淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2507200501114400
中文論文名稱 PHB與改質水溶性澱粉摻合體的製備與性質
英文論文名稱 Preparation and Characterization of PHB Blended with Modified Soluble Starch
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 93
學期 2
出版年 94
研究生中文姓名 鍾政裕
研究生英文姓名 Cheng-Yu Chung
學號 692360646
學位類別 碩士
語文別 中文
口試日期 2005-07-20
論文頁數 150頁
口試委員 指導教授-董崇民
委員-董崇民
委員-陳志成
委員-林達鎔
委員-余子隆
委員-陳信龍
中文關鍵字 聚羥基丁酯  水溶性澱粉  相容性 
英文關鍵字 PHB  soluble Starch  miscibility 
學科別分類
中文摘要 本研究利用溶液摻混與熔融摻混法製備生物可分解塑膠聚羥基丁酯與澱粉接枝聚醋酸乙烯酯PHB/PVAc-modified Starch聚掺合體,探討其相容性並測量其性質,因為PHB成本過高,於是藉著摻合同樣具有生物可分解性但價格便宜的澱粉以大幅降低成本。而為了增加澱粉和PHB的相容性,於是將和PHB相容的PVAc接枝到澱粉上,為了增加接枝比值,將硝酸銨鈰起始劑溶解在不同濃度之硝酸溶液中,探討硝酸濃度對單體轉化率,接枝效率和接枝比值的影響。將接枝比值最高(0.223)的改質澱粉(SV3)直接和PHB以不同比例進行摻混,以TGA測定聚掺合體之熱裂解溫度、DSC觀察玻璃轉移溫度(Tg)、結晶溫度(Tc)和熔點(Tm)、DMA測定Tg及固態機械性質、並以SEM觀察聚摻合物相形態。結果發現在0.5M之硝酸溶液中,單體轉化率和接枝比値都達到最高,分別為93.6%和0.223。另外也測量了接枝產物的熱轉移性質、熱重損失及分子量。
由DSC和DMA測試得知所有不同組成的PHB/SV3摻混系統都呈現單一Tg,同時Tg隨著SV3比例的增加而增加,因此PHB和SV3為一相容系統,利用Gordon-Taylor方程式去描述PHB/PVAc及溶液摻混和熔融摻混之PHB/SV3 (SV3為澱粉接枝PVAc產物)的Tg和組成之關係,均能符合,所求出之參數k值分別為0.87、0.32和0.35。TGA測試結果顯示掺合體是呈現出三階段的熱裂解行為,各階段主要是由PHB及SV3所表現出來的裂解行為,第一階段為PHB成份的熱裂解,微分裂解峯溫度都在288~305 oC之間,隨著SV3組成的增加而增加,第二階段及第三階段熱裂解則是由SV3成分所造成,焦碳殘餘量則隨著SV3比例之增加而增加,由DMA測試得知在25oC時PHB的儲存模數為3.12GPa,而SV3的儲存模數為1.49GPa;PHB/SV3聚掺合體的模數則隨著SV3組成的增加而下降,另外隨著SV3組成的增加,掺合體的損耗正切峯面積亦隨之增加,顯示材料的韌性因為添加了澱粉接枝聚醋酸乙烯酯而增加。改善了原先PHB的脆性。
英文摘要 In this study, the preparation and properties of poly-3-hydroxybutyrate(PHB) blended with modified soluble starch are discussed. PHB is hard and brittle due to its high degree of crystallinity and high melting point. Therefore, it is desirable to blend PHB with other polymers to improve its toughness and processing window. In order to increase the miscibility between PHB and starch, vinyl acetate monomer was graft polymerized onto starch with a redox initiator, cerium ammonium nitrate (CAN). CAN was dissolved in varying concentration of nitric acid to discuss its impact on the monomer conversion, grafting ration and grafting efficiency and to find the optimum grafting ratio. The maximum monomer conversion and grafting ratio were 93.6% and 0.223, respectively, in this study. The composition prepared in this research are as follows: PHB/SV3 =100/0, 80/20, 60/40 , 40/60 , 20/80, 0/100 (SV3 is the reaction product and its grafting ratio is 0.223). Thermal degradation behavior was analyzed by thermal gravimetric analysis, the glass transition temperature Tg and the degree of crystallization of the blends were observed by differential scanning calorimetry. The dynamic mechanical properties of blends were analyzed and their morphology were characterized by the scanning electron microscopy.
