§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2507201104090300
DOI 10.6846/TKU.2011.00906
論文名稱(中文) 一維金屬線結構之腙基吡啶配位雙螺旋銀錯合物
論文名稱(英文) One-Dimensional Metal Wire of Double Helical Silver Complexes with Hydrazone-Pyridyl Ligand
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學學系碩士班
系所名稱(英文) Department of Chemistry
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 99
學期 2
出版年 100
研究生(中文) 何季庭
研究生(英文) Chi-Ting Ho
學號 697160546
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2011-07-13
論文頁數 91頁
口試委員 指導教授 - 王文竹(wjw@mail.tku.edu.tw)
委員 - 林志彪(ijblin@mail.ndhu.edu.tw)
委員 - 呂光烈(lu@chem.sinica.edu.tw)
關鍵字(中) 超分子
銀錯合物
自組裝
螺旋錯合物
腙基
關鍵字(英) Supramolecule
Silver complex
Self-assembly
Helicate
Hydrazone
第三語言關鍵字
學科別分類
中文摘要
在本研究中,合成了亞胺腙基吡啶型配位子L1和L2,其中以L2與Ag(I)所形成的銀錯合物: [Ag9(L2)6]n[(ClO4)8] n  (1)、 [Ag3(L2)2(CH2Cl2)(CH3OH)(H2O)](CF3SO3)3  (2) 、 [Ag9(L2)6]n[(BF4)9] n  (3),對其特性進行研究。

    L2可與不同的銀鹽形成不同幾何構形的錯合物,依據銀鹽陰離子的不同,形成分別為九銀的雙螺旋金屬鏈錯合物和三銀螺旋錯合物這兩種不同的螺旋錯合物。雖然堆疊形式不同,但發現到有共通點在於這些螺旋錯合物的銀–銀距離約為2.85至3.29 Å之間,有明顯的親銀性作用力,再藉著配位子的末端吡啶環的分子間π–π作用力( 3.44 Å )堆疊串接,形成一維無限延伸的螺旋分子陣列。

    錯合物 1、2、3的二維核磁共振光譜 (H-H COSY、NOESY)結果,皆觀察到配位子L2末端的甲基與另一股螺旋單位上的配位子的吡啶環有長距離空間上的作用力,證實L2之銀錯合物在溶液中保持著螺旋結構。由DOSY得到的diffusion coefficient ( D1 = 1.12 × 10-10 m2s-1, 
D2 = 1.58 ×10-10 m2s-1, D3= 1.44 × 10-10 m2s-1 ),及ESI-MS推算出錯合物在溶液中的組成為
[Ag3(L2)2] X3。測量在不同濃度下的錯合物1、2、3的UV-Vis光譜,得知錯合物在溶液態時,沒有聚集的現象產生,與固態結構中觀察到的結果不同。本系列銀錯合物在溶液態的表現大致相似,證實陰離子效應在溶液態中不顯著,但在自組裝過程有很大的影響。

    在研究分子自組裝方面,利用UV-Vis滴定及核磁共振光譜滴定方法,測量以銀鹽滴定配位子的光譜變化,再以SPECFIT計算得知分子的反應機制是以L、AgL、AgL2、Ag2L2、Ag3L2逐步結合而成的。

    固態結構與自組裝反應的實驗結果一致,證明此系列的配位子在與銀形成錯合物時,可自組裝形成穩定的雙螺旋錯合物。
英文摘要
In this research, a series of new ligands (L1 and L2) containing hydrazone and derivative pyridine moiety were synthesized. Three double helical complexes, [Ag9(L2)6](ClO4)8 (1), [Ag3(L2)2(CH2Cl2)(CH3OH)(H2O)](CF3SO3)3  (2), and [Ag9(L2)6](BF4)9  (3) have been prepared from the reactions of L2 with AgX ( X = ClO4-, CF3SO3-, BF4- ) and characterized by X-ray diffraction study. In particular, a strong influence of the counter-anions on the structures of helicates has been observed.

