淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2507200916050000
中文論文名稱 水旋風分離器流場測量與模擬暨新型水旋風分離器之研究
英文論文名稱 Measure and simulation of fluid field in a hydrocyclone and study of a new type hydrocyclone
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 97
學期 2
出版年 98
研究生中文姓名 陳怡任
研究生英文姓名 Yi-Jen Chen
學號 696400612
學位類別 碩士
語文別 中文
口試日期 2009-06-30
論文頁數 125頁
口試委員 指導教授-吳容銘
委員-李篤中
委員-吳永富
委員-鄭東文
委員-黃國楨
中文關鍵字 水旋風  模擬  質點速度量測  計算流體力學 
英文關鍵字 Hydrocyclone  CFD  Simulation  PIV 
學科別分類
中文摘要 本研究採用直徑45 mm之水旋風分離器,使用馬鈴薯澱粉為粉體,分別進行實驗和模擬的分析,實驗方面討論不同進口壓力與溢流管管徑之影響,分析溢流和與底流之粒徑分佈以及分離效率,模擬方面以多相流VOF模式與紊流LES模式模擬空氣核心並分析流場流態,並以質點影像速度儀(PIV)量測技術所得之結果與模擬相互對照,使用實驗數據與數值模擬為基礎,進而發展新樣式之薄膜水旋風分離器。

實驗結果顯示,在各種不同進口壓力下,以薄膜水旋風分離器之分離效果最好。在不同溢流管徑之實驗結果顯示,管徑越大,所產生之空氣柱核心越大,同時分級效率也會變化,在模擬與PIV實驗中,空氣柱之直徑與渦流場流向,雖具有25%之誤差值,但仍有一定水準的相似度,具有一定前瞻性。
英文摘要 This study uses potato starch as particles to realize its classification in a 45 mm diameter hydrocyclone. In the experiment, the effects of variations in feed pressure and overflow diameter on particle size distribution and separation efficiency were analyzed. In the simulation, the air core was simulated successfully by VOF model and LES model. Based on experimental and simulation results, a new kind of hydrocyclone, membrane hydrocyclone was developed.
According to experiment results, The experiment results show that the membrane hydrocyclone has the best separation efficiency in different inlet pressure. For the experiment of different overflow diameter, an increase in diameter result in increase in Air Core, and the efficiency of separation will be changed in the same time. In the simulation and the PIV experiment, even though there has a 25% deviation in Air Core and turbulent flow filed; the results still have accuracy of similarity, this research is still a prospective study.
論文目次 目錄
頁次
中文摘要 Ⅰ
英文摘要 Ⅱ
目錄 Ⅲ
圖表目錄 Ⅶ

第一章 緒論 1
1-1前言 1
1-2 研究動機與目的 3
第二章 文獻回顧 4
2-1水旋風分離器之概述 4
2-1-1水旋風分離器歷史 4
2-1-2 水旋風分離器之簡介與結構 5
2-1-3 水旋風分離器之規格 7
2-1-4 水旋風分離器之特色 8
2-2 水旋風分離器之特殊現象 9
2-2-1魚勾現象 9
2-2-2空氣核心 10
2-2-3 短路流現象 11
2-2-4 循環流 11
2-3水旋風分離器裝置的進展 12
2-4數值計算在水旋風分離器的應用 14
第三章 理論模式與數值方法 19
3-1水旋風分離器之基本理論 19
3-1-1 平衡軌道理論 20
3-1-2無因次群 21
3-2水旋風分離器之參數分析 24
3-2-1 幾何結構 24
3-2-2 物性參數 27
3-2-3 操作參數 28
3-3固體粒子在水旋風分離器中受力分析 32
3-3-1粒子所受之拖曳力 32
3-3-2 兩相流動中粒子的受力分析 34
3-3-3剪應力 37
3-3-4水旋風分離器之離心沉降與一般重力沉降之比較 39
3-4數值模擬計算 41
3-4-1模擬軟體介紹與基本假設 41
3-4-2統御方程式 42
3-4-3流動模型 42
3-4-4邊界、操作條件 46
3-4-5離散化方法 47
3-4-6疊代運算控制參數 48
3-4-7收斂準則 48
3-4-8 網格結構建立 49
第四章 實驗裝置 53
4-1 實驗物料 53
4-2實驗儀器 54
4-3實驗裝置 56
4-4 實驗步驟 64
4-5薄膜資料 68
第五章結果與討論 69
5-1實驗結果 69
5-1-1壓降效應 73
5-1-2溢流管內徑變化之影響 84
5-1-3不同材質之溢流管 88
5-2模擬結果 90
5-2-1不同溢流管內徑的模擬結果 94
5-2-2不同溢流管結構變化模擬結果 95
5-3 PIV與CFD比較 96
5-3-1流場型態比較 96
5-3-2空氣柱形狀與寬度比較 100
5-3-3 VZ方向比較 107
第六章 結論 114
符號說明 116
參考文獻 119
附錄 123