論文目次 總目錄
中文摘要.................................................................................................. I
英文摘要.................................................................................................. III
目錄.......................................................................................................... IV
表目錄...................................................................................................... VIII
圖目錄………………………………………………………………….. X
第一章、序論............................................................................................ 1
第二章、文獻回顧……………………………………………………… 2
2.1PHB的簡介…………………………................................................ 2
2.2澱粉簡介…………………………………………............................ 4
2.2.1澱粉的來源及結構………………………………………………. 4
2.2.2 澱粉的性質……………………………........................................ 10
2.2.3 澱粉的改質……………………………………………………… 16
2.3熱塑性澱粉………………………………………………………… 19
2.4 澱粉合膠…………………………………………………………... 21
2.5高分子聚摻合物................................................................................ 26
2.5.1摻合方法......................................................................................... 26
2.5.2聚摻合體之相容性………………………………………………. 28
2.5.3 相容劑在摻合物中的應用............................................................ 36
2.6 PHB/starch 摻合系統....................................................................... 39
2.7 PHB/PVAc摻合系統………………………………………………. 40
2.8 PHB摻合系統................................................................................... 43
第三章、材料與方法…………………………………………………… 48
3.1實驗材料............................................................................................ 48
3.2實驗設備與分析儀器........................................................................ 51
3.3 實驗步驟........................................................................................... 53
3.3.1澱粉-聚醋酸乙烯酯接枝共聚合體的合成……………………… 53
3.3.2 計算接枝比值與接枝效率……………………………………… 55
3.3.3 分離接枝側鏈................................................................................ 56
3.3.4 試片製備與組成代號說明............................................................ 56
3.3.5 溶解度表........................................................................................ 57
3.3.6利用溶液混摻法製備PHB/PVAc-modified Starch聚掺合體….. 58
3.3.7利用熔融混煉法製備PHB/ PVAc-modified Starch聚掺合體…. 58
3.3.8熱壓成膜......................................................................................... 59
3.4 材料測試與分析............................................................................... 61
3.4.1熱重損失測試(TGA)..................................................................... 61
3.4.2示差掃描卡計量測(DSC)............................................................ 61
3.4.3動態機械分析儀測試(DMA)........................................................ 61
3.4.4場發射掃描式電子顯微鏡(FESEM)形態觀察………………….. 62
3.4.5傅利葉轉換紅外線光譜儀(Fourier Transform Infrared Spectrometer, FT-IR)...............................62
3.4.6凝膠層析儀(Gel Permeation Chromatography ; GPC)…………... 63
第四章、結果與討論................................................................................ 64
4.1水溶性澱粉接枝聚醋酸乙烯酯聚合反應………………………… 64
4.1.1反應機構......................................................................................... 64
4.1.2接枝聚合反應產物結構分析......................................................... 67
4.1.3 SEM型態觀察................................................................................ 70
4.1.4單體的總轉化率、接枝效率及接枝比値....................................... 73