	Two type of polynuclear Ag+ ionic sequences: a continuous one for complex (1), complex (3), and a discontinuous one for complex (2) were observed. The Ag–Ag distances of polycationic Agn+ were observed in a range from 2.85 to 3.29 Å, which suggest the argentophilic interaction. The average distance between the terminal pyridines of each double helix unit is 3.4 Å, which suggest the π−π stacking interaction to form polymeric superstructure.

	The structures and composition of (1), (2) and (3) were examined by NMR method ( H-H COSY, NOESY and DOSY) and ESI-Mass, the results confirmed the double helix is maintained in the solution state. Detailed UV-Vis absorption spectroscopy, and diffusion-ordered spectroscopy ( DOSY ) NMR studies indicate the aggregating species in solution state were no longer exist.

	The self-assembling process and reaction mechanism were studied by NMR and UV-Vis titration. The step-wise and overall ability constant of L、AgL、AgL2、Ag2L2、Ag3L2 were investigated by systematic measurement.

	The results were consistent for the crystal and titration of L2 with AgX. Overall, double helical structure is the most stable conformation of L2 silver complex.
第三語言摘要
論文目次
目錄
中文摘要
英文摘要

第一章	緒論  
1-1	前言                                                                1
1-2	超分子化學                                                          1
1-3	超分子的性質與種類                                                  1
1-4	陰離子效應                                                          3
1-5	超分子應用於分子導線                                                5
1-6	研究構想及設計                                                      7

第二章	實驗 
    2-1   實驗藥品                                                           10
    2-2   光譜量測及實驗方法                                                 10
    2-3   配位子合成                                                         13
    2-4   錯合物合成                                                         17

第三章	合成與鑑定
3-1	L1之合成與鑑定													 19
3-2	L2之合成與鑑定													 20
3-3	Ag complex之合成與鑑定											 22

第四章	固態結構 
    4-1   X-ray 結構解析														 25
       4-1.1  錯合物晶體1, [Ag9(L2)6](ClO4)9									 27
       4-1.2  錯合物晶體2, [Ag3(L2)2](CF3SO3)3 									 32
       4-1.3  錯合物晶體3, [Ag9(L2)6](BF4)9										 36
4-2	三核螺旋錯合物固態結構陰離子效應 									 41
4-3	熱重分析  															 42

第五章	溶液態性質探討
    5-1   超分子的聚集行為													 44
       5-1.1  配位子	L2														 44
       5-1.2  螺旋錯合物	1													 45
       5-1.3  螺旋錯合物	2													 46
5-2   溶液態組成探討														 48
       5-2.1  核磁共振光譜 													 48
       5-2.2  質譜															 50
    5-3   分子自組裝的研究方法												 53
       5-3.1  UV-Vis 滴定&生成常數的測量										 53
       5-3.2  核磁共振光譜滴定												 60
    5-4   螺旋錯合物於溶液態中的陰離子效應									 64
第六章	結論   																 65