圖表目錄
圖目錄
第二章
Fig. 2- 1 Structure of hydrocyclone(Hsu and Wu, 2008) 6
Fig. 2- 2 Base case for the structure of hydrocyclone (a)long cone;(b)short cone 7
Fig. 2- 3 Fish hook of hydrocyclone 9
第三章
Fig. 3- 1 Axial-velocity profile and Locus of Zero Vertical Velocity 21
Fig. 3- 2 Structure of basis on hydrocyclone 26
Fig. 3- 3 Forced diagram of free setting…………………………………..…….36
Fig. 3- 4 Velocity profile of tree vortex type.(Puprasert et al,2004) 38
Fig. 3- 5 Mesh of hydrocyclone 50
Fig. 3- 6 Define of the flow zone on Gambit 51
第四章
Fig. 4- 1 Size distributions of Potato starch 54
Fig. 4- 2 Lift of pump 55
Fig. 4- 3 Case 1 thin overflow. 57
Fig. 4- 4 Case 2 thick overflow. 58
Fig. 4- 5 Case 3 all membrane overflow. 59
Fig. 4- 6 Case 4 extend plastic overflow. 60
Fig. 4- 7 Case 5 extend membrane overflow. 61
Fig. 4- 8 All equipment of experiment. 63
Fig. 4- 9 Equipment of PIV-1 66
Fig. 4- 10 Equipment of PIV-2 67
第五章
Fig. 5- 1 Flow rate of inlet、underflow、overflow in different pressure. 69
Fig. 5- 2 Characteristic velocity& inlet velocity varies with pressure. 70
Fig. 5- 3 Relationship between Reynold number and pressure drop. 71
Fig. 5- 4 Relationship between Eular number and inlet pressure 72
Fig. 5- 5 Size distribution of under & over flow for case 1 74
Fig. 5- 6 Partial separation efficiency in case 1 of different pressure drop 75
Fig. 5- 7 Size distribution of under & over flow for case 2 76
Fig. 5- 8 Partial separation efficiency in case 2 of different pressure drop 77
Fig. 5- 9 Size distribution of under & over flow for case 3 78
Fig. 5- 10 Partial separation efficiency in case 3 of different pressure drop 79
Fig. 5-11 Size distribution of under & over flow for case 4 80
Fig. 5-12 Partial separation efficiency in case 4 of different pressure drop 81
Fig. 5-13 Size distribution of under & over flow for case 5 82
Fig. 5-14 Partial separation efficiency in case 5 of different pressure drop 83
Fig. 5-15 Partial separation efficiency in case 1&case 2. 84
Fig. 5-16 Eular number of inlet pressure in case 1&case 2. 85
Fig. 5-17 Partial separation efficiency in case 1&case 2. 85
Fig. 5-18 Partial separation efficiency in case 1&case 2. 86
Fig. 5- 19 Partial separation efficiency in case 1&2 87
Fig. 5- 20 Partial separation efficiency in case 4&5 88
Fig. 5- 21 Relationship between Eular number and pressure in case 4&5 89
Fig. 5-22 Volume distribution of air in 0.1~1.5s(case 2,P=0.3 bar) 91
Fig. 5- 23 Distribution (a)pressure (b) volume fraction of air (c) tangential velocity (d) axial velocity 93
Fig. 5- 24 Distribution (a)、(b)axial velocity for case 2、case 1.(c)、(d)volume fraction of air for case 2、case 1.(e)、(f)pressure for case 2、case 1 94
Fig. 5- 25 Distribution (a)、(b)axial velocity for case 4、case 5.(c)、(d)volume fraction of air for case 4、case 5.(e)、(f)pressure for case 4、case 5 95
Fig. 5- 26 y-z velocity of x=0 plane 96
Fig. 5- 27 Velocity Vectors of y&z-direction on CFD 97
Fig. 5- 28 Velocity Vectors of y&z- direction on PIV………………………….. 97
Fig. 5- 29 Compare CFD& PIV Velocity Vectors of y&z- direction at cylinder zone 98
Fig. 5- 30 Compare CFD& PIV Velocity Vectors of y&z- direction at cone zone 99
Fig. 5- 31 CFD Volume fraction of air 100
Fig. 5- 32 CFD Volume fraction of air on cylinder zone 101
Fig. 5- 33 PIV visual on cylinder zone 101
Fig. 5- 34 Compare CFD&PIV on cylinder zone 102
Fig. 5- 35 Measured diameter at random position on CFD&PIV cylinder zone 103
Fig. 5- 36 CFD Volume fraction of air on cone zone 104
Fig. 5- 37 PIV visual on cone zone 104
Fig. 5- 38 Measured diameter at random position on CFD&PIV cone zone 105
Fig. 5- 39 The position of line for CFD & PIV 107
Fig. 5- 40 Velocity z- direction of PIV & CFD for Z=0.03 107
Fig. 5- 41 Velocity z- direction of PIV & CFD for Z=0.04 108
Fig. 5- 42 Velocity z- direction of PIV & CFD for Z=0.05 109
Fig. 5- 43 Velocity z- direction of PIV & CFD for Z=0.06 109
Fig. 5- 44 Velocity z- direction of PIV & CFD for Z=0.07 110
Fig. 5- 45 Velocity z-direction of PIV & CFD for Z=0.08 111
Fig. 5- 46 Velocity z-direction of PIV & CFD for Z=0.09 112
Fig. 5- 47 Velocity z-direction of PIV & CFD for Z=0.10 112
附錄
Fig. A-1 Case 4 &case 5 relation between pressure and flow spilt……………123

