淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2507200514273700
中文論文名稱 聚偏二氟乙烯以原子轉移自由基接枝聚甲基丙烯酸甲酯的合成與應用
英文論文名稱 Synthesis and application of PVDF-g-PMMA by ATRP
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 93
學期 2
出版年 94
研究生中文姓名 陳建仰
研究生英文姓名 Chien-Yang Chen
學號 692360273
學位類別 碩士
語文別 中文
口試日期 2005-06-30
論文頁數 121頁
口試委員 指導教授-林達鎔
委員-蘇安仲
委員-楊台鴻
委員-林達鎔
委員-鄭廖平
委員-董崇民
中文關鍵字 聚偏二氟乙烯  原子轉移自由基聚合法  奈米孔洞薄膜  低介電材料 
英文關鍵字 PVDF  Atomic Transfer Radical Polymerization  Nano porous membrane  Dielectric materials 
學科別分類
中文摘要 原子轉移自由基聚合法,是現今被廣泛研究的活性自由基聚合反應之ㄧ,活性自由基反應的優點是可以抑制自由基聚合反應所可能引發之自由基轉移及自由基的終止反應並避免副反應產生,並可以合成出分子量分布狹窄的產物。
本研究以氯化亞銅與二甲基二口比 口 定 為觸媒系統,藉由觸媒的作用轉移氟原子以產生自由基去合成聚偏二氟乙烯與聚甲基丙烯酸甲酯(PMMA)的接枝共聚物。利用不同接枝量的共聚物與PMMA依不同比例以溶液混掺後製膜,再以溶液洗去PMMA,使薄膜形成多孔性結構。藉此二高分子不同的混掺比例及不同的乾式成膜條件,進而製備出具有奈米孔隙的多孔性薄膜。
結果方面,在混掺比例PVDF/PMMA為65/35,接枝共聚物與PMMA呈現完全相溶的形態,經過溶劑移除另一連續相後,薄膜呈現相當均勻的奈米孔洞結構,孔徑約為15~20nm,且介電常數值亦大幅的下降。
英文摘要 Atomic transfer radical polymerization is one of the living radical polymerizations which is the extensive research of the quilt now.
Excellences of the living radical polymerization are suppressing termination by radicals transfer and avoiding the side reactions during the process. And maintaining a relatively narrow molecular weight distribution.
In this studying, catalyst system is CuCl and DMDP, which transfers fluorine atom and produces radicals to synthesis graft copolymer of PVDF and PMMA. Make membrane by different percentage mixing graft copolymers and PMMA in solution blending. Membrane structures become porous after etching PMMA by solvent. Preparation of nano-porous membranes under different conditions.
Graft copolymer and PMMA display miscible under mixing proportion is 65/35 of PVDF and PMMA. Porous membranes have homogeneously pore diameter in the range of 15~20 nm. And dielectric constant value is also the decline by a wide range.
論文目次 總目錄
誌謝................................................................................................................. I
中文摘要......................................................................................................... II
英文摘要......................................................................................................... III
總目錄............................................................................................................. IV
表目錄............................................................................................................. IX
圖目錄............................................................................................................. XI
第一章 緒論
1.1 前言.......................................................................................................... 1
1.2研究動機.................................................................................................... 2
1.3 研究目的.................................................................................................. 3
第二章 理論與文獻回顧
2.1 低介電材料 (low dielectric materials).................................................... 4
2.2 聚偏二氟乙烯( poly(vinylidene fluoride),PVDF).................................. 6
2.3 活性自由基聚合法.................................................................................. 10
2.3.1 穩定自由基聚合法 ( Stable Free Radical Polymerization,SFRP )... 12
2.3.2 可逆性加成-斷裂鏈轉移聚合法( Reversible Addition
Fragmentation Chain Transfer Polymerization,RAFT )..................... 12
2.3.3 原子轉移自由基聚合法( Atomic Transfer Radical Polymerization,
ATRP)........................13
2.3.3.1 由非勻相轉變至勻相.................................................................... 15
2.3.3.2 反應添加物及反應相的研究........................................................ 16
2.4 高分子掺合體.......................................................................................... 18
2.4.1 掺合原理............................................................................................. 18
2.4.2 Huggins-Flory Theory....................................................................... 20
2.5 高分子薄膜.............................................................................................. 22
2.5.1 乾式成膜法......................................................................................... 22
2.5.2 乾式成膜機制..................................................................................... 23
2.5.3 濕式成膜法......................................................................................... 24
2.5.4 濕式成膜機制..................................................................................... 25
