§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2507200714001000
DOI 10.6846/TKU.2007.00788
論文名稱(中文) 巨分子溶液恆壓過濾行為之探討
論文名稱(英文) Investigation on Filtration Behavior of Macromolecules Solutions in Dead-end Filtration
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 95
學期 2
出版年 96
研究生(中文) 簡吟真
研究生(英文) Yin-Chen Chien
學號 694360123
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2007-06-22
論文頁數 149頁
口試委員 指導教授 - 鄭東文
委員 - 葉和明
委員 - 蔡少偉
關鍵字(中) 恆壓過濾
濾速下降
蛋白質
攪拌
pH值
關鍵字(英) Dead-end filtration
Flux decline
Protein
Stirred
pH value
第三語言關鍵字
學科別分類
中文摘要
本研究以恆壓過濾(dead-end)系統進行探討,使用OMEGA公司所生產之商業化高分子薄膜(1,000及5,000 Da MWCO),就溶液性質、薄膜特性及操作參數等進行過濾實驗,探討在不同操作參數(透膜壓差、濃度、pH值、溶液組成、攪拌速度)下對濾速、阻力與阻隔率的影響,並由理論模式定量本實驗系統的操作條件對阻力值之影響及分析理論濾速與實驗濾速之差異。
在BSA與β-cyclodextrin的混合溶液系統中,薄膜對β-cyclodextrin之阻隔率隨溶液pH值不同而有所改變,且加入攪拌可使阻隔率提高;以MWCO 5k薄膜為例,在攪拌系統下,pH=4.9時,β-cyclodextrin之阻隔率約為50%,而在pH=10時,則只有10%左右之阻隔率,這是因為BSA粒子形成之極化濾餅層緊密度不同所致。當未加入攪拌時,不論1k或5k薄膜,其β-cyclodextrin之阻隔率均近乎於零,但加入攪拌後1k薄膜之阻隔率皆高於90%。顯示改變BSA性質具有對β-cyclodextrin阻隔的效果,但也造成分離選擇性降低。
以滲透壓模式計算理論濾速,可發現理論與實驗濾速之趨勢相符,在高透膜壓差下,理論計算值有明顯緩升之趨勢,但實驗值隨壓力改變之濾速下降程度相當不明顯。這可能是在攪拌系統中所產生之剪應力對BSA產生的濃度極化之移除具有相當良好的效果,使濾速無明顯下降,且滲透壓模式只考慮膜面濃度提高對滲透壓所產生之效應而忽略薄膜結垢對濾速下降之影響,而使理論濾速與實驗濾速無法吻合。
英文摘要
In this study, commercialized polymer membranes(1,000 and 5,000 Da MWCO, OMEGA) were employed in a dead-end filtration system to investigate the effect of operation conditions, solutions and membrane properties on filtration. The solution fluxes, resistance and solute rejection were discussed under various operating parameters such as transmembrane pressure, concentration, pH value, solution composition and stirred velocity. In addition, the calculated filtration resistance by using resistance-in-series model and the predicting flux of BSA solution using the osmotic pressure model had been discussed. 
For BSA and β-cyclodextrin binary solution, the rejection of β-cyclodextrin varies with the pH value, and the rejection with stirring increases. In the case of MWCO 5k membrane, the rejection of β-cyclodextrin is approximately 50% at pH=4.9 and near 10% at pH=10. This is due to the fact that the porosity of the polarization layer of BSA on the membrane surface varies with pH value. No matter 1k or 5k membrane but without stirring, the rejection of β-cyclodextrin is near zero;However, in the stirring system, the rejection of β-cyclodextrin by the 1k membrane is higher than 90%. The result indicates that, the cake property of BSA layer has significant influence on the rejection of β-cyclodextrin, and lead to reducing separation selectivity.
In osmotic pressure model, the trends of theoretical flux agree with experiment flux. At high transmembrane pressures, the theoretical flux apparently reached a plain, while the flux decline tendency was not obvious in the experiment. This is due to the shear stress caused by the stirring system can eliminate the concentration polarization layer of BSA effectively. The osmotic pressure model considers the osmotic pressure caused the concentration polarization layer but neglects the effect of membrane fouling on flux. Therefore, the theoretical flux is higher than the experimental data.