4.1.5分子量測定..................................................................................... 77
4.1.6熱重損失測試(TGA)..................................................................... 78
4.1.7玻璃轉移溫度(DSC)....................................................................... 83
4.2 PHB/Soluble starch摻混系統............................................................ 85
4.3 PHB/PVAc摻混系統……………………………………………..... 88
4.4 PVAc/Soluble Starch摻混系統......................................................... 98
4.5 PHB/PVAc-modified Starch摻混系統.............................................. 100
4.5.1 溶液摻混(PHB/SV3)..................................................................... 100
4.5.1.1 熱轉移性質(DSC)...................................................................... 100
4.5.1.2熱重損失測試(TGA).................................................................. 106
4.5.1.3動態機械性質(DMA)................................................................. 108
4.5.2 熔融摻合(PHB/SV3)..................................................................... 114
4.5.2.1 NPHB結構分析........................................................................... 114
4.5.2.2 NPHB熱性質............................................................................... 120
4.5.2.3熔融摻混條件.............................................................................. 123
4.5.2.4聚摻合體熱轉移溫度(DSC)........................................................ 124
4.5.2.5熱重損失測試(TGA).................................................................. 130
4.5.2.6動態機械性質(DMA)................................................................. 133
第五章、結論............................................................................................ 137
第六章、建議事項……………………………………………………… 138
第七章、參考文獻.................................................................................... 139















表目錄
表2-1 澱粉的化學組成……………................................................... 5
表2-2 反應型與非反應相容劑的優缺點…………………………... 38
表2-3 PHB與不同摻合體的相容性………………………………… 47
表3-1 CAN溶解在不同HNO3濃度時所獲得的聚合反應物代號…. 56
表3-2 PHB與澱粉在不同溶劑的溶解情形…………………............ 57
表3-3 PHB/ SV3聚掺合體組成…………………............................... 58
表4-1 Starch的主要官能基之特性吸收峰………………………….. 69
表4-2 PVAc的主要官能基之特性吸收峰…………………………... 69
表4-3不同硝酸濃度下澱粉接枝聚醋酸乙烯酯的轉化率(X,%) 接枝效率(GE,%)與接枝比値(GR)…………………………………75
表4-4 硝酸銨鈰溶解在不同硝酸濃度下的反應產物中PVAc單聚合體與接枝共聚合體的接枝的PVAc側鏈(g-PVAc)之分子量……..77
表4-5 澱粉接枝聚醋酸乙烯酯反應產物中,藉由丙酮萃取的PVAc單聚合體及澱粉接枝PVAc共聚合體(St-g-PVAc)的熱裂解溫度….79
表4-6 澱粉接枝聚醋酸乙烯酯共聚物萃取後其玻璃轉移溫度…... 83
表4-7 PHB /Soluble starch摻合體系統的熱轉移溫度及熔解熱…... 87
表4-8 PHB /PVAc摻合體系統的轉移溫度和熔解熱………………. 90
表4-9 PVAc/Soluble Starch摻合體系統的玻璃轉移溫度………….. 98
表4-10 PHB/SV3聚摻合體組成(wt%)……………………………… 102
表4-11 PHB /SV3聚摻合體系統的轉移溫度和熔解熱..................... 103
表4-12 PHB/SV3聚掺合體裂解溫度和焦碳殘量………………….. 107
表4-13 PHB/SV3摻合體系統於25oC的儲存模數…………………. 110
表4-14 PHB/SV3摻合體系統的玻璃轉移溫度…………………….. 112
表4-15Aldrich的PHB與南天的NPHB之NMR分析結果………… 115
表4-16 Aldrich的PHB與NPHB粉末的物性表……………………. 122
表4-17 NPHB /SV3摻合體系統的轉移溫度和熔解熱…………….. 127
表5-18 NPHB/SV3聚掺合體裂解溫度和焦碳殘量........................... 131
表4-19 NPHB/SV3摻合體系統於25oC的儲存模數……………….. 134
表4-20 NPHB/SV3摻合體系統的玻璃轉移溫度(tanδ峯溫度)……. 136















圖目錄
圖2-1 PHA胞內合成示意圖………………………………………….. 3
圖2-2 (a)直鏈 (b)支鏈的化學結構…………………………………… 6
圖2-3 澱粉顆粒微結構之示意圖…………………………………….. 8
圖2-4 A、B與C型澱粉之X-ray繞射圖…………………………… 9
圖2-5支鏈澱粉分子鏈長DP 9 和DP 18 與回凝熱焓值的相關性… 13
圖2-6 澱粉雙螺旋結構……………………………………………….. 15
圖2-7 單螺旋擠壓機………............................19
圖2-8 澱粉顆粒熔融裂解的狀態模型示意圖……………………….. 20
圖2-9 澱粉的糊化程序……………………………………………….. 22