2.5.5 轉化溫度............................................................................................. 27
2.6本研究的目的與創新性............................................................................ 29
第三章 實驗流程及分析步驟
3.1 聚偏二氟乙烯與聚甲基丙烯酸甲酯之接枝共聚物製備及
分析...................................... 30
3.1.1 PVDF-g-PMMA之製備.................................................................... 30
3.1.2 PVDF-g-PMMA之分析....................................................................... 31
3.1.2.1 重量分析........................................................................................ 31
3.1.2.2 傅利葉轉換紅外線光譜儀(FT-IR)............................................. 31
3.1.2.2.1 定量分析(Quantitative Analysis)............................................. 31
3.1.2.2.2 定性分析(Qualitative Analysis)............................................... 33
3.1.2.3 微分掃描熱卡儀 (Differential Scanning Calorimetry, DSC)....... 33
3.1.2.4 熱重分析儀(Thermal Gravity Analyzer,TGA).......................... 34
3.1.2.5 元素分析(Element analysis,EA)................................................. 34
3.1.2.6 場放射掃描式電子顯微鏡(field emmission scanning electron
microscope, FESEM )........34
3.2 聚偏二氟乙烯與聚甲基丙烯酸甲酯之接枝共聚物反應實
驗流程...................35
3.2.1 不同接枝量的PVDF-g-PMMA之製備........................................... 35
3.2.2 不同接枝量的PVDF-g-PMMA之分析........................................... 35
3.2.2.1 動態機械分析儀(Dynamic mechanical analysis,DMA)........... 35
3.2.2.2 電子旋轉共振儀(Electron Spin Resonance,ESR)..................... 35
3.3 接枝共聚物與聚甲基丙烯酸甲酯之掺混共聚物的薄膜製
備及分析.........................37
3.3.1 PVDF-g-PMMA與PMMA混掺物之製備....................................... 37
3.3.2 多孔性薄膜之製備........................................................................... 37
3.2.3 多孔性薄膜之分析.................................................. 37
3.2.3.1 動態機械分析儀(Dynamic mechanical analysis,DMA).......... 37
3.2.3.2 場放射掃描式電子顯微鏡(field emmission scanning
electron microscope, FESEM ).............................................38
3.2.3.3 介電分析儀(Dielectric Analyzer, DEA).................................. 38
3.4 實驗藥品.................................. 39
第四章 結果與討論
4.1 以ATRP合成PVDF-g-PMMA................................................................ 44
4.1.1 定性分析(Qualitative Analysis)......................................................... 46
4.1.2定量分析(Quantitative Analysis)........................................................ 48
4.1.2.1重量分析(Gravitational Analysis)................................................. 49
4.1.2.2 FT-IR基線法(FT-IR calibration method).................................... 50
4.1.2.3元素分析(Element analysis,EA).................................................. 51
4.1.3 熱分析(Thermal Analysis)................................................................. 55
4.1.3.1微分掃描熱卡儀 (Differential Scanning Calorimetry,DSC)......... 55
4.1.3.2熱重分析儀(Thermal Gravitational Analysis,TGA)..................... 59
4.1.4場放射掃描式電子顯微鏡(field emmission scanning electron
microscope, FESEM ).....................64
4.2 ATRP動力學研究.................................................................................. 67
4.2.1 不同的反應溶劑及反應濃度系統..................................................... 68
4.2.2 抑制劑與觸媒系統對聚合反應的影響............................................. 76
4.2.2.1 抑制劑對聚合反應的影響............................................................ 76
4.2.2.2 觸媒系統對聚合反應的影響........................................................ 78
4.2.3電子旋轉共振儀(Electron Spin Resonance,ESR)............................. 80
4.2.4動態機械分析儀(Dynamic Mechanical Analysis,DMA).................. 90
4.3 多孔性薄膜的配製.................................................................................. 96
4.3.1 掺合體的動態機械分析..................................................................... 98
4.3.2 掺合體的相形態分析......................................................................... 103
4.3.3 奈米多孔型薄膜之介電常數測試..................................................... 111
第五章 結論
5.1 PVDF與PMMA接枝共聚物之合成.................................................... 115
5.2 ATRP動力學研究.................................................................................. 115
5.3 掺合體與多孔性薄膜之性質.................................................................. 116
參考文獻......................................................................................................... 118




















表目錄
Table 3.1 Absorbance intensity of C=O / CF2 and grafting ratio…………. 33
Table 3.2 Experiment materials……………………………………………... 39
Table 4.1 Characteristic Bands with Specific Vibrational Modes of PVDF &PMMA………………………………………………………..... 47
Table 4.2 Weight of compositions of polymers……………………………..
