淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2507201022550800
中文論文名稱 一套線上拍賣之基因式模糊名聲推理方法
英文論文名稱 A Genetic Fuzzy Reputation Inference Method for On-Line Auctions
校院名稱 淡江大學
系所名稱(中) 資訊管理學系碩士班
系所名稱(英) Department of Information Management
學年度 98
學期 2
出版年 99
研究生中文姓名 張鴻文
研究生英文姓名 Hung-Wen Chang
學號 697631413
學位類別 碩士
語文別 中文
口試日期 2010-05-30
論文頁數 50頁
口試委員 指導教授-張昭憲
委員-壽大衛
委員-林至中
中文關鍵字 名聲管理(reputation management)  模糊推理(fuzzy inference)  基因演算法(genetic algorithm)  線上拍賣(online auction) 
英文關鍵字 reputation management  fuzzy inference  genetic algorithm  online auction 
學科別分類 學科別社會科學管理學
學科別社會科學資訊科學
中文摘要 隨著網路的普及化與「宅經濟」的促使之下,網路線上拍賣系統的業績也不斷攀升。以eBay為例,2007年的網拍業務收入為59.7億美元,而在2010年該預估可能將達到88億美元至91億美元,顯示線上拍賣的蓬勃發展。然而,拍賣網站會員人數動輒百萬計,如何協助使用者在下標前挑選合適的賣家便成為重要課題。目前,網拍平台大多使用二元名聲系統(binary reputation system)來管理交易者的名聲,雖然簡單易懂,但很難從中獲得完整的名聲參考資訊。 有鑑於此,學者們紛紛提出各種不同的名聲計算方式,以協助使用者挑選合適賣家。
面對上述問題,本論文發展了一套線上拍賣基因式模糊名聲推理方法-GFRep。方法中同時考量『商品分類相似性』、『評價時間』、『交易金額』與『評價者可信度』等四種因子,並以模糊推理來計算綜合名聲值。為強化模糊規則的效力,我們利用基因演算法來建立模糊規則庫,對規則的後鍵部與模糊變數的歸屬函數進行最佳化。為驗證系統的有效性,我們蒐集eBay網站上實際的交易資料進行實驗,並與三種不同的方法進行比較。實驗結果顯示GFRep在協助買方挑選合適賣家時,能提供比其餘三種方法更合適的建議。
英文摘要 Because of the universal usage of internet, a name "Otaku Economy" appears. An online auction system's sales increases continual. Take the leader of this online auction systems-eBay for instance. The revenues of auction sales are 5.97 billion dollars in 2007, and the estimation revenues of eBay will reach from 8.8 billion dollars to 9.1 billion dollars. The above-mentioned facts indicate that those users who use the online auction system to trade with others are increasing. The most important issue are how to choose an appropriate auctioneer and an auction website's members are tens of thousands that cause the difficulties of management. The auction websites use binary reputation management now to manage the auctioneer's reputation, but still can't offer entire reputation information. Because of the drawbacks of binary reputation, many scholars announce different calculation of reputation to help users choosing the right auctioneer.
In order to help users solving above-mentioned problems, this thesis develop a suit of Genetic Fuzzy Reputation Inference Method- GFRep for On-Line Auctions .To offer more perfect calculation methods, this research think about three factors including "deal-time" ,"deal-amount" and "the credit of dependability". We calculate total reputation value by fuzzy inference. To strengthen the efficiency of fuzzy rules, We use genetic algorithm to create fuzzy rule base optimizing the rule's consequent and fuzzy variable's membership function. To validate the system's effectiveness, we gather the transaction information from eBay. The result reveals that GFRep is more reliable than other three methods.