圖2-10 熱分析儀器示意圖…………………………………………… 29
圖2-11 在DSC圖中玻璃轉移溫度對相容性的關係……………….. 31
圖3-1 減壓蒸餾示意圖……………………………………………….. 50
圖3-2 反應示意圖…………………………………………………….. 54
圖3-3 PHB/( PVAc-modified Starch)聚掺合體製備之流程與分析….. 60
圖4-1水溶性澱粉接枝聚醋酸乙烯酯其反應機構(a)接枝共聚合反應 (b)PVAc單聚合反應……………………………………………… 66
圖4-2澱粉、萃取之PVAc單聚合體及St-g-PVAc接枝共聚合體接枝的FTIR圖譜………………………………………………………… 68
圖4-3水溶性澱粉接枝聚醋酸乙烯酯的乳膠顆粒(SV3)SEM圖譜(a)×30000;(b)×50000;(c)×100000;(d)×200000………….................... 72
圖4-4單體轉化率對硝酸濃度的關係圖……………………………... 75
圖4-5接枝比值對硝酸濃度的關係圖………………………………... 76
圖 4-6不同反應系統中,藉由丙酮萃取出之聚醋酸乙烯酯單聚合體之TGA(a) 和DTG(b)圖形…………………………………………. 81
圖 4-7水溶性澱粉及澱粉接枝聚醋酸乙烯酯共聚物(St-g-PVAc)之TGA(a) 和DTG(b)圖形……………………………………………….. 82
圖 4-8 PVAc的熱裂解機構............................. 78
圖 4-9澱粉接枝聚醋酸乙烯酯反應產物中,藉由丙酮萃取出的PVAc單聚合體的DSC圖(二次升溫曲線,10oC/min)………………… 84
圖4-10 PHB /Soluble starch聚摻合體系統的DSC圖………………. 87
圖4-11 PHB /PVAc聚摻合體系統的DSC圖………………………… 90
圖4-12 利用Fox和Gordon-Taylor equation去描述PHB /PVAc摻合系統的Tg和組成的關係…………………………………………… 91
圖4-13 PHB/PVAc聚摻合體系統的轉移溫度和組成關係圖……….. 92
圖4-14 PHB /PVAc聚摻合體系統的截面SEM圖(5000倍)………… 94
圖4-15 PHB /PVAc聚摻合體系統的截面SEM圖(10000倍)………. 95
圖4-16 PHB /PVAc = 40/60的截面SEM圖 (a) 蝕刻前(3×104倍) (b) 蝕刻後(3×104倍) (c) 蝕刻前(5×104倍) (d) 蝕刻後(5×104倍)………. 96
圖4-17 PHB /PVAc = 20/80的截面SEM圖 (a) 蝕刻前(3×104倍) (b) 蝕刻後(3×104倍) (c) 蝕刻前(5×104倍) (d) 蝕刻後(5×104倍) …..... 97
圖4-18 PVAc/Soluble Starch聚摻合體系統的DSC圖……………… 99
圖4-19 PHB/SV3聚摻合體系統的DSC圖…………………………… 103
圖 4-20利用Gordon-Taylor equation去描述PHB/SV3摻合系統的Tg和組成的關係,SV3為澱粉接枝聚醋酸乙烯酯反應產物,接枝比值為0.223,接枝效率為12.5%…………………………………… 104
圖4-21 PHB/SV3聚摻合體的轉移溫度和組成的關係。SV3為澱粉接枝聚醋酸乙烯酯反應產物,接枝比值為0.223,接枝效率為12.5%
105
圖4-22不同組成PHB/SV3聚掺合體之TGA圖。SV3為澱粉接枝聚醋酸乙烯酯反應產物,接枝比值為0.223,接枝效率為12.5%.........107
圖 4-23不同組成之PHB/SV3系統之儲存模數和溫度關係圖…….. 110
圖4-24不同組成之PHB/SV3系統之損耗模數和溫度關係圖,SV3為澱粉接枝聚醋酸乙烯酯反應產物,接枝比值為0.223,接枝效率為12.5%.........................................111
圖 4-25不同組成之PHB/SV3系統之損耗正切和溫度關係圖…....... 112
圖4-26利用Gordon-Taylor equation去描述PHB/SV3摻合系統的Tg和組成的關係,SV3為澱粉接枝聚醋酸乙烯酯反應產物,接枝比值為0.223,接枝效率為12.5%.............................................113
圖4-27 Aldrich的PHB1H-NMR圖……………………………............. 116
圖4-28 NPHB的1H-NMR圖………………………………………...... 116
圖4-29 Aldrich PHB的13C-NMR圖…................................................... 117
圖4-30 NPHB的13C-NMR圖…………............................................... 117
圖4-31 Aldrich的PHB與南天NPHB粉末的ATR-FTIR圖………… 119
圖4-32 Aldrich的PHB與NPHB粉末的DSC圖…………………… 121
圖4-33 Aldrich的PHB與NPHB粉末的TGA圖…………………… 122
圖4-34 NPHB/SV3聚摻合體系統的DSC圖………............................. 127
圖 4-35利用Gordon-Taylor equation去描述NPHB/SV3摻合系統的Tg和組成的關係……………………………………………………..... 128
圖4-36 NPHB/SV3聚摻合體的轉移溫度和組成的關係……………. 129
圖4-37不同NPHB/SV3聚掺合體之TGA圖………………………… 131
圖4-38不同NPHB/SV3聚掺合體DTG圖形………………………… 132
圖 4-39不同組成之NPHB/SV3系統之儲存模數和溫度關係圖…… 134
圖 4-40不同組成之NPHB/SV3系統之損耗模數和溫度關係圖…… 135
圖4-41不同組成之NPHB/SV3系統之損耗正切和溫度關係圖…… 136

參考文獻 1. Robert W. Lenz and Robert H. Marchessault (2005), Bacterial Polyesters: Biosynthesis, Biodegradable Plastics and Biotechnology, Biomacromolecules , v.6 , P. 1~8
2. Markus Potter and Alexander Steinbuchel (2005), Physical Properties of Microbial Polythioesters: Poly(3-hydroxybutyrate) Granule-Associated Proteins: Impacts on Poly(3-hydroxybutyrate) Synthesis and Degradation, Biomacromolecules, v.6 , P. 552~560
3. Jumpei Kawada, Tina Lu¨tke-Eversloh, Alexander Steinbu¨ chel, and Robert H. Marchessault (2003), Physical Properties of Microbial Polythioesters: Characterization of Poly(3-mercaptoalkanoates) Synthesized by Engineered Escherichia coli, Biomacromolecules, v.4 , P. 1698~1702