第三語言摘要
論文目次
目錄
圖目錄	IV
表目錄	IXI
第一章 緒論	1
  1.1 前言	1
  1.2 薄膜與模組特性	2
  1.3 薄膜分離技術程序	3
  1.4 濃度極化與結垢現象	6
  1.5 本研究之目的	8
第二章 文獻回顧 													13
  2.1 超過濾之相關研究											13
  2.2 奈米過濾之相關研究 										14
  2.3 蛋白質簡介 													19
    2.3.1 蛋白質之酸鹼性 										20
    2.3.2 蛋白質之等電點 										20
    2.3.3 蛋白質之相關研究 										21
  2.4 影響濾速之因素 												25
  2.5 薄膜過濾機制												27
  2.6 促進薄膜分離之方法											28
  2.7 濾速分析模式 												30
    2.7.1 阻力串聯模式 											31
    2.7.2 膠層極化模式 											32
    2.7.3 滲透壓模式 												34
    2.7.4 改良邊界層阻力模式 									36
第三章 實驗裝置與方法											41
  3.1 實驗裝置														41
  3.2 實驗藥品													 	41
  3.3 實驗步驟														42
  3.4 操作條件 													43
  3.5 分析方法 													44
    3.5.1 分析儀器 												44
    3.5.2 BSA的分析方法與條件 									44
    3.5.3 β-cyclodextrin的分析方法與條件 						45
    3.5.4 阻隔率之計算 											45
  3.6 薄膜清洗 													46
第四章 結果與討論 												49
  4.1 薄膜純水濾速 												49
  4.2 阻隔率測試													49
  4.3 單溶質溶液之過濾行為										50
  4.4 雙溶質溶液之過濾行為										54
  4.5 滲透壓模式 													57
    4.5.1 物性參數	 												59
    4.5.2 濾速估算 												59
第五章 結論  	108
  5.1 單溶質溶液之過濾行為	108
  5.2 雙溶質溶液之過濾行為	109
  5.3 滲透壓模式 	110
  5.4 總結	111
符號說明 	113
參考文獻	114
附錄A 	125
附錄B 	139
附錄C 	141
附錄D 	144




















圖目錄
圖1.1   薄膜分離程序之分類 										10
圖1.2   (a)濾餅過濾及(b)掃流過濾示意圖 							11
圖1.3   薄膜之典型結垢型式										12
圖2.1   蛋白質(胺基酸)的雙極結構圖								20
圖2.2   蛋白質(胺基酸)的帶電性與環境性質之關係圖 				21
圖2.3   薄膜表面離子反應圖										37
圖2.4   提高濾速方法之流程圖									38
圖2.5   膠層極化之濃度層分佈圖 									39
圖2.6   濃度極化造成之滲透壓阻力圖 							39
圖2.7   壓力對濾速之關係圖										40
圖3.1   dead-end型式實驗裝置圖 									47
圖4.1   MWCO 1k 薄膜純水濾速圖								61
圖4.2   MWCO 5k 薄膜純水濾速圖 								61
圖4.3   1k膜不同pH值下之濾速變化圖
(1 kg/m3 BSA,rpm=0) 									62
圖4.4   1k膜在不同pH值下之阻力變化圖
(1 kg/m3 BSA,rpm=0 )										63
圖4.5   5k膜在不同pH值下之濾速變化圖
(1 kg/m3 BSA,rpm=0)										64
圖4.6   5k膜在不同pH值下之阻力變化圖
(1 kg/m3 BSA,rpm=0)										65
圖4.7   1k膜在不同pH值下之濾速變化圖
(1 kg/m3 BSA,rpm=100)									66
圖4.8   1k膜在不同pH值下之阻力變化圖
(1 kg/m3 BSA,rpm=100)									67
圖4.9   5k膜在不同pH值下之濾速變化圖