49
Table 4.3 Weight of PMMA from graft and homo-polymers………………. 50
Table 4.4 Absorbance & graft ratio of copolymers by FT-IR………............. 50
Table 4.5 Elemental Analyzer ( EA ) ………………………………………. 52
Table 4.6 Elemental Analyzer ( EA ) ………………………………………. 54
Table 4.7 DSC Results of PVDF and PVDF-g-PMMA…………………….. 56
Table 4.8 Td of PVDF and PMMA and PVDF-g-PMMA…………………... 59
Table 4.9 Weight of compositions of polymers in different solvent by ATRP….......................................................................................... 70
Table 4.10 Effect of initial reactant concentration on grafting ratio…........... 73
Table 4.11 Weight of homopolymerization of MMA in DMF
(100ppm~800ppm)……………………………………………... 77
Table 4.12 Weight of homopolymerization of MMA in DMF
(800ppm~6400ppm)……………………………………………. 77
Table 4.13 Weight of compositions of polymers in different solvent............. 78
Table 4.14 Transition temperature of graft copolymers inDMF and NMP
system………………………………………………………....... 92
Table 4.15 Composition of copolymer(PVDF-g-PMMA) blend PMMA....... 96
Table 4.16 Transition temperature of graft copolymers and PVDF both
blend with PMMA........................................................................ 98
Table 4.17 Data of etching……………………….......................................... 105
Table 4.18 Data of SAXS…………………………........................................ 105
Table 4.19 Data of etching………………...................................................... 112
Table 4.20 Dielectic constsnt of various polymer……………...........……… 112




























圖目錄
Figure 1.1 Relationship of delay time vs technology node………………... 2
Figure 2.1 (a)molecule structure of α,β,γ-PVDF
(b)observe molecule structure of α,β,γ-PVDF in a-b
Dimension ……………………………………..…………. 7
Figure 2.2 Structure of PVDF molecular and unit cell forms:
( a ) and ( c )α-phase; ( b ) and (d) β-phase………………..…… 9
Figure 2.3 Reaction mechanism of living free radical polymerization...….. 11
Figure 2.4 Reaction mechanism of stable free radical polymerization…..... 12
Figure 2.5 Reaction mechanism of reversible addition fragmentation chain transfer polymerization………………………………….. 13
Figure 2.6 Reaction mechanism of atomic transfer radical polymerization….....…………………………………………… 18
Figure 2.7 Apparatus of drying phase inversion………………………..…. 23
Figure 2.8 Phase diagram of the mixtures of solvent and polymer……..… 23
Figure 2.9 Apparatus of wetting phase inversion……….………………… 24
Figure 2.10 Phase diagram of crystallo-polymer…………..……………… 25
Figure 2.11 Structure of separation by liquid-liquid phase………………... 26
Figure 3.1 FT-IR spectra of PVDF blend with PMMA…………….…… 32
Figure 3.2 Diagram of C=O/CF2 vs grafting ratio…………………..…... 32
Figure 3.3 Flow chart of synthesis of PVDF-g-PMMA..…………………. 40
Figure 3.4 Flow chart of extraction of PVDF-g-PMMA………..………… 41
Figure 3.5 Flow chart of synthesis of graft copolymer in different reaction
times……………………………………...…………………….. 42
Figure 3.6 Flow chart of graft copolymer blend with PMMA by different
compositions………………………………...…………………. 43
Figure 4.1 FT-IR spectrum of PVDF-g-PMMA,PVDF,PMMA,MMA…. 48
Figure 4.2 Quantitative Analysis by weight and FT-IR calibration method. 51
Figure 4.3 Graft ratio compared with gravitational,FT-IR and EA…..….. 54
Figure 4.4 Diagram of DSC of PVDF……………………….………….. 56
Figure 4.5 Diagram of DSC of PVDF-g-PMMA in different reaction
time............................................................................................... 57
Figure 4.6 T1 of PVDF-g-PMMA in different reaction
time…………………................................................................... 57
Figure 4.7 T2 of PVDF-g-PMMA in different reaction time……….…… 58
