化法  時域逆散射  田口最佳化法 
英文關鍵字 Differential Evolution  Time Domain Inverse Scattering  Taguchi’s Optimization Method 
學科別分類 學科別應用科學電機及電子
中文摘要   本論文首度將田口最佳化方法(Taguchi’s Method)應用於二維介質柱體的逆散射問題。在正散射的分析部分,本研究以時域有限差分法為基礎,至於逆散射則被轉換為最佳化問題以進行求解,並和使用差異型演化法(Differential Evolution, DE)、自我適應之動態差異型演化法(Self-Adaptive Dynamic Differential Evolution, SADDE)求解的結果進行比較。
  為了描述與重建柱體的形狀,在正散射部分,本研究採用傅立葉函數展開(Fourier series expansion),但在逆散射部分則使用仿樣函數展開(cubic spline),如此可確保柱體形狀建構的合理性。最後將時域有限差分法結合田口最佳化法以重建均勻介質柱體,並探討田口最佳化法之特性參數對重建結果的影響。
  田口最佳化法和目前常用的演算法(Algorithm)有很大的不同,後者透過機率(Probability)的概念來完成全域的搜尋;相對的,田口最佳化法則排除機率,而以直交表(Orthogonal Arrays)展現的均勻分布特性,並結合將搜尋範圍不斷地遞減(Range Reduction) 的迭代方式,來執行全域的搜尋以找出最佳解。
  本論文首先將田口最佳化法、差異型演化法與自我適應之動態差異型演化法用九種具不同特性之測試函數與以測試,進行50維、100維、250維等高維度函數的測試,發現田口最佳化法與SADDE分別對不同特性之測試函則展現出優越的特性。之後,當應用在逆散射問題時,田口最佳化法依然展現其優越收斂的特性,然而SADDE則沒能展現其在測試函數上的優越特性。為此,我們可看到針對二維介質柱體的逆散射問題,田口最佳化法所展現的強健性與一致性。

英文摘要 This thesis is the first to apply Taguchi optimization method to inverse scattering problem, for which a two-dimensional dielectric object is considered. The analysis of forward scattering part is based on the finite difference time domain (FDTD) method, while the inverse scattering part is tackled by transforming the problem into an optimization one, of which the Taguchi optimization method is chosen. The reconstructed results are compared with those obtained by Differential Evolution (DE), and Self-Adaptive Dynamic Differential Evolution (SADDE).

To described and reconstructed the shape of the dielectric cylinder, Fourier series expansion is used for the forward scattering part, while the cubic splines are employed for the inverse scattering part. In this way, the objective of shape reconstruction of this study is maintained reasonable. At the end, the FDTD method combined with Taguchi optimization method is applied to reconstruct the cylinder of the homogeneous medium. In addition, the parameter effects of Taguchi optimization method upon the reconstruction results are studied.

Taguchi optimization method is quite different from those statistic methods commonly used for global optimization. The latter utilize the random characteristic to achieve the global searching, while the former, on the contrast, exclude the concept of probability. Taguchi optimization method actually utilize the uniform characteristic of the OA table, and combine with the mechanism of range reduction to achieve the iterative searching in a global way.

In this thesis, the Taguchi optimization method, DE and SADDE are applied to test nine different benchmarked functions, at first. The performances are examined for those with dimensions of 50, 100 and 250, respectively. It is found that Taguchi optimization method, and SADDE exhibit superior performance in the test. Then, when applied to the inverse scattering problem of dielectric cylinders. Taguchi optimization method still exhibit good reconstruction results, while SADDE doesn’t. It is thus conclude that Taguchi optimization method is especially suited for the proposed inverse scattering problem.