(1 kg/m3 BSA,rpm=100)									68
圖4.10  5k膜在不同pH值下之阻力變化圖
(1 kg/m3 BSA,rpm=100)									69
圖4.11  1k膜在不同pH值下之濾速變化圖
(3 kg/m3 BSA,rpm=0)										70
圖4.12  1k膜在不同pH值下之阻力變化圖
(3 kg/m3 BSA,rpm=0)										71
圖4.13  5k膜在不同pH值下之濾速變化圖
(3 kg/m3 BSA,rpm=0)										72
圖4.14  5k膜在不同pH值下之阻力變化圖
(3 kg/m3 BSA,rpm=0)										73
圖4.15  1k膜在不同pH值下之濾速變化圖
(3 kg/m3 BSA,rpm=100)									74
圖4.16  1k膜在不同pH值下之阻力變化圖
(3 kg/m3 BSA,rpm=100)									75
圖4.17  5k膜在不同pH值下之濾速變化圖
(3 kg/m3 BSA,rpm=100)									76
圖4.18  5k膜在不同pH值下之阻力變化圖
(3 kg/m3 BSA,rpm=100)									77
圖4.19  1k及5k膜在不同攪拌速度下之濾速變化圖
(1 kg/m3 β-cyclodextrin) 									78
圖4.20  1k及5k膜在不同攪拌速度下之阻力變化圖
(1 kg/m3 β-cyclodextrin)									79
圖4.21  1k及5k膜在不同攪拌速度下之阻隔率變化圖
(1 kg/m3 β-cyclodextrin)									80
圖4.22  1k膜在不同pH值下之濾速變化圖
(1 kg/m3 BSA +1 kg/m3 β-cyclodextrin,rpm=0)				81
圖4.23  1k膜在不同pH值下之阻力變化圖
(1 kg/m3 BSA +1 kg/m3 β-cyclodextrin,rpm=0)				82
圖4.24  1k膜在不同pH值下之阻隔率變化圖
(1 kg/m3 BSA +1 kg/m3 β-cyclodextrin,rpm=0)				83
圖4.25  5k膜在不同pH值下之濾速變化圖
(1 kg/m3 BSA +1 kg/m3 β-cyclodextrin,rpm=0)				84
圖4.26  5k膜在不同pH值下之阻力變化圖
(1 kg/m3 BSA +1 kg/m3 β-cyclodextrin,rpm=0) 				85
圖4.27  5k膜在不同pH值下之阻隔率變化圖
(1 kg/m3 BSA +1 kg/m3 β-cyclodextrin,rpm=0)				86
圖4.28  1k膜在不同pH值下之濾速變化圖
(1 kg/m3 BSA +1 kg/m3 β-cyclodextrin,rpm=100)			87
圖4.29  1k膜在不同pH值下之阻力變化圖
(1 kg/m3 BSA +1 kg/m3 β-cyclodextrin,rpm=100)			88
圖4.30  1k膜在不同pH值下之阻隔率變化圖
(1 kg/m3 BSA +1 kg/m3 β-cyclodextrin,rpm=100)			89
圖4.31  5k膜在不同pH值下之濾速變化圖
(1 kg/m3 BSA +1 kg/m3 β-cyclodextrin,rpm=100)			90
圖4.32  5k膜在不同pH值下之阻力變化圖
(1 kg/m3 BSA +1 kg/m3 β-cyclodextrin,rpm=100)			91
圖4.33  5k膜在不同pH值下之阻隔率變化圖
(1 kg/m3 BSA +1 kg/m3 β-cyclodextrin,rpm=100)			92
圖4.34  1k膜在不同pH值下之濾速變化圖
(3 kg/m3 BSA +1 kg/m3 β-cyclodextrin,rpm=0) 				93
圖4.35  1k膜在不同pH值下之阻力變化圖
(3 kg/m3 BSA +1 kg/m3 β-cyclodextrin,rpm=0)				94
圖4.36  1k膜在不同pH值下之阻隔率變化圖
(3 kg/m3 BSA +1 kg/m3 β-cyclodextrin,rpm=0)				95
圖4.37  5k膜在不同pH值下之濾速變化圖
(3 kg/m3 BSA +1 kg/m3 β-cyclodextrin,rpm=0)				96
圖4.38  5k膜在不同pH值下之阻力變化圖
(3 kg/m3 BSA +1 kg/m3 β-cyclodextrin,rpm=0)				97
圖4.39  5k膜在不同pH值下之阻隔率變化圖