Figure 4.8 T3 of PVDF-g-PMMA in different reaction time……….…… 58
Figure 4.9 Diagram of TGA of FgMX…………………..……………….. 60
Figure 4.10 Diagram of DTGA of FgMX……………………..…………... 60
Figure 4.11 Diagram of TGA of homo-PMMAX………………………..... 61
Figure 4.12 Diagram of DTGA of homo-PMMAX……………………..… 61
Figure 4.13 Diagram of TGA of commercial PMMA…………………….. 62
Figure 4.14 Diagram of DTGA of commercial PMMA………………..….. 62
Figure 4.15 Diagram of TGA of PVDF………………..………………….. 63
Figure 4.16 Diagram of DTGA of PVDF..................................................... 63
Figure 4.17 SEM photomicrographs of the cross section of graft copolymer 50kX............................................................................................... 65
Figure 4.18 SEM photomicrographs of the cross section of graft
copolymer…............................................................................... 66
Figure 4.19 SEM photomicrographs of the cross section of 12D138
100kX…..................................................................................... 66
Figure 4.20 Grafting ratio of graft copolymer in DMF and NMP
system……................................................................................. 70
Figure 4.21 Conversion of MMA to homo-PMMA in DMF and NMP
system......................................................................................... 71
Figure 4.22 Concentration of total polymers in DMF and NMP
system….............................................................................…… 71
Figure 4.23 Grafting ratio of PVDF-g-PMMA at different
dilution………....................................................................…... 74
Figure 4.24 Grafting ratio of PVDF-g-PMMA at different
dilution…....................................................................………... 74
Figure 4.25 Conversion of MMA at different
dilution………...............................................………………… 75
Figure 4.26 Concentration of total polymers at different
dilution………….................................................................….. 75
Figure 4.27 Concentration of total polymers of different reactant
concentration..………………………………………………... 76
Figure 4.28 Conversion of MMA in different catalyst
content………….............................................................……... 79
Figure 4.29 (a)ESR spectra recorded during the solution of PVDF / DMF/
[CuCl/DMDP] at 90 oC………………………………….. 82
Figure 4.29 (b)Diagram of intensity of copper(II) vs. time by PVDF /
DMF/ [CuCl/DMDP] at 90 oC( 3229~3445G )………….. 82
Figure 4.30 (a)ESR spectra recorded during the solution of MMA / DMF/
[CuCl/DMDP] at 90 oC………………………………….. 83
Figure 4.30 (b)Diagram of intensity of copper(II) vs. time by MMA / DMF/[CuCl/DMDP] at 90 oC( 3301~3398G )……...…… 83
Figure 4.31 ESR spectra recorded during the solution ATRP of MMA /
NMP at 90 oC…………..........................................................… 85
Figure 4.32 Diagram of intensity of copper(II) vs. time by NMP system
at 90 oC…………....................................................................... 86
Figure 4.33 ESR spectra recorded during the solution ATRP of MMA / DMFat 90 oC…………….............................…………………. 87
Figure 4.34 Diagram of intensity of copper(II) vs. time by DMF system at
90 oC ( 3304~3362G )……..………………………………….. 88
Figure 4.35 ESR spectra recorded during the solution ATRP of MMA / DMF at 90 oC……………............……………………………. 88
Figure 4.36 Diagram of intensity of copper(II) vs. time by DMF
system at 90 oC ( 3304~3362G )……………............................ 89
Figure 4.37 Diagram of intensity of copper(II) vs. time by DMF
system at 90 oC ( 3304~3362G )……....……………………… 89
Figure 4.38 DMA spectra of PVDF ( Hylar 500 HP )…………………..… 93