參考文獻  														  	 	     66

附錄																 	     69

圖目錄
Figure 1-1. Various common conformations of supramolecular complexes. 2
Figure 1-2. Anion- and solvent-induced formation of spiral Arrays in silver(I) complexes of a
simple terpyridine.
3
Figure 1-3. 4-amp with different counter-anion. 4
Figure 1-4. 5,5’-dimethyl-2,2’-bipyridine with different counter-anion. 5
Figure 1-5. The formation of M-DNA by metal ion binding to B-DNA. 6
Figure 1-6. View of a zig-zag chain of cations in bis(pyridine)silver(I) perchlorate. The
counter-anions were omitted for clarity.
7
Figure 1-7. Ball-and-stick view of the growth molecular structure of [AgOtf(L3)]n. Hydrogen
atoms have been removed for clarity.
7
Figure 1-8
.
Solid state molecular structure of pentanuclear double-helical complex from
Bpy-(HC2H-Bpy)2.
8
Figure 1-9.
Solid state molecular structure of trinuclear double-helical complex from
Py-M-(Bpy)2.
9
Figure 1-10. Solid state molecular structure of trinuclear double-helical complex from
py-hyz-py-hyz-py.
9
Figure 3-1. 1H-NMR of L1 in CDCl3. 20
Figure 3-2. 600 MHz 1H-NMR spectrum of L2 in DMSO-d6. 21
Figure 3-3. 600 MHz 1H-NMR spectrum of [Ag9(L2)6](ClO4)9 in DMSO-d6. 22
Figure 3-4. UV-Vis spectra of L2 ( 2.83 × 10-5 M ) and complex 1 ( 1.37 × 10-5 M )
in 50% DMSO/CH3OH
24
Figure 4-1. Molecular structure of [Ag9(L2)6](ClO4)9. 28
Figure 4-2. ORTEP representation of the central silver coordination sphere of [Ag9(L2)6](ClO4)9. 29
Figure 4-3. Molecular structure of [Ag9(L2)6](ClO4)9 viewed along b axis. 29
Figure 4-4. The motif of [Ag9(L2)6](ClO4)9 consists of three double helicates. 30
Figure 4-5. Angular parameters of the double-helical complex. 30
Figure 4-6. Crystal packing diagram of [Ag9(L2)6](ClO4)9. 31
Figure 4-7. Linear silver arrays molecular structure of [Ag9(L2)6](ClO4)9. 31
Figure 4-8. Molecular structure of [Ag3(L2)2]( CF3SO3)3. 33
Figure 4-9. ORTEP representation of the central silver coordination sphere of
[Ag3(L2)2](CF3SO3)3.
33
Figure 4-10. Molecular structure of [Ag3(L2)2]( CF3SO3)3 viewed along a axis and b axis. 34
Figure 4-11. Crystal packing diagram of [Ag3(L2)2](CF3SO3)3 along c axis. 34
Figure 4-12. Crystal packing diagram of [Ag3(L2)2](CF3SO3)3 along a axis. 35
Figure 4-13. Molecular structure of [Ag9(L2)6](BF4)9. 37
Figure 4-14. ORTEP representation of the central silver coordination sphere of [Ag9(L2)6](BF4)9. 38
Figure 4-15. Molecular structure of [Ag9(L2)6](BF4)9 viewed along b axis. 38
Figure 4-16. The motif of [Ag9(L2)6](BF4)9 consists of three double helicates. 39
Figure 4-17. Angular parameters of the double-helical complex. 39