(3 kg/m3 BSA +1 kg/m3 β-cyclodextrin,rpm=0) 				98
圖4.40  1k膜在不同pH值下之濾速變化圖
(3 kg/m3 BSA +1 kg/m3 β-cyclodextrin,rpm=100)			99
圖4.41  1k膜在不同pH值下之阻力變化圖
(3 kg/m3 BSA +1 kg/m3 β-cyclodextrin,rpm=100)	100
圖4.42  1k膜在不同pH值下之阻隔率變化圖
(3 kg/m3 BSA +1 kg/m3 β-cyclodextrin,rpm=100)	101
圖4.43  5k膜在不同pH值下之濾速變化圖
(3 kg/m3 BSA +1 kg/m3 β-cyclodextrin,rpm=100)	102
圖4.44  5k膜在不同pH值下之阻力變化圖
(3 kg/m3 BSA +1 kg/m3 β-cyclodextrin,rpm=100)	103
圖4.45  5k膜在不同pH值下之阻隔率變化圖
(3 kg/m3 BSA +1 kg/m3 β-cyclodextrin,rpm=100)	104
圖4.46  滲透壓模式下不同濃度之理論濾速圖
(MWCO 1k, C=1 kg/m3 and 3 kg/m3)	105
圖4.47  滲透壓模式下不同濃度之理論濾速圖
(MWCO 5k, C=1 kg/m3 and 3 kg/m3)	105
圖4.48  滲透壓模式之理論與實驗濾速比較圖
(MWCO 1k, C=1 kg/m3)	106
圖4.49  滲透壓模式之理論與實驗濾速比較圖
(MWCO 5k, C=1 kg/m3)	106
圖4.50  滲透壓模式之理論與實驗濾速比較圖
(MWCO 1k, C=3 kg/m3)	107
圖4.51  滲透壓模式之理論與實驗濾速比較圖
(MWCO 5k, C=3 kg/m3)	107
圖A.1  1 kg/m3 β-cyclodextrin在不同條件下之濾速變化圖
(MWCO 1、5k,rpm=0,100)	131
圖A.2  1 kg/m3 β-cyclodextrin在不同條件下之阻力變化圖
(MWCO 1、5k,rpm=0,100)	132
圖A.3  1 kg/m3 β-cyclodextrin在不同條件下之阻隔率變化圖
(MWCO 1、5k,rpm=0,100)	133
圖A.4  1k薄膜在不同幾丁聚糖溶液中之濾速變化圖
(rpm=0,100)	134
圖A.5  1k薄膜在不同幾丁聚糖溶液中之阻力變化圖
(rpm=0,100)	135
圖A.6  5k薄膜在不同幾丁聚糖溶液中之濾速變化圖
(rpm=0,100)	136
圖A.7  5k薄膜在不同幾丁聚糖溶液中之阻力變化圖
(rpm=0,100)	137
圖A.8  雙成分幾丁聚糖溶液之阻隔率變化圖
(MWCO 1、5k,rpm=0,100)	138
圖B.1  BSA溶液之檢量線	140
圖C.1  β-cyclodextrin溶液之檢量線	143
圖D.1  OMEGA 1k薄膜剖面圖(a. 1千倍,b.10萬倍)	145
圖D.2  OMEGA 5k薄膜剖面圖(a. 1千倍,b.10萬倍)	146
圖D.3  SPECTRUM 1k薄膜剖面圖(a. 600倍,b.10萬倍)	147
圖D.4  SPECTRUM 5k薄膜剖面圖(a. 1千倍,b.10萬倍)	148
圖D.5  OMEGA薄膜5萬倍表面圖(a. 1k, b. 5k)	149





















表目錄
表1.1  不同操作程序之驅動力分類 								10
表2.1  薄膜程序對於分離溶質之區分表							37
表3.1  平板式薄膜模組性質表										48
表3.2  BSA特性說明 												48
表4.1  薄膜純水透過率及薄膜阻力 								49
參考文獻
Aimar, P., J. A. Howell, M. J. Clifton, and V. Sanchez, "Concentration polarization build-up in hollow fibers: A method of measurement and its modelling in ultrafiltration," J. Membr. Sci., 59 (1991) 81-99.
Bauser, H., H. Chmiel, N. Stroh, E. Walitza, "Control of concentration polarization and fouling of membranes in medica, food and biotechnical application", J. Membr. Sci., 27 (1986) 195-202.