Figure 4.39 Tanδ curves of PVDF-g-PMMA from -100oC to 50oC in
DMF system………………..…………………………………. 94
Figure 4.40 Tanδ curves of PVDF-g-PMMA from -100oC to 50oC in
DMF system……………………..……………………………. 94
Figure 4.41 Tanδ curves of PVDF-g-PMMA from -70oC to 140oC in
NMP system..………………………………..………………... 95
Figure 4.42 Phase diagram of PVDF-g-PMMA / PMMA / NMP………..... 97
Figure 4.43 (a)Tanδ curves of blend copolymer from -100oC to
140oC before etching…………………………..………… 100
Figure 4.43 (b)Tanδ curves of blend copolymer from -100oC to
140oC before etching………………………..…………… 100
Figure 4.44 Loss modulus curves of blend copolymer from -100oC
to 140oC before etching……………………………..………… 101
Figure 4.45 Tanδ curves of PVDF blend with PMMA from -100oC to
before etching............................................................................. 101
Figure 4.46 Tanδ curves of PVDF blend with PMMA from -100oC to
before etching............................................................................. 102
Figure 4.47 Loss modulus curves of VDF blend with PMMA from -100oC
before etching............................................................................. 102
Figure 4.48 SEM photomicrographs of top section of blend copolymer before etching 50Kx………...………………………………… 106
Figure 4.49 SEM photomicrographs of cross section of blend copolymer
before etching 100kX…………………………..……………... 107
Figure 4.50 SEM photomicrographs of top section of blend copolymer after etching 50kX…………..………………………………… 108
Figure 4.51 SEM photomicrographs of cross section of blend copolymer after etching 100kX…………..……………………………….. 109
Figure 4.52 SEM photomicrographs of blend copolymer after etching
200kX......................................................................................... 110
Figure 4.53 DEA diagram of PVDF( Hylar 500 HP )and PMMA( 205 ).… 113
Figure 4.54 DEA diagram of BC7030、BC6535、BC6040 before etching… 114
Figure 4.55 DEA diagram of BC7030、BC6535、BC6040 after etching…. 114
參考文獻 1. 張鼎張、周美芬,有機高分子低介電材料簡介,奈米通訊,第六卷第一期,(1998).
2. N. H. HENDRICKS, K. S. Y. Lau, A. R. Smith and W. B. Wan, Materials Research Society Symp. Proc. Vol. 381, P. 59 (1995).
3. R. Gregorio Jr., M. Cestari and F.E. Bernardino, “Dielectric behaviour of thin films of β -PVDF/PZT and β -PVDF/BaTiO3 composites”, Journal of Materials Science, 31, 2925~2930, (1996).
4. R. W. Whatmore, “Pyroelectric devices and materials”, Rep. Prog. Phys., 49, 1356~1359, (1986).
5. K. Tashiro, M. Kobayashi, H. Tadokoro and E. Fukada, “Calculation of elastic and piezoelectric constants of polymer crystals by a point charge model:application to poly(vinylidene fluoride) from Ⅰ”, Macromolecules, 13, 691~698, (1980).
6. G. T. Davis, J. E. Mckinney, M. G. Broadhurst and S. C. Roth, “Electric-field-induced phase changes in poly(vinylidene fluoride)”, J. Appl. Phys., 49, 4998~5002, (1978).
7. Y. Takahashi and H. Tadokoro, “Crystal structure of form Ⅲof poly(vinylidene fluoride)”, Macromolecule, 13, 1317~1318, (1980).
8. R. Gregorio and M. Cestari, “Effect of crystallization temperature on the crystalline phase content and morphology of poly(vinylidene fluoride)”, Journal of Polymer Science:Part B:Polymer Physics, 32, 859~870, (1994).
9. Otsu T, Yoshida M. Makromol Chem Rapid Commun, 3 : 127~133, (1982)
10. Solomon D, Rizzardo E, Cacioli P. U.S. Patent 4, 581, 429, (1986)
11. K.Matyjaszewski and J.Pyun, American Chemical Society:Chem.Mater, Reviews, (2001).
12. B. Boutevin and D. Bertin, Eurpoean Polymer Journal, 35, 815,(1999).
13. Kato M, Kamigaito M, Sawamoto M et al. Polymerization of methyl met hacrylate with the carbon tetrachloride /dichlorotris -(triphenylphosphine). Macro molecules, 28, 1721~1723,(1995).
