淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2507200501064000
中文論文名稱 環氧基化合物修飾幾丁聚醣的合成與性質
英文論文名稱 Synthesis and Properties of Epoxide-Modified Chitosan
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 93
學期 2
出版年 94
研究生中文姓名 方裕榮
研究生英文姓名 Yu-Jung Fang
學號 692360091
學位類別 碩士
語文別 中文
口試日期 2005-07-20
論文頁數 101頁
口試委員 指導教授-董崇民
委員-董崇民
委員-陳信龍
委員-陳志成
委員-陳慶鐘
委員-余子隆
中文關鍵字 幾丁聚醣  鄰苯二甲酸酐  二環氧基醚聚  乙二醇 
英文關鍵字 Chitosan  Phthalic anhydride  Poly(ethylene glycol) diglycidyl ether 
學科別分類
中文摘要 本研究是將幾丁聚醣溶於甲酸溶劑中,再加到N,N-二甲基甲醯胺與鄰苯二甲酸酐的溶液系統中,進行均相的化學反應修飾,利用鄰苯二甲酸酐與幾丁聚醣的胺基反應,藉此保護胺基及改善其有機溶劑溶解性。分別利用元素分析與紫外線可見光光譜分析求出鄰苯二甲酸酐之取代度,在相同反應的條件下,兩種不同方法求出來的結果彼此吻合。利用紅外線光譜及固態核磁共振光譜針對產物作結構分析,結果顯示在高溫反應下,幾丁聚醣確實與鄰苯二甲酸酐有化學反應,且隨著反應時間的增加而有取代度增加的趨勢。反應後之產物可溶於如N,N-二甲基甲醯胺、N,N-二甲基乙醯胺和二甲亞碸有機溶劑。再利用幾丁聚醣上的氫氧基與二環氧基醚聚乙二醇進行接枝反應,並加入陽離子型光起始劑,以UV光交聯得到幾丁聚醣二環氧基醚聚乙二醇接枝的產物,利用元素分析求出取代度。之後再利用聯胺去保護還原幾丁聚醣的胺基,並針對產物作結構分析、熱分析以及澎潤比等測試,藉以評估聚乙二醇接枝幾丁聚醣材料的性質和其它方面的應用性。
英文摘要 In this study, chitosan was dissolved in formic acid and modified with phthalic anhydride in N,N-dimethylformamide (DMF), through the reaction of amino group with anhydride group. In this way, chitosan can be dissolved in organic solvent. The results show that the degree of substitution increased with reaction time. In addition, the modified chitosan could be dissolved in several organic solvents, such as DMF、DMAc and DMSO. After reaction, the available hydroxyl group in the chitosan was used to graft synthetic polymers onto chitosan chains with poly(ethylene glycol) diglycidyl ether. Photoinitiator (UVI-6992) was added to prepare PEG-graft-PACS copolymers by UV radiation. Then hydrazine monohydrate was employed to deprotect the phthaloyl group. FTIR and NMR were used to analyze the chemical structures of copolymers. DSC and TGA were employed to measure the thermal properties of the prepared copolymers. Swelling ratio was measured to understand the swelling behaviors at different pH values in order to evaluate potential applications of PEG-graft-CS copolymers .