Blanpain,P., J. Hermia, M. Lenoel, "Mechanisms governing permeate flux and protein rejection in the microfiltration of beer with a Cyclopore membrane", J. Mem. Sci., 84 (1993), 37-51.
Blatt, W.F., A. Dravid, A.S. Michales, L. Nelsen, "Solute polarization and cake formation in membrane ultrafiltration: causes, consequences, and control techniques", in: J.E. Filnn, ed., Membrane Science and Technology, Plenum Press, New York (1970) 47-91.
Bowen, W.R., A.W. Mohammad, "Diafiltration by nanofiltration: prediction and optimization", AIChE J., 44 (1998) 1799-1812.
Bowen, W.R., A.W. Mohammad, N. Hilal, "Characterisation of nano -filtration membranes for predictive purposes-use of salts, uncharged solutes and atomic force microscopy", J. Membr. Sci., 126 (1997) 91-105.
Bowen, W.R., H. Mukhtar, "Charaterisation and prediction of separation performance of nanofiltration membranes", J. Membr. Sci., 112 (1996) 263-274.
Cabassud, C., E. Karim, D. Gaelle, L. Alain, "Spherical cap bubbles in a flat sheet nanofiltration module: experiments and numerical simulation", Chem. Eng. Sci., 56 (2001) 6321-6327.
Cabassud, C., S. Laborie, J.M. Laine, "How slug flow can improve ultra -filtration flux in organic hollow fibers", J. Membr. Sci., 128 (1997)93-101.
Chan, R., V. Chen, "The effects of electrolyte concentration and pH on protein aggregation and deposition: critical flux and constant flux membrane filtration," J. Membr. Sci., 185 (2001) 177-192
Cheryan, M., "Ultrafiltration and microfiltration hand book", 2nd ed., Technomic Publishing Company, Inc., Pennsylvania (1988)
Cheryan, M., E.M. Tsui, "Characteristics of nanofiltration membrane in aqueous ethanol" J. Membr. Sci., 237 (2004) 61-69.
Chong, R., P. Jelen, W. Wang, "The effect of cleaning agents on a noncellulosic ultrafiltration membrane", Sep. Sci. Technol., 20 (1985) 393-402.
Cui, Z.F., K.I.T. Wright, "Gas-liquid two-phase crossflow ultrafiltration of BSA and dextran solution", J. Membr. Sci., 90 (1994) 183-189.
Davis, R.H., C. Güell, "Membrane fouling during microfiltration of protein mixtures ," J. Membr. Sci., 119 (1996) 269-284
Derzansky, L.J., W.N. Gill, "Mechanisms of brane-side mass transfer in a horizontal reverse osmosis tubular membrane", AIChE J., 20 (1974) 751-761.
Dorange, G., Y. Garba, S. Taha, N. Gondrexon, "Ion transport modelling through nanofiltration membrane", J. Membr. Sci., 160 (1999) 187-200.
Fane, A. G., C. J. D. Fell, A. Suki, "Effect of pH and ionic environment on the ultrafiltration of protein solutions with retentive membranes," J. Membr. Sci., 16 (1982) 195-210.
Garem, A., C. Martin-Orue, S. Bouhallab, "Nanofiltration of amino acid and peptide solution: mechanisms of separation", J. Membr. Sci., 142 (1998) 225-233.
Geankoplis, C. J., "Transport processes and unit operations", Prentice -Hall International, London (1995).
Ghosh, R., Q. Li, Z.F. Cui, "Fractionation of BSA and lysozyme using ultrafiltration: effect of gas sparging", AIChE J., 44 (1998) 61-67.
Ghosh, R., Z.F. Cui, "Fractionation of BSA and lysozyme using ultra -filtration: effect of pH and membrane pretreatment", J. Membr. Sci., 139 (1998) 17-28.
Grib, H., M. Persin, C. Gavach, D.L. Piron, J. Sandeaux, N. Mameri, "Amino acid retention with alumina γnanofiltration membrane", J. Membr. Sci., 172 (2000) 9-17.
Gupta, B.B., J.A. Howell, D. Wu, R.W. Field, "A helical baffle for cross -flow microfiltration", J. Membr. Sci., 99 (1995) 31-42.
Gupta, B.B., P. Blanpain, M.Y. Jaffrin, "Permeate flux enhancement by pressure and flow pulsation in microfiltration with mineral membrane", J. Membr. Sci., 70 (1992) 257-266.