論文目次 目錄
中文摘要 III
英文摘要 V
第一章 簡介 1
1.1 研究動機與相關文獻 1
1.2 本研究之貢獻 8
1.3 各章內容簡述 9
第二章 時域有限差分法 10
2.1 馬克斯威爾方程式 10
2.2 馬克斯威爾方程式於FDTD方法中差分離散實現 12
2.2.1 Yee單胞(Yee cell)的空間解析方法與蛙跳式(Leap-frog)時間 步進計算方法 13
2.2.2 FDTD更新方程式 14
2.3 數值色散現象與COURANT穩定準則 15
2.4 吸收邊界條件(ABSORBING BOUNDARY CONDITIONS) 17
第三章 全域最佳化演算法 19
3.1 田口最佳化法(TAGUCHI’S OPTIMIZATION METHOD) 19
3.2 差異型演化法(DIFFERENTIAL EVOLUTION) 24
3.3 自我適應之動態差異型演化法(SELF-ADAPTIVE DYNAMIC DIFFERENTIAL EVOLUTION) 29
3.4 最佳化方法測試 31
第四章 自由空間中二維介質柱體影像重建 47
4.1模擬環境與相關參數設定 47
4.1.1模擬環境配置與參數設定 47
4.1.2 目標函數與最佳化方法搜尋參數 48
4.2最佳化方法重建自由空間中二為非均勻介質柱體影像 49
第五章 結論 65
參考文獻 67















圖目錄
圖2.1 FDTD中二維Yee單胞於TMz模態(左)與TEz模態(右)表示圖 13
圖2.2 FDTD中電磁場計算時序圖 14
圖3.1田口最佳化法流程圖 22
圖3.2 差異型演化法流程圖 25
圖3.3 差異型進化法中突變方法一的示意圖。 27
圖3.4 差異型進化法中突變方法二的示意圖。 28
圖3.5 測試函數函數圖形 31
圖3.6 三種最佳化方法於50-D測試函數收斂特性比較 34
圖3.7 三種最佳化方法於100-D測試函數收斂特性比較 37
圖3.8 三種最佳化方法於250-D測試函數收斂特性比較 41
圖4.1 自由空間中任意形狀介質柱體模擬環境示意圖 47
圖4.2 入射電場波形與頻譜分佈。(a)入射電場時域波形,(b)入射電 
場頻譜分佈 48
圖4.3正確結構重建圖 52
圖4.4差異型演化法 52
圖4.5自我適應之動態差異型演化法 52
圖4.6 (a)田口最佳化法(rr=0.1) 52
圖4.6 (b)田口最佳化法(rr=0.2) 53
圖4.6 (c)田口最佳化法(rr=0.3) 53
圖4.6 (d)田口最佳化法(rr=0.4) 53
圖4.6 (e)田口最佳化法(rr=0.5) 53
圖4.6 (f)田口最佳化法(rr=0.6) 53
圖4.6 (g)田口最佳化法(rr=0.7) 53
圖4.6 (h)田口最佳化法(rr=0.8) 54
圖4.6 (i)田口最佳化法(rr=0.9) 54
圖4.6 (j)田口最佳化法(rr=0.99) 54
圖4.7 TM、DE、SADDE三種最佳化法之比較 54
圖4.8正確結構重建圖 57
圖4.9差異型演化法 57
圖4.10自我適應之動態差異型演化法 57
圖4.11 (a)田口最佳化法(rr=0.1) 57
圖4.11 (b)田口最佳化法(rr=0.2) 58
圖4.11 (c)田口最佳化法(rr=0.3) 58
圖4.11 (d)田口最佳化法(rr=0.4) 58
圖4.11 (e)田口最佳化法(rr=0.5) 58
圖4.11 (f)田口最佳化法(rr=0.6) 58
圖4.11 (g)田口最佳化法(rr=0.7) 58
圖4.11 (h)田口最佳化法(rr=0.8) 59
圖4.11 (i)田口最佳化法(rr=0.9) 59
圖4.11 (j)田口最佳化法(rr=0.99) 59
圖4.12 TM、DE、SADDE三種最佳化法之比較 59
圖4.13正確結構重建圖 62
圖4.14差異型演化法重建圖 62
圖4.15自我適應之動態差異型演化法重建圖 62
圖4.16 (a)田口最佳化法(rr=0.1) 62
圖4.16 (b)田口最佳化法(rr=0.2) 63
圖4.16 (c)田口最佳化法(rr=0.3) 63
圖4.16 (d)田口最佳化法(rr=0.4) 63
圖4.16 (e)田口最佳化法(rr=0.5) 63
圖4.16 (f)田口最佳化法(rr=0.6) 63
圖4.16 (g)田口最佳化法(rr=0.7) 63
圖4.16 (h)田口最佳化法(rr=0.8) 64
圖4.16 (i)田口最佳化法(rr=0.9) 64
圖4.16 (j)田口最佳化法(rr=0.99) 64
圖4.17 TM、DE、SADDE三種最佳化法之比較 64
























表目錄
表3.1 田口直交表OA(18,5,3,2) 23
表3.2 測試函數(benchmark functions)表 32
表3.3 田口最佳化法於測試函數收斂表 46
表3.4 測試函數最佳化方法效能比較表 46
表4.1 均勻介質物體田口最佳化法重建誤差率 52
表4.2多層介質物體田口最佳化法整體重建誤差率 56
表4.3多層介質物體田口最佳化法介電係數1.5的重建誤差率 56
表4.4多層介質物體田口最佳化法介電係數2.5的重建誤差率 56
表4.5多層介質物體田口最佳化法介電係數5.5的重建誤差率 57
表4.6雙層介質物體田口最佳化法整體重建誤差率 61
表4.7雙層介質物體田口最佳化法介電係數1.0的重建誤差率 62
表4.8雙層介質物體田口最佳化法介電係數2.1的重建誤差率 62
參考文獻 [1] F. Cakoni and D. Colton, “Open problems in the qualitative approach to inverse electromagnetic scattering theory,” European Journal of Applied Mathematics, pp. 1–15, 2004.