Fig. A-2 All case relation between pressure and flow spilt…………………....124

Fig. A-3 All case relation between flow rate and overflow rate……………….125

表目錄
第三章
Table3- 1 Boundary condition of Fluent 47
Table3- 2 Discretization method of Fluent 48
Table3- 3 Under-relaxation Factors of Fluent 48
Table3- 4 Convergence criterion of Fluent 49
Table3- 5 Boundary and physical mean of overflow 52
第四章
Table4- 1 Property of starch 53
Table4- 2 The date of PIV equipment 55
第五章
Table5- 1 Experiment data of pressure in inlet、overflow、underflow. 70
Table5- 2 The PIV&CFD result of measured and deviation on cylinder 103
Table5- 3 The PIV&CFD result of measured and deviation on cone 106

參考文獻 Ahmed, M. M., Ibrahim, G. A., and Farghaly, M. G. (2009) “Performance of a three-product hydrocyclone.” International Journal of Mineral Processing, 91, 34-40.

Bai, Z. -s., Wang, H. -I., and Tu, S. -T. (2009a) “Experimental study of flow patterns in deoiling hydrocyclone.” Minerals Engineering, 22, 319-323.

Bai, Z. -s., Wang, H. -I., and Tu, S. -T. (2009b) “Study of air-liquid flow patterns in hydrocyclone enhanced by air bubbles.” Chemical Engineering and Technology, 32, 55-63.

Bamrungsri, P., Puprasert, C., Guigui, C., Marteil, P., Bréant, P., & Hébrard, G. (2008) “Development of a simple experimental method for the determination of the liquid field velocity in conical and cylindrical hydrocyclones.” Chemical Engineering Research and Design, 86, 1263-1270.

Bhaskar, K. U., Murthy, Y. R., Raju, M. R., Tiwari, S., Srivastava, J. K., and Ramakrishnan, N. (2007) “CFD Simulation and Experimental Validation Studies on hydrocyclone,” Minerals Engineering, 20, 60-71.

Boysan, F., Ayers, W. H., and Swithenbank, J. (1982) “Fundamental Mathematical Modeling Approach to Cyclone Design,” Transactions of the Institution of Chemical Engineers, 60, 222-230.

Da Matta, V. M., and Medronho, R. D. A. (2000) “A New Method for Yeast Recovery in batch Ethanol Fermentations: Filter Aid Filtration Followed by Separation of Yeast from Filter Aid Using Hydrocyclone,” Bioseparation, 9, 43-53

Delgadillo, J. A., and Rajamani, R. K. (2005) “Hydrocyclone Modeling: Large Eddy Simulation CFD Approach,” Minerals amd Metallurgical Processing, 22, 225-232.

Duggins, R. K., and Frith, P. C. W. (1987) “Turbulence Anisotropy in Cyclones,” Filtration and Separation, 24, 394-397.

Dyakowski, T., and Williams, R. A. (1993) “Modelling Turbulent Flow Within a Small-Diameter Hydrocyclone,” Chemical Engineering Science, 48, 1143-1152.

Fluent (2005) “Fluent 6.2 User's Guide,” FLUENT, Inc., Lebanon, New Hampshire, USA

Frachon, A. M., and Cilliers, J. J. (1999) “A General Model for Hydrocyclone Partition Curves,” Chemical Engineering Journal, 73, 53-59.

Gupta, R., Kaulaskar, M. D., Kumar, V., Sripriya, R., Meikap, B. C., & Chakraborty, S. (2008) “Studies on the understanding mechanism of air core and vortex formation in a hydrocyclone.” Chemical Engineering Journal, 144, 153-166.