14. Endo T, Kato M, Kamigaite M et al. Living radical polymerization of methyl methacrylate with ruthenium complex: formation of polymers with controlle d molecular weights and very narraw distributions. Macromolecules, 29, 1070~1072,(1996).
15. Matyjaszewski K, Coca S, Gaynor S G et al. Zerovalent metals in controlled / “living” radical polymerization. Macromolecules, 30, 7348~7350,(1997).
16. Granel C,Dubois Ph, Jerome R et al. Controlled radical polymerization of m ethacrylic monomers in the presence of a bis(ortho-chelated) arylnickel(II) com plex and different activated alkyl halides. Macromolecules, 29, 8576~8582,(1996).
17. Sawamoto M, Kamigaito M. Transition metal-mediated living radical polymerization: recent advances. Am. Chem. Soc. Div. Polymer. Chem. Prepr., 38(1), 740 ~741,(1997).
18. Katja Jankova, Xianyi Chen, Jorgen Kops, and Walther Bastberg. Macromolecules, 31, 538~541, (1998).
19. Guodong Zheng and Harald D. H. Stover*. Macromolecules, 35, 6828~6834, (2002).
20. Guodong Zheng and Harald D. H. Stover*. Macromolecules, 36, 1808~1814, (2003).
21. J. D. Tong, G. Moineau, Ph. Leclere, J. L. Bredas, R. Lazzaroni, and R. Jerome. Macromolecules, 33, 470~479, (2000).
22. Zhaobin Zhang, Shengkang Ying, Zhiqing Shi. Polymer, 40, 1341~1345, (1999).
23. Mircea Teodorescu and Krzysztof Matyjaszewski. Macromolecules, 32, 4826~4831, (1999).
24. Kelly A. Davis, Hyun-jong Paik, and Krzysztof Matyjaszewski. Macromolecules, 32, 1767~1776, (1999).
25. Hans G. Borner, Kathryn Beers, and Krzysztof Matyjaszewski. Macromolecules, 34, 4375~4383, (2001).
26. Sung Chul Hong, Dorota Neugebauer, Yoshihisa Inoue, Jean-Francois Lutz, and Krzysztof Matyjaszewski. Macromolecules, 36, 27~35, (2003).
27. E. T.Kang, K. G. Neoh, K. L. Tan, and F. C. Loh. Synthetic Metals, 84, 59~60, (1997).
28. J. F. Hester, P. Banerjee, and A. M. Mayes. Macromolecules, 32, 1643~1650, (1999).
29. Hyun-jong Paik, Scott G. Gaynor, and Krzysztof Matyjaszewski. Macromol. Rapid Commun., 19, 47~52, (1998).
30. J. F. Hester, P. Banerjee, Y.-Y. Won, A. Akthakul, M. H . Acar, and A. M. Mayes. Macromolecules, 35, 7652~7661, (2002).
31. Leonard, C.; Halary, J.; Monnerie, L. Polymer, 26,1506(1985)
32. Carini, G.; D’Angelo, G; Tripodo, G., J.Chem.Phys., 116, 7316(2002)

33. Marcel Muder,“Basic Principles of Membrane Technology”,2ed, p.71~p.108 (2000).
34. Lia-Ping Cheng, An-Hwa Dwan and Carl C. Gryte, J. Polym. Sci., 33, 223, (1995).
35. Aileen R. Wang, Shiping Zhu, Macromolecules, 35, 9926~9933,(2002).
36. N. Alves, C.X. Cardoso, A.E. Job, J.A. Giacometti, International Symposium on Electrets, 263~266,(2002).
37. Zhehui Liu, Philippe Maréchal, Robert Jérôme, Polymer, 38, 19, 4925~4929,(1997).
38. Zhehui Liu, Philippe Maréchal, Robert Jérôme, Polymer, 38, 19, 4927,(1997).
39. A. Linares, J.L. Acosta, Polymer, 33, 4, 467~473,(1997).
40. Hahn B., Wendroff J., Yoon D.Y., Macromolecules, 18, 718~721,(1985).
41. Kumar S.K., Yoon D.Y., Macromolecules, 22, 4098,(1989).
42. Odian, “Principles of Polymerization”, third, p27.
43. 黃郁馨,淡江大學化學工程與材料工程學系碩士論文, p36,(2004).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2005-07-27公開。
  • 同意授權瀏覽/列印電子全文服務,於2005-07-27起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信