Figure 4-18. Crystal packing diagram of [Ag9(L2)6](BF4)9 along c axis. 40
Figure 4-19. Linear silver arrays molecular structure of [Ag9(L2)6](BF4)9. 40
Figure 4-20. TGA curve of complex 2. 43
Figure 4-21. TGA curve of crystal complex 2 after methanol diffusion 1st. 43
Figure 4-22. TGA curve of crystal complex 2 after methanol diffusion 2nd. 43
Figure 5-1. Variable-concentration UV-Vis spectra of L2 in 50% DMSO/CH3OH. 44
Figure 5-2a. Variable-concentration UV-Vis spectra of [Ag9(L2)6](ClO4)9 in 50% DMSO/CH3OH
(3.43×10-7~5.49×10-6 M).
45
Figure 5-2b. Variable-concentration UV-Vis spectra of [Ag9(L2)6](ClO4)9 in 50% DMSO/CH3OH
(6.86×10-6~2.74×10-5 M).
45
Figure 5-3. Variable-concentration UV-Vis spectra of complex 2 in CH3OH (1.64 × 10-7~3.94 ×
10-5 M).
46
Figure 5-4. 600 MHz 1H-NMR spectra of L2、[Ag9(L2)6](ClO4)9、[Ag3(L2)2](CF3SO3)3 and
[Ag9(L2)6](BF4)9 in DMSO-d6.
50
Figure 5-5. ESI-MS spectra of crystal of [Ag9(L2)6](ClO4)9 in 20% DMSO/CH3OH. 51
Figure 5-6. ESI-MS spectra of crystal of [Ag3(L2)2](CF3SO3)3 in CH3OH. 52
Figure 5-7. ESI-MS spectra of crystal of [Ag9(L2)6](BF4)9 in 20% DMSO/CH3OH. 53
Figure 5-8. (a) Experiment (b) Calculation UV-Vis spectra of 2.10 × 10-5 M L2 with addition of
0.0-1.6 equivalent AgClO4 in 50% DMSO/CH3OH.
55
Figure 5-9. (a) Variable of observed absorption.
(b) Corresponding speciation of L2 for the spectrophotometric titration with AgClO4
55
in 50%DMSO/CH3OH.
Figure 5-10. (a) Experiment (b) Calculation UV-Vis spectra of 1.74 × 10-5 M L2 with addition of
0.0-1.6 equivalent Ag(CF3SO3) in 50% DMSO/CH3OH.
57
Figure 5-11. (a) Variable of observed absorption.
(b) Corresponding speciation of L2 for the spectrophotometric titration with
Ag(CF3SO3) in 50% DMSO/CH3OH.
57
Figure 5-12. (a) Experiment (b) Calculation UV-Vis spectra of 1.92 × 10-5 M L2 with addition of
0.0-1.6 equivalent AgBF4 in 50% DMSO/CH3OH.
59
Figure 5-13. (a) Variable of observed absorption.
(b) Corresponding speciation of L2 for the spectrophotometric titration with AgBF4
in 50% DMSO/CH3OH.
59
Figure 5-14. 300 MHz 1H-NMR titration spectrum of L2 in DMSO-d6 with AgClO4 in CD3OD
(only the aromatic parts of the spectra are shown).
61
Figure 5-15. 300 MHz 1H-NMR titration spectrum of L2 in DMSO-d6 with Ag(CF3SO3) in
CD3OD (only the aromatic parts of the spectra are shown).
62
Figure 5-16. 300 MHz 1H-NMR titration spectrum of L2 in DMSO-d6 with AgBF4 in CD3OD
(only the aromatic parts of the spectra are shown).
63
表目錄
Table 4-1. Summary of crystal structures. 25
Table 4-2. Crystal Structure Refinement Data for complex 1、2 and 3. 26
Table 5-1. 1H NMR Chemical Shifts for L2 (DMSO-d6 ) 49
參考文獻
參考文獻