Harrison, S.T.L., and Cilliers, J. J.(1997) “The Use of Mini-Hydrocyclones for Differential Separations within Mineral Slurries Subjected to Bioleaching,” Minerals Engineering, 10, 529-535

Hoekstra, A. J., Derksen, J. J., and Van Den Akker, H. E. A. (1999) “An Experimental and Numerical Study of Turbulent Swirling Flow in Gas Cyclones,” Chemical Engineering Science, 54, 2055-2065.

Huang, S. (2005) “Numerical Simulation of Oil-Water Hydrocyclone Using Reynolds-Stress Model for Eulerian Multiphase Flows,” The Canadian Journal of Chemical Engineering, 83, 829-834.

Hsieh, K. T., and Rajamani, R. K. (1991) “Mathematical Model of the Hydrocyclone Based on Physics of Fluid Flow,” AIChE Journal, 37, 735-746.

Kelsall, D. F. (1953) “A Further Study on the Hydraulic Cyclone,” Chemical Engineering Science, 2, 254-272.

Majumder, A. K., Yerriswamy, P., and Barnwal, J. P. (2003) “The ‘Fish-Hook’ Phenomenon in Centrifugal Separation of Fine Particles,” Minerals Engineering, 6, 1005-1007.

Matvienko, O. V., and Dueck, J. (2006) “Numerical Study of the Separation Characteristics of a Hydrocyclone under Various Conditions of Loading of the Solid Phase,” Theoretical Foundations of Chemical Engineering, 40, 203-208.

Nageswararao, K. (2000) “A Critical Analysis of the Fish-Hook Effect in Hydrocyclone Classifiers,” Chemical Engineering Journal, 80, 251-256.

Narasimha, M., Brennan, M., and Holtham, P. N. (2006) “Large eddy simulation of hydrocyclone-prediction of air-core diameter and shape,” International Journal of Mineral Processing, 80, 1-14.

Puprasert, C.,G. Hebrard, L. Lopez and Y. Aurelle, (2004)“Potential of Using Hydrocyclone and Hydrocyclone Equipped with Grit Pot as A Pre-Treatment in Run-Off Water Treament,”Chemical Engineering and Processing,43,67-83

Slack, M. D., Del Porte, S., and Engelman, M. S. (2004) “Designing Automated Computational Fluid Dynamics Modeling Tools for Hydrocyclone Design,” Minerals Engineering, 17, 705-711.

Svarovsky, L. (1984) “Hydrocyclone,” Holt, Rinehart and Winston Ltd, London.

Svarovsky, L. (1990) “Solid-Liquid Separation,” 3rd ed., Butterworths, London

Trawinski, H. F. (1977) “Solid/Liquid Separation Equipment Scale up,” Ed. D. B. Purchas, Uplands Press, England, 241-286.

Wang, B., Chu, K.W., and Yu, A. B. (2007) “Numerical Study of Particle-Fluid Flow in A Hydrocyclone,” Industrial and Engineering Chemistry Research, 46, 4695-4705

Xu, P., Wu, Z., Mujumdar, A. S., and Yu, B. (2009) “Innovative hydrocyclone inlet designs to reduce erosion-induced wear in mineral dewatering processes,” Drying Technology, 27, 201-211.

Yang, G. A. B. and Wakley, W. D. (1994) “Oil-water Separation Using Hydrocyclones: An Experimental Search for Optimum Dimensions,” Oil Gas, 11, 37-50.

Yoshioka, N., and Hotta, Y., (1955) “Liquid Cyclone As A Hydraulic Classifier,” Chemical Engineering Japen, 19(12),623

Yoshioka, H., S., Fukui, K.,and Kobayashi, A. (2004) “Effect of Apex Cone on Particle Classification Performance of Cyclone Separator,” Journal of the Chinese Institute of Chemical Engineers,,35,41-46

任連城、梁政、梁利平和龍道玉 (2005) “過濾式水力旋流器方案設計”,西南石油學院學報,27(1),82-85

李建明 (1997) “水力旋流器固液兩相流動數值模擬及分離機理研究”,博士學位論文,成都四川聯合大學化學工程學院

薛瑋勝 (2004) “水旋風分離器之粉粒體分級機構”, 碩士學位論文,淡江大學化學工程與材料工程學系

呂信毅 (2006) “改進複合型水旋風分離器之分離效率”,碩士學位論文,淡江大學化學工程與材料工程學系

許智淵 (2008) “水旋風分離器之研究與薄膜水旋風分離之發展”,碩士學位論文,淡江大學化學工程與材料工程學系

趙慶國和張明賢 (2003) “水力旋流器分離技術”,化學工業出版社
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-07-30公開。
  • 同意授權瀏覽/列印電子全文服務,於2011-07-30起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信