[2] C.E. Baum, Detection and Identification of Visually Obscured Targets, Taylor and Francis, Philadelphia, Oct. 1998.
[3] B. Borden, Radar Imaging of Airborne Targets, IOP Publishing, Bristol 1999.
[4] X. Li, S. K. Davis, S. C. Hagness, D. W. van der Weide, and B. D. Van Veen, “Microwave imaging via space-time beamforming: Experimental investigation of tumor detection in multilayer breast phantoms,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 8, pp. 1856–1865, Aug. 2004.
[5] Q. Fang, P. M. Meaney, and K. D. Paulsen, “Microwave imaging reconstruction of tissue property dispersion characteristics utilizing multiple-frequency information,” IEEE Transactions on Microwave Theory and Techniques., vol. 52, no. 8, pp. 1866–1875, Aug. 2004.
[6] A. Massa, M.Pastorino, A. Rosani and M. Benedetti “A Microwave Imaging Method for NDE/NDT Based on the SMW Technique for the Electromagnetic Field Prediction,” IEEE Transactions on Instrumentation and Measurement, Vol. 55, No. 1, pp. 240 - 247, Feb. 2006.
[7] O. Mudanyalı, S. Yıldız, O. Semerci, A. Yapar, and I. Akduman, “A Microwave Tomographic Approach for Nondestructive Testing of Dielectric Coated Metallic Surfaces.”, IEEE Geoscience and Remote Sensing Letters, Vol. 5, No. 2, pp. 180 - 184, Apr. 2008.
[8] T. Rubak, O. S. Kim, P. Meincke, “Computational Validation of a 3-D Microwave Imaging System for Breast-Cancer Screening,” IEEE Transactions on Antennas and Propagation, vol. 57, No. 7, Jul. 2009.
[9] M. Klemm, J. A. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, R. Benjamin, “Microwave Radar-Based Breast Cancer Detection: Imaging in Inhomogeneous Breast Phantoms” IEEE Antennas and Wireless Propagation Letters, Vol. 8, 2009.
[10] J. Bourqui, M. Okoniewski, E. C. Fear, “Balanced Antipodal Vivaldi Antenna With Dielectric Director for Near-Field Microwave Imaging.”, IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, Jul 2010.
[11] Moghaddam, and M.; Chew, W.C, “Nonlinear two-dimensional velocity profile inversion using time domain data, ” IEEE Transactions on Geoscience and Remote Sensing, , Vol. 30 , No. 1 , Jan. 1992.
[12] Wenhua Yu, Zhongqiu Peng and Lang Jen, “A fast convergent method in electromagnetic inverse scattering,” IEEE Transactions on Antennas and Propagation, Vol. 44 ,No. 11 , Nov. 1996.
[13] Wenhua Yu and Raj Mittra, “An improved method for the reconstruction of lossy dielectric objects,” Microwave and Optical Technology Letters, Vol. 15, No. 5, August 1997
[14] Milica Popovic’ and Allen Taflove, “Two-Dimensional FDTD Inverse-Scattering Scheme for Determination of Near-Surface Material Properties at Microwave Frequencies,” IEEE Transactions on Antennas Propagation, Vol. 52, No. 9, Spet. 2004
[15] T. Moriyama, Z. Meng, and T. Takenaka, "Forward-backward time-stepping method combined with genetic algorithm applied to breast cancer detection", Microwave and Optical Technology Letters, Vol. 53, No. 2, pp.438-442, 2011.