4. M. AVELLA, E. MARTUSCELLI, M. RAIMO (2000), Properties of blends and composites based on poly(3-hydroxy)butyrate (PHB) and poly(3-hydroxybutyrate-hydroxyvalerate)(PHBV)copolymers, JOURNAL OF MATERIALS SCIENCE , v.35 , P. 523~545
5. C.S.K. Reddy, R. Ghai, Rashmi, V.C. Kalia (2003) , Polyhydroxyalkanoates an overview, Bioresource Technology , v.87 , P. 137~146
6. L. Jurasek and R. H. Marchessault (2002), The Role of Phasins in the Morphogenesis of Poly(3-hydroxybutyrate) Granules, Biomacromolecules, v.3 , P. 256~261
7. Colin W. Pouton , Saghir Akhtar (1996), polyhydroxyalkanoates and their potential in drug delivery , Advanced Drug Delivery Review, v.18 , P. 133~162
8. Dieter Jendrossek (2005), Fluorescence Microscopical Investigation of Poly(3-hydroxybutyrate) Granule Formation in Bacteria, Biomacromolecules , v.6 , P. 598~603
9. Manfred Zinn, Bernard Witholt, Thomas Egli (2001), Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate, Advanced Drug Delivery Reviews, v.53 , P. 5~21
10. Guocheng Du and Jian Yu (2002), Green Technology for Conversion of Food Scraps to Biodegradable Thermoplastic Polyhydroxyal kanoates, Environmental Science & Technology, v.36 , P. 5511~5516
11. 簡志清。2003.11 NO.5。淺談微生物系生物可降解塑膠。化工資訊與商情(月刊)
12. Galliard, T. and Bowler, P. (1987). In Morphology and composition of starch Properties and potential : Starch. p. 55-78. John Wiely and Sons. N .Y.
13. Hizukuri S. (1996). Starch : Analytical aspects. Ch. 9, In Carbohydrate in Food. A. C. Eliasson (Ed.), p. 347-429. Marcel Dekker, Inc., New York
14. Gallant DJ, Bouchet B, Baidwin PM. (1997). Microscopy of starch : evidence of a new level of granule organization. Carbohydr Polym 32 : 177-191
15. Walter WM, Truong VD, Wiesenborn DP, Carvajal P. (2000). Rheological anphysicochemical properties of starches from moist- and dry-type sweetpotato. JAgric Food Chem V.48, P.2937-2942
16. Wada K, Takahashi K, Shirai K, Kawamura A. (1979). Differential thermal analysis (DTA)applied to examining gelatinization of starches in foods. J Food Sci v.44(5), P.1366-1372
17. Atwell WA, Hood LF, Lineback DR., Varriano Marston E an, Zobel HF. (1988), The terminology and methodology associated with basic starch phenomena. Cereal Food World v.33, P.310-311.
18. Miles MJ, Morris VJ, Ring SG. (1985). Gelation of amylose . Carbohydr. Res. V.135, P. 257-262.
19. Shi YC, Seib PA. (1992). The structure of four waxy starches related to gelatinization and retrogradation. Carbohydr. Res, V.227 , P131-145.
20. Silverio J, Fredriksson H, Andersson R, Eliasson AC, Aman P. (2000). The effect of temperature cycling on the amylopectin retrogradation of starches with different amylopectin unit-chain length distribution. Carbohydr. Polym. v42, P.175-184
21. Tai ML, Lii CY. (2000). Effect of hot–water soluble components on the rheological properties of rice starch. Starch Starke V.5, P.44-53.
22. Clark AH, Gidley NJ, Richardson RK, Ross-Murphy SB. (1989). Rheological studies of aqueous amylose gels: The effect of chain length and concentration on gel modulus. Macromolecules V22, P.346.
23. French D. (1984). Organization of starch granules. In: Whistler RL, Bemiller J.N, and Paschall E.F, editors. Starch: Chemistry and Technology. 2nd ed. New York: Academic Press, INC. p 205-208.
24. Tako M, Hizukuri S. (1995). Evidence for conformational transitions in amylose. J. Carbohydrate. Chem. V.14 P.613-622.