1. Lehn, J.-M. Angew. Chem. Int. Ed. Engl. 1988, 27, 89.
2. Bianchi, A.; Bowman-James, K.; Garcia-Espana, E. Supramolecular Chemistry of Anions; John Wiley: New York, 1997.
3. Sauvage, J.-P. Transition Metals in Supramolecular Chemistry; John Wiley: New York, 1999.
4. Schneider, H.-J.; Yatsimirsky, A. Principles and Methods in Supramolecular Chemistry; John Wiley: New York, 2000.
5. Lehn, J.-M. Supramolecular Chemistry, VCH: Weinheim, 1995.
6. Lehn, J.-M. Science 1985, 227, 849-856.
7. Pykkö, P. Chem. Rev. 1997, 97, 597.
8. Janiak, C. J. Chem. Soc., Dalton Trans., 2000, 3885–3896.
9. (a) Berl, V.; Huc, I.; Khoury, R. G.; Krische, M. J.; Lehn, J.-M. Nature 2000, 407, 720. 
  (b) Berl, V.; Huc, I.; Khoury, R. G.; Lehn, J.-M. Chem. Eur. J. 2001, 7, 2798.
  (c) Berl, V.; Huc, I.; Khoury, R. G.; Lehn, J.-M. Chem. Eur. J. 2001, 7, 2810.
10. Constable, E. C. Chem. Ind.(London), 1994, 56–59.
11. (a) Lehn, J.-M. Angew. Chem. Int. Ed. Engl. 1990, 29, 1304.  
   (b) Fabbrizzi, L.; Poggi, A. Chem. Soc. Rev. 1995, 24, 197.
12. (a) Hoss, R.; Vogtle, F. Angew. Chem. Int. Ed. Engl. 1994, 33, 375.
   (b) Constable, E. C.;Smith, D., Chemistry in Britain, 1995, 33.
13. (a) Uppadine, L. H.; Lehn, J.-M.; Angew. Chem. Int. Ed. 2004, 43, 240-243 
(b) Rojo, J.; Romero-Salguero, F. J.; Lehn, J.-M.; Baum, G.; Fenske, D. 
Eur. J. Inorg. Chem. 1999, 1421.
14. Mezei, G..; Kampf, J. W.; Pan, S.; Poeppelmeier, K. R.; Watkins, B.; Pecoraro, V. L.  
Chem. Commun. 2007, 1148–1150.
15. (a) Constable, E. C.; Edwards, A. J.; Martines-Manez, R.; Raithby, P. R. 
J. Chem. Soc. Dalton Trans., 1995, 3253. 
(b) Barley, M.; Constable, E. C.; Corr, S.; McQueen, R. C.; Nutkins, J. C.; Ward, M. D.; 
Drew, M. G. B. J. Chem. Dalton Trans. 1988, 2655.
16. Dong, T.-Y.; Huang, C. H.; Chang, C. K.; Wen, Y. S.; Lee, S. L.; Chen, J. A.; Yeh, W. Y.; Yeh, A.  
   J. Am. Chem. Soc. 1993, 115, 6357.
17. (a) Hannon, M. J.; Painting, C. L.; Plummer, E. A.; Childs, L. J.; Alcock, N. W.
  Chem. Eur. J. 2002, 8, 2225-2238
(b) Lavalette, A.; Tuna, F.; Clarkson, G.; Alcock, N. W.; Hannon, M. J. 
Chem. Commun. 2003, 2666–2667.
18. Feazell, R. P.; Carson, C. E.; Klausmeyer, K. K. Inorg. Chem. 2006, 45, 935-944.
19. Low, H. F.; Renz, A. R.; Klausmeyer, K. K. Polyhedron 2009, 28, 407– 415.
20. Brun, A. M.; Harriman, A. J. Am. Chem. Soc. 1992, 114, 3656-3660.
21. Porath, D.; Bezryadin, A.; de Vries, S.; Dekker, C. Nature 2000, 403, 635-638.
22. (a) Latimer, L. J.; Reid, R. S.; Lee, J. S. Biochem Cell Biol. 1993, 71, 162.
   (b) Aich, P.; Labiuk, S. L.; Tari, L. W.; Delbaere, L. J.; Roesler, W. J.; Falk, K. J.; Steer, R. P.; Lee, J. S. J. Biomol. Struct. Dynam. 2002, 20, 93-98.
23. (a) Pfeil, A.; Lehn, J.-M. J. Chem. Soc., Chem. Commun. 1992, 838-840. 
(b) Fatin-Rouge, N.; Blanc, S.; Pfeil, A.; Rigault, A.; Albrecht-Gary, A.-M.; Lehn, J. M.  Helv. 
Chim. Acta 2001, 84, 1694-1711.
24. Marquis-Rigault, A.; Dupont-Gervais, A.; Van Dorsselaer, A.; Lehn, J.-M.  
Chem. Eur. J. 1996, 2, 1395-1398.