[16] R. Persico, R. Bernini, and F. Soldovieri, “The Role of the Measurement Configuration in Inverse Scattering From Buried Objects Under the Born Approximation,” IEEE Transactions on Antennas and Propagation, Vol. 53, No.6, pp. 1875-1887, Jun. 2005.
[17] X. Chen, K. Huang and X.-B. Xu, “Microwave imaging of buried inhomogeneous objects using parallel genetic algorithm combined with FDTD method:” Progress In Electromagnetic Research. PIER 53, pp. 283-298, 2005.
[18] ‘A. Massa, D. Franceschini, G. Franceschini, M. Pastorino, M. Raffetto, and M. Donelli, “Parallel GA-Based Approach for Microwave Imaging Applications,” IEEE Transaction on Antennas and Propagation, Vol. 53, No. 10, pp. 3118 - 3127, Oct. 2005.
[19] R A. Wildman and D S. Weile, “Greedy Search And A Hybrid Local Optimization/Genetic Algorithm For Tree-Based Inverse Scattering,” Microwave and Optical Technology Letters, Vol. 50, No. 3, pp. pp. 822-825, Mar. 2008.
[20] A. Saeedfar, and K. Barkeshli, “Shape reconstruction of three-dimensional conducting curved plates using physical optics, number modeling, and genetic algorithm, ” IEEE Transaction on Antennas and Propagation, Vol. 54, No. 9, 2497-2507, Sep. 2006.
[21] A. Semnani, I.T. Rekanos, M. Kamyab, T.G. Papadopoulos, “Two-Dimensional Microwave Imaging Based on Hybrid Scatterer Representation and Differential Evolution,” IEEE Transaction on Antennas and Propagation, Vol. 58, No. 10, pp. 3289 - 3298, Oct. 2010.
[22] A. Qing, “Dynamic differential evolution strategy and applications in electromagnetic inverse scattering problems,” IEEE Transactions on Geoscience and Remote Sensing, Vol 44, Issue 1, pp. 116 – 125, Jan. 2006
[23] K. A. Michalski, “Electromagnetic Imaging of Circular-Cylindrical Conductors and Tunnels Using A Differential Evolution Algorithm,” Microwave and Optical Technology Letters, Vol. 27, No. 5, pp. 330 - 334, Dec. 2000.
[24] I. T. Rekanos, “Shape Reconstruction of a Perfectly Conducting Scatterer Using Differential Evolution and Particle Swarm Optimization,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 46, No. 7, pp. 1967-1974, Jul. 2008.
[25] A. Semnani and M. Kamyab, “An Enhanced Hybrid Method for Solving Inverse Scattering Problems,” IEEE Transactions on Magentics, Vol. 45, No. 3, pp. 1534-1537, Mar. 2009.
[26] G. Franceschini, M. Donelli, R. Azaro and A. Massa, “Inversion of Phaseless Total Field Data Using a Two-Step Strategy Based on the Iterative Multiscaling Approach,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No.12, pp. 3527-3539, Dec. 2006.
[27] M. Donelli and A. Massa, ”Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers” IEEE Transactions on Microwave Theory and Techniques Vol. 53, Issue 5, pp.1761 – 1776, May 2005.
[28] T. Huang and A. S. Mohan,” Application of particle swarm optimization for microwave imaging of lossy dielectric objects” IEEE Transaction on Antennas and Propagation, Vol. 1B, pp.852 – 855, 2005.
[29] M. Donelli, G.. Franceschini, A. Martini and A. Massa,” An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems” IEEE Transactions on Geoscience and Remote Sensing, Vol 44, Issue 2, pp.298 – 312, Feb. 2006.
[30] M. Donelli, D. Franceschini, P. Rocca and A. Massa,” Three-Dimensional Microwave Imaging Problems Solved Through an Efficient Multiscaling Particle Swarm Optimization” IEEE Transactions on Geoscience and Remote Sensing, Vol 47, No. 5, pp.1467 – 1481, May. 2009.
[31] Y. Xia, G. Feng and J. Wang, “A Novel Recurrent Neural Network for Solving Nonlinear Optimization Problems With Inequality Constraints”, IEEE Transactions on Neural Network, Vol. 19, No. 8, pp. 1340 – 1353, Aug. 2008.
[32] A. Awada, B. Wegmann, I. Viering, and A. Klein, ” Optimizing the Radio Network Parameters of the Long Term Evolution System Using Taguchi’s Method”, IEEE Transactions on vehicular technology, Vol. 19, No. 8, pp. 3825-3839, Oct. 2011.