論文目次 目錄
中文摘要 I
英文摘要 II
目錄 III
圖目錄 V
表目錄 VII
第1章 前言 1
第2章 相關技術與背景知識簡介 4
2.1 線上拍賣現況 4
2.2 模糊理論(FUZZY THEORY) 5
2.3 基因演算法(GENETIC ALGORITHMS) 8
第3章 GFREP-基因式模糊名聲推理方法 13
3.1 名聲值之調整因子 14
3.1.1 交易領域 14
3.1.2 交易金額屬性 15
3.1.3 時間屬性 16
3.1.4 給評者的可信度 17
3.2 使用模糊推理調整二元名聲值 18
3.2.1 模糊變數與其歸屬函數 18
3.2.2 模糊規則資料庫(Fuzzy Rule Base) 22
3.2.3 模糊推論之範例 25
3.3 利用基因演算法最佳化模糊推理 26
第4章 實驗結果與討論 31
4.1 實驗架構說明 31
4.2 實驗環境 33
4.3 實驗結果 34
4.4 討論 37
第5章 結論與未來發展 39
參考文獻 40
附錄A 各種不同DDSR與BINRANGE實驗結果 43

圖目錄
圖 2 1模糊理論流程 6
圖 2 2歸屬函數模型 7
圖 2 3歸屬函數之範例 7
圖 2 4歸屬函數之範例 8
圖 2 5基因演算法流程 9
圖 2 6 單點交配過程 10
圖 2 7 雙點交配過程 11
圖 2 8 字罩交配過程 11
圖 2 9 突變之範例 12
圖 3 1問題陳述之圖例 13
圖 3 2 本研究提出方法之流程圖 14
圖 3 3 交易金額所對應到的交易金錢屬性值 16
圖 3 4 系統模糊設定檔中模糊變數 18
圖 3 5此系統對於模糊模型之命名 19
圖 3 6 設定檔之歸屬函數設定 22
圖 3 7 系統預設之125條模糊規則 24
圖 3 8 模糊推理與解模糊化之範例 26
圖 3 9 遺傳演算法初始族群 27
圖 3 10 適應函數值之演算法表示 30
圖 4 1 EBAY中DETAILED SELLER RATING(DSR)畫面之範例 32
圖 4 2此研究系統模糊設定檔 33

表目錄
表 3 1 物種交配與適應函數值之範例 29
表 4 1 比較二種不同名聲計算方式優劣之可能結果 32
表 4 2 以NIKON分類下之資料進行基因式模糊推理實驗 34
表 4 3 以EBAY網站NIKON分類下所有帳號配對做為測試資料所得之實驗結果 35
表 4 4 以EBAY網站IBM/LENOVO分類下所有帳號配對做為測試資料所得之實驗結果 37
表 6 1 NIKON BINRANGE = 50 43
表 6 2 NIKON BINRANGE = 100 44
表 6 3 NIKON BINRANGE = 150 45
表 6 4 NIKON BINRANGE = 200 46
表 6 5 IBM BINRANGE = 50 47
表 6 6 IBM BINRANGE = 100 48
表 6 7 IBM BINRANGE = 150 49
表 6 8 IBM BINRANGE = 200 50

參考文獻 1. 翁豪箴,”以多屬性相對名聲協助挑選線上拍賣交易對象”,淡江大學資訊管理學系碩士論文,2009年,台北。
2. 洪儀玶,”具早期預警能力之線上拍賣詐騙偵測”,淡江大學資訊管理學系碩士論文,2007年,台北。
3. 蘇木春、張孝德,機器學習:類神經網路、模糊系統及基因演算法則修訂二版,2007年。
4. Banerjee, P., Common value auctions with asymmetric bidder information. Economics Letters 88 (2005) 47–53.
5. Berghel H., Cyberspace 2000: dealing with information overload”, Communications of the ACM 40 (2), 1997, p. 19-24.
6. Bhattacharjee, R., and Goel, A. Avoiding Ballot Stuffing in eBay-like Reputation Systems. ACM SIGCOMM’05 workshops, Aug. 22-26, 2005, pp. 133-137.
7. Brandt, F. Fundamental Aspects of Privacy and Deception in Electronic Auctions. Ph.D. Thesis, 2003, pp. 49~53.
8. Chang, E., Dillon, T., and Hussain, F.K. Trust and Reputation for Service-Oriented Environments: Technologies for Building Business intelligence (Chapter 11). Wiley, May 2007.
9. Chen, A.-S., Liaw, G., and Leung, M. T., auction bidding behavior and information asymmetries: An empirical analysis using the discriminatory auction model framework. Journal of Banking & Finance 27 (2003) 867–889
10. Dellarocas, C. Immunizing online reputation reporting systems against unfair ratings and discrimatory behavior. Proceedings of the second ACM Conference on Electronic Commerce, October 2000.
11. Dellarocas, C. Mechanisms for coping with unfair ratings and discriminatory behaviour in online reputation reporting systems. International conference on Information Systems, December 2000.