論文目次 目 錄
中文摘要 I
ABSTRACT: II
目 錄 III
圖 目 錄 VII
表 目 錄 X
第ㄧ章 序論 1
1.1前言 1
1.2研究動機 3
1.3研究目標 3
第二章 文獻回顧 5
2.1幾丁質與幾丁聚醣 5
2.1.1來源 5
2.1.2結構 6
2.1.3排列方向 8
2.1.4幾丁質與幾丁聚醣的製備 11
2.2幾丁聚醣基本性質測定 14
2.2.1分子量的測定 14
2.2.2去乙醯度的測定 16
2.3幾丁聚醣的化學改質 20
2.3.1磺化反應 20
2.3.2接枝聚合作用 21
2.3.3幾丁聚醣與甲基丙烯酸環氧丙酯反應 22
2.3.4羧甲基化反應 23
2.4智慧型高分子水膠概述 25
2.4.1溫度敏感型高分子 25
2.4.2酸鹼敏感型高分子 27
2.4.3離子強度敏感型高分子 28
第三章 研究目的與方法 29
3.1幾丁聚醣與鄰苯二甲酸酐反應 29
3.2幾丁聚醣與二環氧基醚聚乙二醇(PEGDGE)反應 30
3.3幾丁聚醣與聚氮-異丙基丙烯醯胺反應 30
第四章 實驗 33
4.1實驗藥品 33
4.2實驗儀器 38
4.3實驗步驟 40
4.3.1幾丁聚醣與鄰苯二甲酸酐的反應 40
4.3.2苯酸酐修飾幾丁聚醣與二環氧基醚聚乙二醇反應 40
4.3.3去保護反應 43
4.4結構鑑定 44
4.4.1傅氏紅外線吸收光譜儀(FTIR) 46
4.4.2固態13C-NMR光譜 47
4.4.3 X-ray繞射光譜分析儀(XRD) 47
4.5鄰苯二甲酸酐取代度的測定 47
4.5.1元素分析 47
4.5.2產率(%) 48
4.5.3 紫外光/可見光光譜測定 48
4.6二環氧基醚聚乙二醇取代度的測定 49
4.6.1元素分析 49
4.7熱性質分析 49
4.7.1熱重分析(Thermal Gravimetric Analysis, TGA) 49
4.7.2微差掃描熱分析儀(Differential Scanning Calorimeter,DSC) 50
第五章 結果與討論 51
5.1幾丁聚醣與鄰苯二甲酸酐的反應 51
5.1.1樣品之紅外線吸收光譜儀(FTIR)分析 51
5.1.2樣品之固態13C-NMR光譜分析 57
5.1.3 X-ray繞射光譜分析儀(XRD) 61
5.2取代度(DS)的測定 63
5.2.1元素分析 63
5.2.2產率(%) 65
5.2.3紫外光/可見光光譜吸收 66
5.3二環氧基醚聚乙二醇改質幾丁聚醣之合成及其性質 72
5.3.1二環氧基醚聚乙二醇改質幾丁聚醣之合成 72
5.3.2以元素分析法測定二環氧基醚聚乙二醇之取代度 75
5.4性質分析 75
5.4.1熱重分析(TGA) 75
5.4.2微差掃描熱分析(DSC) 80
第六章 結論 84
第七章 建議事項 86
第八章 參考文獻 88




圖 目 錄

圖2-1 纖維素、幾丁質、幾丁聚醣之化學結構 7
圖2-2 α型幾丁質的排列 9
圖2-3 β型幾丁質的排列 10
圖2-4 幾丁質、幾丁聚醣之製程 13
圖2-5 羧甲基幾丁聚醣的製備 24
圖2-6 (a)PNIPAAm結構(b)利用溫度敏感特性貼附及脫附細胞 26
圖4-1 環氧樹脂之光起始反應及交聯反應機制 42
圖4-2 PACS的反應結構式 44
圖4-3 PEG-g-PACS的反應結構式 45
圖4-4 去保護後之PEG-g-CS結構式 46
圖5-1 純幾丁聚醣(a)及高溫酸解後的純幾丁聚醣(b)之FTIR吸收光譜圖 52
圖5-2 鄰苯酸酐修飾幾丁聚醣樣品PACS1及PACS2之FTIR吸收光譜圖 53
圖5-3 鄰苯酸酐修飾幾丁聚醣樣品PACS3及PACS4之FTIR吸收光譜圖 53
圖5-4 鄰苯酸酐修飾幾丁聚醣樣品PACS5之FTIR吸收光譜圖 54
圖5-5 純幾丁聚醣13C-NMR光譜圖 57
圖5-6 樣品PACS1 13C-NMR光譜圖 58
圖5-7 樣品PACS2 13C-NMR光譜圖 58
圖5-8 樣品PACS3 13C-NMR光譜圖 59
圖5-9 樣品PACS4 13C-NMR光譜圖 59
圖5-10 樣品PACS5 13C-NMR光譜圖 60