[33] M. Ashabani, Y. A.-R. I. Mohamed, and J. Milimonfared, “Optimum Design of Tubular Permanent-Magnet Motors for Thrust Characteristics Improvement by Combined Taguchi–Neural Network Approach” IEEE Transactions on Magnetics, Vol. 46, No. 12, pp. 4092-4100, Dec. 2010.
[34] J. H. Ko, J. K. Byun, J. S. Park, and H. S. Kim, “Robust Design of Dual Band/Polarization Patch Antenna Using Sensitivity Analysis and Taguchi's Method” IEEE Transactions on Magnetics, Vol. 47, No, 5, pp. 1258-1262, May 2011.
[35] J. C. Y. Huang," Reducing Solder Paste Inspection in Surface-Mount Assembly Through Mahalanobis–Taguchi Analysis", IEEE Transactions on Electronics Packaging Manufacturing, Vol. 33, No. 4, pp. 265-274, Oct. 2010
[36] A. G. Ramm, “Uniqueness result for inverse problem of geophysics: I,” Inverse Problems, Vol. 6, pp. 635-641, Aug.1990.
[37] V. Isakov, “Uniqueness and stability in multidimensional inverse problems,” Inverse Problems, Vol. 9, pp. 579–621, 1993.
[38] O. M. Bucci and T. Isernia, “Electromagnetic inverse scattering: Retrievable information and measurement strategies,” Radio Sci., Vol. 32, pp. 2123–2138, Nov.–Dec. 1997.
[39] D. Colton and L. Paivarinta, “The uniqueness of a solution to an inverse scattering problem for electromagnetic waves,” Arc. Ration. Mech. Anal., Vol. 119, pp. 59–70, 1992.
[40] S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, “A new methodology based on an iterative multiscaling for microwave imaging,” IEEE Transactions on Microwave Theory and Techniques, Vol. 51, no. 4, pp. 1162-1173, Apr. 2003..
[41] M. Bertero and E. R. Pike, Inverse Problems in Scattering and Imaging, ser. Adam Hilger Series on Biomedical Imaging. Bristol, MA: Inst. Phys., 1992.
[42] A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems. New York: Springer-Verlag, 1996.
[43] A. M. Denisov, Elements of Theory of Inverse Problems. Utrecht, The Netherlands: VSP, 1999.
[44] A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,”, IEEE Transactions on Evolutionary Computation, Vol. 3, No. 2, pp.124–141, Jul. 1999.
[45] A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in evolutionary algorithms,”, IEEE Transactions on Evolutionary Computation, Vol. 3, No. 2, pp.124–141, Jul. 1999.
[46] D. S. Weile and E. Michielssen, “Genetic algorithm optimization applied to electromagnetics: a review ,” IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, pp. 343- 353, Mar. 1997.
[47] J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Transactions on Antennas and Propagation, Vol. 52, No. 3, pp. 397–407, Feb. 2004.
[48] P. Rocca, G. Oliveri, and A. Massa,“Differential Evolution as Applied to Electromagnetics ,” IEEE Antennas and Propagation Magazine, Vol. 53, No. 1, pp. 38–49, May. 2011.
[49] A. Taflove and S. Hagness, “Compitational Electrodynamics: The Finite-Difference Time-Domain Method,” Artech House, Boston, MA,2000.
[50] C. H. sun, Application of Stochastic Optimization Methods to the Inverse Scattering of 2-D scatterers, 2012.
[51] J. P. Benerger, “A perfectly matched layer for the absorption of electromagnetic waves,”Journal of Computational Physics, vol. 114, pp 185-200, 1994.
[52] Z. S Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as absorbing boundary condition,” IEEE Transactions on Antennas and Propagation, vol. 43, pp 1460- 1463, Dec. 1995.
[53] C. L. Li, C. W. Liu and S. H. Chen, “Optimization of a PML absorber's conductivity profile using FDTD,” Microwave and Optical Technology Letters, vol. 37 no. 5, pp. 69-73 , June 2003.
[54] N. J. A. Sloane, “A library of orthogonal array,” [Online]. Available: http://www.research.att.com/~njas/oadir/.
[55] R. Storn, and K. Price, “Differential Evolution - a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces,” Technical Report TR-95-012, International Computer Science Institute, Berkeley, 1995.
[56] A. Qing, Differential Evolution: Fundamentals and Applications in Electrical Engineering, John Wiley & Sons Inc; 2009.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-08-01公開。
  • 同意授權瀏覽/列印電子全文服務,於2017-08-01起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信