Hasson, D., R. Levenstein, R. Semiat, "Utilization of the Donnan effect for improving electrolyte separation with nanofiltration membranes", J. Membr. Sci., 116 (1996) 93-104.
Iritani, E.J., Y.T. Mukai, T.R. Murase, "Separation of binary protein mixtures by ultrafiltration", Filtration & Separation., 34 (1997) 967-973.
Jacob, J., P. Pradanos, J. I. Calvo, A. Hernandez and G. Jonsson, "Fouling kinetics and associated dynamics of structural modifications", Colloids and Surfaces A:Physicochemical and Eng. Aspects, 138 (1998) 173-183.
Karthik, V., S. DasGupta, S. De, "Modelling and simulation of osmotic pressure controlled electro-ultrafiltration in a cross-flow system", J. Membr. Sci., 199 (2002) 29-40
Kedem, O., A. Katchalsky, "A physical interpretation of the phenolmeno -logical coefficients of membrane permeability", J. Gen. Physiol., 45 (1961) 143-179.
Kelly, S.T., A.L. Zydney, "Effects of intermolecular thiol-disulfide inter -change reactions on BSA fouling during microfiltration", Biotechnol. Bioeng., 44 (1994) 972-982.
Kelly, S.T., A.L. Zydney, "Mechanisms for BSA fouling during micro -filtration", J. Membr. Sci., 107 (1995) 115-127.
Kelly, S.T., W.S. Opong, A.L. Zydney, "The influence of protein aggregates on the fouling of microfiltration membranes during stirred cell filtration", J. Mem. Sci., 80 (1993) 175-187.
Kilduff, J.E., S. Mattaraj, J.P. Pieracci, G. Belfort, "Photochemical modification of poly(ether sulfone) and sulfonated poly(sulfone) nanofiltration membrane for control of fouling by natural organic matter," Desalination, 132 (2000) 133-142
Kim, B.S., H.N. Chang, "Effects of periodic backflushing on ultra -filtration Performance", Bioseparation, 2 (1991) 9-23.
Kim, K. J., V. Chen, A. G. Fane, "Some factors determining protein aggregation during ultrafiltration", Biotechnol. Bioeng., 42 (1993) 260-265.
Kimura, S., S. Sourirajan, "Analysis of data in reverse osmosis with porous celluloses acetate membranes used", AIChE J., 13 (1967) 497-503.
Kroner, K.H., V. Nissinen, "Dynamic filtration of microbial suspensions using an axially rotating filter", J. Membr. Sci., 36 (1988) 85-100.
Mercier-Bonin, M., C. Fonade, C. Lafforgue-Delorme, "How slug flow can enhance the ultrafiltration flux in mineral tubular membrane", J. Membr. Sci., 128 (1997) 103-113.
Mika, M., P. Arto, K. Eero, N. Marianne, "Effect of temperature and membrane pre-treatment by pressure on the filtration properties of nanofiltration membranes", Desal., 145 (2002) 81-86.
Millward, H.R., B.J. Bellhouse, G. Walker, "Screw-thread flow promoters: an experimental study of ultrafiltration and microfiltration performance", J. Membr. Sci., 106 (1995) 269-279.
Mir, L., "Positive-charged Ultrafiltration membrane for the separation of cathodic/electrodeposition paint cimposition," U. S. Patent, 4 (1983) 412.
Morel, G., A. Gracina, J. Lachise, "Enhanced nitrate ultrafiltration by cationic surfactant", J. Membr. Sci., 56 (1991) 1-12.
Murkes, J., C.G. Carlsson, "Crossflow Filtration-Theory and Practice " John Wiley & Sons, New York (1988).
Nabetani, H., M. Nakajima, A. Watanabe, S. Nakao, S. Kimura, "Effects of osmotic pressure and adsorption on ultrafiltration of ovalbumin", AIChE J., 36 (1990) 907-915.
Nakao, S., X.L. Wang, T. Tsuru, M. Togoh, S. Kimura, "Transport of organic electrolytes with electrostatic and sterichidrance effects through nanofiltration membranes", J. Chem. Eng. Jpn., 28 (1995) 372-380.