圖5-11 純幾丁聚醣與不同反應時間之XRD圖 62
圖5-12 不同濃度鄰苯甲醯胺酸之UV光譜圖 67
圖5-13 不同濃度鄰苯二甲醯甲胺之UV光譜圖 67
圖5-14 鄰苯甲醯胺酸在吸收峰275nm的檢量線(λmax=275nm) 68
圖5-15 鄰苯甲醯胺酸在吸收峰291nm的檢量線(λmax=291nm) 68
圖5-16 鄰苯二甲醯甲胺在吸收峰275nm的檢量線(λmax=275nm) 69
圖5-17 鄰苯二甲醯甲胺在吸收峰291nm的檢量線(λmax=291nm) 69
圖5-18 鄰苯二甲酸酐修飾幾丁聚醣樣品(PACS5)之UV光譜圖 70
圖5-19 苯酸酐修飾幾丁聚醣之反應時間與取代度作圖 71
圖5-20 PEG、PACS、PEG-g-PACS和PEG-g-CS之FTIR光譜圖 74
圖5-21 純幾丁聚醣、低分子量幾丁聚醣與鄰苯二甲酸酐修飾幾丁聚醣樣品PACS1~PACS5的熱重分析圖 77


圖5-22 純幾丁聚醣、低分子量幾丁聚醣與鄰苯二甲酸酐修飾幾丁聚醣樣品PACS1~PACS5的DTG圖 77
圖5-23 純幾丁聚醣、苯酸酐修飾幾丁聚醣與聚乙二醇接枝幾丁聚醣樣品(PEG-g-CS)的熱重分析圖 79
圖5-24 純幾丁聚醣、苯酸酐修飾幾丁聚醣與聚乙二醇接枝幾丁聚醣樣品(PEG-g-CS)的DTG圖 79
圖5-25 純幾丁聚醣、低分子量幾丁聚醣與苯酸酐修飾幾丁聚醣PACS1、PACS3和PACS5樣品於DSC中的第一次升溫曲線圖 81
圖5-26 純幾丁聚醣、低分子量幾丁聚醣與苯酸酐修飾幾丁聚醣PACS1、PACS3和PACS5樣品於DSC中的第二次升溫曲線圖 81
圖5-27 純幾丁聚醣、苯酸酐修飾幾丁聚醣與聚乙二醇接枝幾丁聚醣(PEG-g-CS)樣品於DSC中的第一次升溫曲線圖 82
圖5-28 純幾丁聚醣、苯酸酐修飾幾丁聚醣與聚乙二醇接枝幾丁聚醣(PEG-g-CS)樣品於DSC中的第二次升溫曲線圖 83
圖A-1 GMA接枝PACS之FTIR吸收光譜圖 98
圖B-1 GMAPC與NIPAAm經紫外線硬化後之FTIR吸收光譜圖 100


表 目 錄
表2-1 常見的黏度常數K與a值 15
表 2-2 文獻上曾使用過的吸收比以測量幾丁聚醣的去乙醯 19
表2-3 常見的溫度敏感聚合物及其LCST 27
表4-1 幾丁聚醣與鄰苯二甲酸酐於不同反應時間之反應條件 40
表4-2 PEG-g-PACS反應條件 43
表5-1 產物在不同溶劑中的溶解性測試 51
表5-2 FTIR吸收峰之位置表 56
表5-3 純幾丁聚醣和鄰苯二甲酸酐修飾幾丁聚醣上碳的化學位移 60
表5-4 鄰苯二甲酸酐修飾幾丁聚醣樣品PACS1~PACS5苯環(Phth)及羧基(C=O)與幾丁聚醣乙醯胺基上甲基的積分比值 61
表5-5 各結晶峰之吸收角度 63
表5-6 不同反應時間所測得的C、N含量百分比及取代度 63
表5-7 不同反應時間的產率(%) 65
表5-8 樣品之UV吸光度值 70
表5-9 在胺基上的鄰苯甲醯胺酸與鄰苯二甲醯甲胺的取代度 70
表5-10 PEG-g-CS的C、N含量百分比及取代度 75
表5-11 純幾丁聚醣(CS)、低分子量幾丁聚醣(CSO)及苯酸酐修飾幾丁聚醣(PACS1~PACS5)的最大速率裂解溫度值(Tmax) 76
表5-12 純幾丁聚醣(CS)、苯酸酐修飾幾丁聚醣(PACS5)及PEG-g-CS的最大速率裂解溫度值(Tmax) 78
表A-1 元素分析所得到的取代度(DS)與產率(Yield,%) 98
表B-1 PNIPAAm-PC樣品的單體轉化率(X,%)、接枝效率(GE,%)及接枝比值(GR) 101

參考文獻 1. 王三郎,生物技術,高立圖書,2000,第173-196頁。
2. Herrera JR. in Proceedings of the First International Conference on Chitin/Chitosan, Muzzarelli RAA, Pariser ER,eds., MIT Sea Grant Program, Cambridge, Mass., 1978. p. 11.