25. Wada K, Takahashi K Poutanen, K. and Forssell, P. (1996) . Modification of Starch Properties with Plasticizers. Biotechnology and Food Research.v.4, P 128-132
26. Koller, I. &Owen , A. J . (1995) . starch-Filled PHB and PHB/HV Copolymer. Polymer International. V.39, P. 175-181
27. Rodriguez-Gonzalez, F. J., Ramsay, B. A.,Favis,B.D. (2003) .High performance LDPE/thermoplastic starch blend:a sustainable alternative to pure polyethylene. Polymer. V.44 , P.1517-1526
28. Tianyi Ke, Xiuzhi S. Sun. (2002) .Thermal and Mechanical Properties of Poly(lactic acid)/starch/Methylenediphenyl Diisocyanate Blending with Triethyl Citrate. Journal of Applied Polymer Science.V.88, P. 2947-2955
29. P. Matzinos , V. Tserki , C. Gianikouris , E. Pavlidou , C. Panayiotou (2002), Processing and characterization of LDPE/starch/PCL blends, European Polymer Journal, v.38 , P. 1713~1720
30. A.J.F. Carvalho , A.E. Job , N. Alves , A.A.S. Curvelo , A. Gandini(2003), Thermoplastic starch/natural rubber blends, Carbohydrate Polymers, v.53 , P. 95~99
31. S. Odusanya, D.M. A. Manan, U. S. Ishiaku, B. M. N. Azemi (2003), Effect of Starch Predrying on the Mechanical Properties of Starch/Poly(ε-caprolactone) Composites, Journal of Applied Polymer Science, v.87 , P. 877~884
32. D. R. Paul, C. B. Bucknall, Polymer Blends, New York (2000) , v.1 , P.294
33. B.J. Hunt, M. I. James, Polymer Characterisation, New York (1993) , P.219
34. M.J. Folkes, P.S. Hope, Polymer Blends and Alloys , Blackie Academic ﹠Professional (1993) , P.51
35. L. A.Utracki, Polymer Alloys and Blends : thermodynamics and rheology, New York : Hanser,1989, p.34
36. L.H. Sperling, Introduction to Physical Polymer Science 3rd ed, John Wiley ﹠Sons (2001) , P.339~342
37. D. R. Paul, Seymour Newman, Polymer Blends, New York (1978) , v.1 , P.189
38. T. K. Kwei, Eli M. Pearce, John R. Pennacchia, M. Charton (1987), Correlation between the glass transition temperatures of polymer mixtures and intermolecular force parameters, Macromolecules, v.20 , P. 1174~1176
39. Jose M. Rodriguez-Parada, Virgil Percec(1986), Interchain electron donor-acceptor complexes: a model to study polymer-polymer miscibility? , Macromolecules, v.19 , P. 55~64
40. D. R. Paul, (1978), Polymer Blends, New York , v.2 , P.37
41. Jin-San Yoon, Won-Sun Lee, Kwang-Sok Kim, In-Joo Chin, Mal-Nam Kim, Chulhee Kim (2000), Effect of poly(ethylene glycol)-block-poly(L-lactide) on the poly[(R)-3-hydroxybutyrate] /poly(L-lactide) blends, European Polymer Journal, v.36 , P. 435~422
42. Xintao Shuai, Yong He, Yang-Ho Na, Yoshio Inoue,(2001), Miscibility of Block Copolymers of Poly(ε-caprolactone) and Poly(ethylene glycol) with Poly(3-hydroxybutyrate) as Well as the Compatibilizing Effect of These Copolymers in Blends of Poly(ε-caprolactone) and Poly(3-hydroxybutyrate) , Journal of Applied Polymer Science, V. 80, P. 2600–2608
43. DuPont Packaging and Industrial Polymers (2004), Compatibilizers find the right blend, Plastics Additives & Compounding, V. 6, P. 22–25
44. Wanjun Liu, Manjusri Misra, Per Askeland, Lawrence T. Drzal, Amar K. Mohanty, (2005) ‘Green’ composites from soy based plastic and pineapple leaf fiber: fabrication and properties evaluation ,Polymer, V. 46, P. 2710–2721
45. Lucia H. Innocentini-Mei , Julio R. Bartoli, Rodrigo C. Baltieri (2003), Mechanical and Thermal Properties of Poly(3-Hydroxybutyrate) Blends with Starch and Starch Derivatives, Macromol. Symp, v.197 , P. 77~87
46. Godbole, S. Gote, S. Latkar, M. Chakrabarti,T. (2003).Preparation and characterization of biodegradable poly-3-hydroxybutyrate-starch blend films.Bioresource Technology. v.86, P.33-37