25. Greenwald, M.; Wessely, D.; Goldberg, I.; Cohen, Y. New J. Chem. 1999, 23, 337-344.
26. (a) Serr, B. R.; Andersen, K. A.; Elliott, C. M.; Anderson, O. P. 
Inorg. Chem. 1988, 27, 4499-4504. 
(b) Elliott, C. M.; Derr, D. L.; Ferrere, S.; Newton, M. D.; Liu, Y.-P. 
J. Am. Chem. Soc. 1996, 118, 5221-5228.
27. Chen,C. Y.; Zeng, J. Y.; Lee, H. M. Inorg. Chim. Acta 2007, 360, 21–30.
28. Kammer, S.; Kelling, A.; Baier, H.; Mickler, W.; Dosche, C.; Rurack, K.; Kapp, A.; Lisdat, F.; 
Holdt, H.-J. Eur. J. Inorg. Chem. 2009, 31, 4648-4659.
29. (a) Cheng, C.-C.; Hung, S.-M.; Yeh, C.-Y.; Chang, C.-S.; Wang, W.-J. 
J. Chin. Chem. Soc. 2003, 50, 189-192
   (b) Wang, W.-J.;Wang, Y.-C.; Kao, H.-C. J. Chin. Chem. Soc. 2010, 57, 876-882.
30. 張清森, 淡江大學化研所博士論文
31. 湯上慰, 淡江大學化研所博士論文
32. Lehn, J.-M. Chem. Eur. J. 2007, 13, 59-68.
33. Wester, D.; Palenik, G. J. Inorg. Chem. 1976, 15, 755–761
34. Liu, G.-F.; Dürr K., Puchta R.; Heinemann F. W.; van Eldik R.; Ivanović-Burmazović I. 
   Dalton Trans., 2009, 6292–6295.
35. Sakamoto, M.; Matsumoto, N.; Okawa, H. Bull. Chem. Soc. Jpn. 1991, 64, 691–693.
36. Paolucci, G.; Marangoni, G.; Bandoli, G.; Clemente, D. A. 
J. Chem. Soc., Dalton Trans., 1980, 459.
37. Cheesa, G.; Marangoni, G.; Pitteri, B.; Bertolasi, V.; Ferretti, V.; Gilli, G. 
J. Chem. Soc., Dalton Trans. 1988, 1479.
38. Amb, C. M.; Rasmussen, S. C. J. Org. Chem. 2006, 71, 4696–4699.
39. Brien, K. A.; Garner, C. M.; Pinney, K. G. Tetrahedron 2006, 62, 3663–3666. 
40. Curry, J. D.; Robinson, M. A.; Busch, D. H. Inorg. Chem. 1967, 6, 1570–1574.
41. (a) Pyykk , P. Chem. Rev. 1997, 97, 597– 636.
(b) Bondi, A. J. Phy. Chem. 1965, 68, 441–451.
42. (a) Fernández, E. J.; López-de-Luzuriaga, J. M.; Monge, M.; Rodríguez; M. A. 
Inorg. Chem., 1998, 37, 6002–6006.
(b)Che, C.-M.; Tse, M.-C.; Chan, M. C. W.; Cheung, K.-K.; Phillip, D. L.; Leung, K.-H. 
J. Am. Chem. Soc. 2000, 122, 2464–2468.
    (c)Wang, Q.-M.; Mak, T. C. W. J. Am. Chem. Soc. 2001, 123, 7594–7600.
    (d) Jung, O.-S.; Kim, Y. J.; Lee, Y.-A.; Kang, S. W.; Choi, S. N. 
Crystal Growth & Design, 2004, 4, 23–24.
    (e) Bosch, E.; Barnes, C. L. Inorg. Chem., 2002, 41 , 2543–2547.
    (f) Dobrzańska, L.; G. Raubenheimer, H.; Barbour, L. J. Chem. Commun., 2005, 5050-5052.
    (g) Valencia, L.; Bastida, R.; Macías, A.; Vicente, M.; Pérez-Lourido, P.
New J. Chem., 2005, 29, 424-426.
43. Allouche, L.; Marquis, A.; Lehn, J. M. Chem. Eur. J. 2006, 12, 7520 – 7525.
44. Kishore, R. S. K.; Kalsani, V.; Schmittel M. Chem. Commun., 2006, 3690–3692.
45. Garrett, T. M.; Koert, U.; Lehn, J.-M. J. Phy. Org. Chem. 1992, 5, 529.
46. (a) Gampp, H.; Maeder, M.; Meyer, C. J.; Zuberbuhler, A. D. Talanta 1985, 32, 95–101. 
(b) Gampp, H.; Maeder, M.; Meyer, C. J.; Zuberbuhler, A. D. Talanta 1985, 32, 251–264.
(c) Gampp, H.; Maeder, M.; Meyer, C. J.; Zuberbuhler, A. D. Talanta 1985, 32, 1133–1139. 
(d) Gampp, H.; Maeder, M.; Meyer, C. J.; Zuberbuhler, A. D. Talanta 1986, 33, 943–951.
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信