3. Austin PR, Brine CJ, Castle JE, Zikakis JP. Chitin:New Facets of Research. Science 1981;212:749-753.
4. Knorr D. Use of Chitinous Polymers in Food. Food Technology 1984;38:85-97.
5. Lee YM, Kim SH, Kim SJ. Preparation and characteristics of β-chitin and poly(vinyl alcohol) blend. Polymer 1996;37:5897-5905.
6. Roberts GAF. Chitin Chemistry. London:The Macmillan Press Ltd.;1992. p. 21-35 (Chapter 1).
7. Blackwell J, Gardner KH, Kolpak FJ, Minke R, Classey WB. ACS Symp Ser 1980;141:315.
8. Mazeau K, Winter WT, Chanzy H. Molecular and crystal structure of a high-temperature polymorph of chitosan from electron diffraction data. Macromolecules 1994;27:7606-7612.
9. Hackman RH, Goldberg M. Studies on chitin VI. The nature of α- and β-chitins. Australian Juornal of Biological Sciences 1965;18:935-946.
10. Blackwell J, Weih MA. in Chitin、Chitosan and related enzymes, Zikakis, eds., J. P. Academic Press 1984, p. 257.
11. 徐世昌,生物性高分子-幾丁質與幾丁聚醣之介紹與應用,化工資訊 2001;15:36-45。
12. Foster AB, Hackman RH. Application of ethylenediaminetetra-acetic acid in the isolation of crustacean chitin. Nature 1957;180:40-41.
13. Brine CJ, Austin PR. Chitin variability with species and method of preparation. Comparative Biochemistry and Physiology 1981;69: 283-286.
14. Du Pont de Nemours and Co., UK Patent 458, 1936, p. 839.
15. 王三郎,水產資源利用學,1996,高立圖書。
16. Peniston QP, L JE. Activating Chitin by microwave treatment, US patent 4159932 , 1979.
17. Terbojevich M, Cosani A, Focher B, Marsano E. High-performance gel-permeation chromatography of chitosan samples. Carbohydrate Research 1993;250:301-314.
18. Moore GK, Roberts GAF. Determination of the degree of N-acetylation of chitosan. International Journal of Biological Macromolecules 1980;2:115-116.
19. Baxter A, Dillon M, Taylor KDA. Improved method for i.r. determination of the degree of N-acetylation of chitosan. International Journal of Biological Macromolecules 1992;14:166-169.
20. Duarte ML, Ferreira MC, Marvão MR, Rocha J. An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy. International Journal of Biological Macromolecules 2002;31:1-8.
21. Lavertu M, Xia Z, Serreqi AN, Berrada M, Rodrigues A, Wang D, Buschmann MD, Gupta A. A validated 1H NMR method for the determination of the degree of deacetylation of chitosan. Journal of Pharmaceutical and Biomedical Analysis 2003;32:1149-1158.
22. 邱慧琪,一些硫化多醣的製備與其抗凝血的功效,大同大學生物工程研究所碩士論文,2002。
23. Vongchan P, Sajomsang W, Subyen D, Kongtawelert P. Anticoagulant activity of a sulfated chitosan. Carbohydrate Research 2002;337:1233-1236.
24. Hirano S, Tanaka Y, Hasegawa M, Tobetto K, Nishioka A. Effect of sulfated derivatives of chitosan on some blood coagulant factors. Carbohydrate Research 1985;137:205-215.