12. Dellarocas, C. Analyzing the Economic Efficiency of eBay-like Online Reputation Reporting Mechanisms. ACM EC’01, Oct. 14-17, 2001, pp. 171-179.
13. Dellarocas, C. and Wood, C. A. The Sound of Silence in Online Feedback: Estimating Trading Risks in the Presence of Reporting Bias, Management Science 54(3), March 2008, 460-476.
14. Douglas, A. A. and Luehlfing, M. S., Winner's curse and parallel sales channels—Online auctions linked within e-tail websites. Information & Management, V. 43, (8), December 2006, Pages 919-927
15. eBay Inc., EBAY 2008 Annual Report. http://investor.ebay.com/annuals.cfm, 2009
16. eBay Inc., How Feedbacks Works. http://pages.ebay.com/help/feedback/howitworks.html, 2009
17. Eng, C., Chua H., and Wareham J., Fighting Internet Auction Fraud: An Assessment and Proposal, IEEE Computer, Oct. 2004, pp. 31-37.
18. Fasli, M., Agent Technology for e-Commerce. John Wiley & Sons, Ltd. 2007, page 15.
19. Gigerenzer, G., and Selten, R., Bounded rationality: the adaptive toolbox. MIT Press, 2002.
20. Hung, Yi-Ping. An Early warning System for Fraud Detection on Electronic Auctions”,Master Thesis. Tamkang University, Taiwan, R.O.C., 2007.
21. Huynh, D., Jennings, N. R., and Shadbolt, N. R. Developing an Integrated Trust and Reputation Model for Open Multi-Agent Systems. AAMAS’04 (ACM), pp. 65-74.
22. Kauffman, R. J. and Wood, C. A., The effects of shilling on final bid prices in online auctions. Electronic Commerce Research and Applications vol. 4 (2005) pp. 21-34.
23. Kazem, H., Hasan, Q. and Khan R. Z., Fraud/Privacy Protection in anonymous Auction. The second international conference on Internet monitoring and Protection, 2007 (ICIMP 2007).
24. Mackley, J. R. K., European 3G auctions: Using a comparative event study to search for a winner's curse. Utilities Policy, V. 16 (4), Dec. 2008, pp. 275-283
25. Maes, P., Agents that reduce work and information overload. Communications of the ACM , Volume 37 Issue 7, July 1994, p. 31-41.
26. Maximilien, E. M., and Singh, M. P. Agent-based Trust Model Involving Multiple Qualities. AAMAS’05 (ACM), July 25-29, 2005, Utrecht, Netherlands.
27. Pandit, S., Chau, D.-H., Wang, S., and Faloutsos, C. NetProbe: A Fast and Scalable System for Fraud Detection in Online Auction Networks. WWW 2007, May 8–12, 2007, Banff, Alberta, Canada, pp. 201-210.
28. Schmidt, S., Steele, R., Dillon, T., and Chang, E. Fuzzy Trust Evaluation and Credibility Development in Multi-Agent Systems. Applied Soft Computing, Elsevier, 2007, pp.492-505.
29. Ramchurn, S. D., Jennings, N. R., Sierra, C. and Dodo, L. Devising a trust model for multi-agent interactions using confidence and reputation. Applied Artificial Intelligence, 18:833-852, 2004.
30. Salton, G., and Buckley., C. Term-Weighting Approaches in Automatic Retrieval. Information Processing and Management, vol. 24, no. 5, pp. 513-523, 1988.
31. Song, S.et al., Trusted P2P Transactions with Fuzzy Reputation Aggregation. IEEE Internet Computing, Nov-Dec 2005, pp. 24-34.
32. Yahoo-Kimo, On the display and calculation of feedbacks, http://help.cc.tw.yahoo.com/cp_info.html?id=2402, 2009
33. Yolum, P., and Singh, M. P. Emergent Properties of referral Systems. AAMAS’03, July 14-18, 2003, pp. 592-599.
34. L.A. Zadeh, K.S Fu, K. Tanaka, and M. Shimura. Fuzzy sets and their applications to Cognitive and Decision Processes. Academic Press, New York, 1975.
35. Harmon, P., Genetic Algorithms and Evolutionary Programming, Intelligent Software Strategies, 1994 June, Vol.5, No 6
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-07-26公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-07-26起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信