47. Lianlai Zhang, Xianmo Deng, Shujie Zhao, Zhitang Huang(1997) , Biodegradable Polymer Blends of poly(3-hydroxybutyrate) and Starch Acetate , polymer International , v.44 , P. 104~110
48. J. N. Hay , L. Sharma (2000), Crystallisation of Poly(3-hydroxybutyrate)/Polyvinyl acetate blends, Polymer, v.41 , P. 5749~5757
49. Peixiang Xing, Xin Ai, Lisong Dong, Zhiliu Feng (1998), Miscibility and Crystallization of Poly(β-hydroxybutyrate)/Poly(vinyl acetate-co-vinyl alcohol) Blends, Macromolecules, v.31 , P. 6898~6907
50. Yuxian An, Lixia Li, Lisong Dong, Zhishen Mo, Zhiliu Feng ( 1999), Nonisothermal Crystallization and Melting Behavior of Poly(β-hydroxybutyrate)-Poly(vinyl-acetate) Blends, Journal of Polymer Science: Part B: Polymer Physics, v.37 , P. 443~450
51. Yuxian An, Lixia Li, Lisong Dong, Zhishen Mo, Zhiliu Feng (1999), Isothermal crystallization Kinetics and melting behavior of Poly(β-hydroxybutyrate)/Poly(vinyl acetate) Blends, European Polymer Journal, v.35 , P. 365~369
52. David Jt Hill, Martin Markotsis, Andrew K Whittaker, Kathy W Wong (2003), NMR characterization of blends of Poly(hydroxybutyrate-co-hydroxyvalerate) with Poly(vinyl acetate) , Polymer International, v.52 , P. 1780~1789
53. Seok-Ho Hwang, Jae Chang Jung, Sang-won Lee,(1998) Crystallinity and Thermal Characterization of P(HB-HV)/PVAc Blend, European Polymer Journal, v.34, P. 949~953
54. Jun Wuk Park, Youshiharu Doi, Tadahisa Iwata (2004), Uniaxial Drawing and Mechanical Properties of Poly[(R)-3-hydroxybutyrate]/ poly(L-lactic acid) Blends, Biomacromolecules, v.5 , P. 1557~1566
55. Zhaobin Qiu, Takayuki Ikehara, Toshio Nishi (2003), Poly(hydroxybutyrate)/poly(butylene succinate) blends: miscibility and nonisothermal crystallization, Polymer, v.44 , P. 2503~2508
56. Wenjie Chen, Donald J. David, William J. Macknight, Frank E. Karasz (2001), Miscibility and morphology of blends of Poly(3-hydroxybutyrate) and poly(vinyl butyral) , Polymer, v.42 , P. 8407~8414
57. Lianlai Zhang, Chengdong Xiong, Xianmo Deng (1996), Miscibility, crystallization and morphology of blends of Poly(β-hydroxybutyrate)/poly(d,l-lactide) , Polymer, v.37, P. 235~241
58. M. Maekawa, R. Pearce, R.H. Marchessault, R.S.J. Manley (1999), Miscibility and tensile properties of poly (β-hydroxybutyrate)–cellulose propionate blends, Polymer, v.40 , P. 1501~1505

59. Yong He, Xintao Shuai, Ken-ichi Kasuya, Yoshiharu Doi, and Yoshio Inoue (2001), Enzymatic Degradation of Atactic Poly( R, S-3-hydroxybutyrate) Induced by Amorphous Polymers and the Enzymatic Degradation Temperature Window of an Amorphous Polymer System, Biomacromolecules, v.2 , P. 1045~1051

60. Xianmo Deng, Jianyuan Hao, Minglong Yuan, Chengdong Xiong and Shujie Zhao (2001), Miscibility, thermal behaviour, morphology and mechanical properties of binary blends of poly[(R)-3-hydroxybutyrate] with poly(γ-benzyl-L-glutamate), Polymer International, v.50 , P. 37~44
61. Jin-San Yoon, Seong-Hwan Oh, MaI-Nam Kim (1998), Compatibility of poly(3-hydroxybutyrate)/ poly(ethylene-co-vinyl acetate) blends, Polymer, v.39 , P. 2479~2487
62. Alain Dufresne, and Marc Vincendon (2000), poly(3-hydroxybutyrate) and poly(3-hydroxyoctanoate) Blends: Morphology and Mechanical Behavior , Macromolecules , v.33 , P. 2998~3008
63. GR Saad (2002), Blends of bacterial poly[(R)-3-hydroxybutyrate] with oligo[(R,S)-3-hydroxybutyrate]-diol, Polymer International, v.51 , P. 338~348
64. Susan wong, Robert shanks, Alma Hodzic (2002), Properties of poly(3-hydroxybutyric acid) Composites with Flax Fibres Modified by Plasticiser Absorption, Macromolecular Materials Engineering , v.287 , P. 647~655