Nel, R.G., S.F. Oppenheim, V.G.J. Rodgers, "Effect of solution properties om solute permeate flux in bovine serum albumin-IgG ultrafiltration", Biotechnol. Prog., 10 (1994) 539-542.
Palecek, S.P., A.L. Zydney, "Hydraulic permeability of protein deposits formed during microfiltration: Effect of solution pH and ionic strength", J. Mem. Sci., 95 (1994) 71-81.
Palecek, S.P., A.L. Zydney, "Intermolecular electrostatic interactions and their effect on flux and protein deposition during protein filtration", Biotechnol. Prog., 10 (1994) 207-213.
Persson, A., A.-S. Jönsson, G. Zacchi, "Transmission of BSA during cross-flow microfiltration: influence of pH and salt concentration", J. Membr. Sci., 223 (2003) 11-21.
Philles, G.D., G.B. Benedek, N.A. Mazer, "Diffusion in protein solutions at high concentrations: a study by quasi-elastic light scattering spectroscopy", J. Chem. Phys., 65 (1976) 1883-1892
Rabiller-Baudry, M., B. Chaufer, D. Lucas, B. Bariou, P. Aimar, "Model of convection-diffusion-electrophoretic migration application to UF of lysozyme versus pH and ionic strength", in: proceedings of the international congress on international congress on membranes and membrane processes, Toronto, Canada, June (1999).
Taylor, G.I., "Stability of a viscous liquid contained between two rotating cylinders", Phil. Trans. Roy. Soc., A233 (1923) 298-343.
Tracey, E. M., R. H. Davis, "Protein fouling of track-etched polycarbonate microfiltration membranes", J .Colloid Interface Sci., 167 (1994) 104-116.
Tsuru, T., T. Shutou, S.I. Nakao, S. kimura, "Peptide and amino acid separation with nanofiltration membrane", Sep. Sci. Technol., 29 (1994) 971-984.
Van der Horst, H.C., J.M.K. Timmer, M.P.J. Speelmans, "Separation of amino acids by nanofiltration and ultrafiltration membranes", Sep. Purif. Technol., 14 (1998) 133-144.
Van Der Weal, M. J., I.G. Racz, "Mass transfer in corrugated-plate membrane Modules. I. Hyperfiltration Experiments", J. Membr. Sci., 40 (1989) 243-260.
Wang, X.L., W.N. Wang, A.L. Ying, "Nanofiltration of L-phenylalanine and L-aspartic acid aqueous solutions", J. Membr. Sci., 196 (2002) 59-67.
Wijers, M.C., Y. Pouliot, S.F. Gauthier, M. Pouliot, L. Nadeau, "Use of nanofiltration membranes for the desalting of peptide fractions from whey protein enzymatic hydrolysates", Lait., 78 (1998) 621-632.
Yang, X.J., A.G. Livingston,L. Freitas dos Santos, "Experimental observations of nanofiltration with organic solvents", J. Membr. Sci., 190 (2001) 45-55.
Yazhen, X., E.L. Remi, "Investigation of the solute separation by charged nanofiltration membrane: effect of pH, ion strength and solute type", J. Membr. Sci., 158 (1999) 93-104.
Youm, K.H., A.G. Fane, D.E. Wiley, "Effects of natural convection instability on membrane performance in dead-end and cross-flow ultrafiltration", J. Membr. Sci., 116 (1996) 229-241.
呂維明編著, “固液過濾技術”, 高立圖書有限公司 (2004).
邱東林, “奈米過濾對從巨分子溶液分離胺基酸與胜肽之探討”, 淡江大學化學工程與材料工程研究所碩士論文 (2003)
林家福, “陶瓷薄膜兩相流動超過濾系統中蛋白質溶液濃縮與濾速之探討”, 淡江大學化學工程與材料工程研究所碩士論文 (2004)
陳沂仁, “高分子奈米薄膜過濾電解質溶液之探討”, 淡江大學化學工程與材料工程研究所碩士論文 (2005)
李培銘, “無機薄膜過濾蛋白質溶液中結垢現象與濾速回復之探討”, 淡江大學化學工程與材料工程研究所碩士論文 (2006)
論文全文使用權限
校內
紙本論文於授權書繳交後1年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後1年公開
校外
同意授權
校外電子論文於授權書繳交後1年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信