65. Jiang-Wen You, Hsiu-Jung Chiu, Trong-Ming Don (2003), Spherulitic morphology and crystallization kinetics of melt-miscible blends of poly(3-hydroxybutyrate) with low molecular weight poly(ethylene oxide) , Polymer, v.44 , P. 4355~4362
66. JIEPING LIU, ZHAOBIN QIU, BERND-J. JUNGNICKEL (2005) Crystallization and Morphology of Poly(vinylidenefluoride)/Poly(3-hydroxybutyrate) Blends. III. Crystallization and Phase Diagram by Differential Scanning Calorimetry, Journal of polymer Science: Part B: polymer Physics, v.43 , P. 287~295
67. H.-J. Chiu, H.-L. Chen, J.S. Lin (2001), Crystallization induced microstructure of crystalline/crystalline poly(vinylidene-uoride) /poly(3-hydroxybutyrate) blends probed by small angle X-ray scattering, Polymer, v.42 , P. 5749~5754
68. Chin Han Chan, Claudia Kummerlo¨we, Hans-Werner Kammer (2004), Crystallization and Melting Behavior of Poly(3-hydroxybutyrate)-Based Blends, Macromol. Chem. Phys., v.205 , P. 664~675
69. Jun Wuk Park, Yoshiharu Doi, and Tadahisa Iwata (2005), Unique Crystalline Orientation of Poly[(R)-3-hydroxybutyrate]/Cellulose Propionate Blends under Uniaxial Drawing, Macromolecules , v.38 , P. 2345~2354
70. YUXIAN AN, LISONG DONG, GUANG LI, ZHISHEN MO, ZHILIU FENG (2000), Miscibility, Crystallization Kinetics, and Morphology of Poly(b-hydroxybutyrate) and Poly(methyl acrylate) Blends, Journal of polymer Science: Part B: polymer Physics, v.38 , P. 1860~1867
71. JEONG-CHANG LEE, KEN NAKAJIMA, TAKAYUKI IKEHARA, TOSHIO NISHI (1997), Miscibility in Blends of Poly(3-hydroxybutyrate) and Poly (vinylidene chloride- co-acrylonitrile), Journal of polymer Science: Part B: polymer Physics, v.35 , P. 2645~2652
72. L.L. Zhang, S.H. Goh, S.Y. Lee, G.R. Hee (2000), Miscibility, melting and crystallization behavior of two bacterial polyester/poly(epichlorohydrin-co-ethylene oxide) blend systems, Polymer, v.41 , P. 1429~1439

73. E. El-shafee, Gamal R. Saad, Sherif M. Fahmy (2001), Miscibility, Crystallization and phase structure of Poly(3-hydroxybutyrate)/cellulose acetate butyrate blends, European Polymer Journal, v.37 , P. 2091~2104
74. Lianlai Zhang, Xianmo Deng, Zhitang Huang (1997), Miscibility, thermal behavior and morphological structure of Poly(3-hydroxybutyrate) and ethyl cellulose binary blends, Polymer, v.38 , P. 5379~5387
75. Xintao Shuai, Francis E. Porbeni, Min Wei, Todd Bullions, and Alan E. Tonelli (2002), Formation of Inclusion Complexes of Poly(3-hydroxybutyrate)s with Cyclodextrins. 1. Immobilization of Atactic Poly(R,S-3-hydroxybutyrate) and Miscibility Enhancement between Poly(R,S-3-hydroxybutyrate) and Poly(_-caprolactone), Macromolecules , v.35 , P. 3126~3132
76. George Odian (1970), Ceric Ion Initiated Graft Polymerization onto Poly(vinyl Alcohol), J.Macromol.Sci-Chem,A4(2) , v.6 , P. 317~330
77. S. Ahmad,(2001), Thermal degradation of blends of PVAC with polysiloxane Ð II, Polymer Degradation and Stability, v.71 , P. 299~304
78. Susan Wong, Robert Shanks, Alma Hodzic(2002), Properties of Poly(3-hydroxybutyric acid) Composites with Flax Fibres Modified by Plasticiser Absorption, Macromol. Mater. Eng. , v.287 , P. 647~655
79. Jun Xu, Bao-Hua Guo, Rui Yang, Qiong Wu, Guo-Qiang Chen, Zeng-Min Zhang, (2002), In situ FTIR study on melting and crystallization of polyhydroxyalkanoates, Polymer , v.43 , P. 6893~6899





論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2005-07-27公開。
  • 同意授權瀏覽/列印電子全文服務,於2005-07-27起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信