25. Muzzarelli RAA, Tanfani F, Emanuelli M, Pace DP, Chiurazzi E, Piani M. Sulfated N-(carboxymethyl) chitosans:novel blood anticoagulants. Carbohydrate Research 1984;126:225-231.
26. Ma L, Gao C, Mao Z, Zhou J, Shen J, Hu X, Han C. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 2003;24:4833-4841.
27. Cho YW, Cho YN, Chung SH, Yoo G, Ko SW. Water-soluble chitin as a wound healing accelerator. Biomaterials 1999;20:2139-2145.
28. Shantha KL, Bala U, Rao KP. Tailor-made chitosans for drug delivery. European Polymer Journal 1995;31:377-382.
29. Kweon DK, Kang DW. Drug-release behavior of chitosan-g-poly(vinyl alcohol) copolymer matrix. Journal of Applied Polymer Science 1999;74:458-464.
30. Chen KS, Uyama Y, Ikada Y. Adhesive Interaction between Polymer Surfaces Grafted with Water-Soluble Polymer Chains. LANGMUIR 1994;10:1319-1322.
31. Svec F, Jehlickova A. Synthesis of Copolymers of Glycidyl Methacrylate-Ethylene Dimethacrylate with Aminopyridines and Their Sorption Properties. Angewandta Makromolekulare Chemie. Applied Macromolecular Chemistry and Physics 1981;99:11-22.
32. Eckert AW, Gröbe D, Rothe U. Surface-modification of polystyrene-microtitre plates via grafting of glycidylmethacrylate and coating of poly-glycidylmethacrylate. Biomaterials 2000;21:441-447.
33. Zeng X, Ruckenstein E. Control of Poxre Sizes in Macroporous Chitosan and Chitin Membranes. Industrial and Engineering Chemistry Research 1996;35:4169-4175.
34. Shanthi C, Rao KP. Chitosan modified poly(glycidyl methacrylate–butyl acrylate) copolymer grafted bovine pericardial tissue—anticalcification properties. Carbohydrate Polymers 2001;44:123-131.
35. Murugan R, Ramakrishna S. Coupling of therapeutic molecules onto surface modified coralline hydroxyapatite. Biomaterials 2004;25:3073-3080.
36. Chellapandian M, Krishnan MRV. Chitosan-poly (glycidyl methacrylate) copolymer for immobilization of urease. Process Biochemistry 1998;33:595-600.
37. Edman P, Ekman B, Sjöholm I. Immobilization of Proteins in Microspheres of Biodegradable Polyacryldextran. Journal of Pharmaceutical Science 1980;69:838-842.
38. Miyashita Y, Yamada Y, Kimura N, Suzuki H, Iwata M, Nishio Y. Phase structure of chitin/poly(glycidyl methacrylate) composites synthesized by a solution coagulation/bulk polymerization method. Polymer 1997;38:6181-6187.
39. Van Dijk-Wolthuis WNE, Franssen O, Talsma H, Van Steenbergen MJ, Kettenes-van den Bosch JJ, Hennink WE. Synthesis, Characterization, and Polymerization of Glycidyl Methacrylate Derivatized Dextran. Macromolecules 1995;28:6317-6322.
40. Van Dijk-Wolthuis WNE, Kettenes-van den Bosch JJ, Van der Kerk-van Hoof A, Hennink WE. Reaction of Dextran with Glycidyl Methacrylate: An Unexpected Transesterification. Macromolecules 1997;30:3411-3413.
41. 詹睿然,水溶性聚胺醣衍生物之合成及其水溶液性質,中正理工學院,應用化學研究所碩士論文,2000。
42. 吳建忠,羧酸改質幾丁聚醣溶液物理性質,元智大學,化學工程研究所碩士論文,2003。
43. Zhao ZP, Wang Z, Wang SC. Formation, charged characteristic and BSA adsorption behavior of carboxymethyl chitosan/PES composite MF membrane. Journal of Membrane Science 2003;217:151-158.
44. Yoshida R, Sakai K, Okano T, Sakurai Y. Pulsatile drug delivery systems using hydrogels. Advanced Drug Delivery Reviews 1993;11:85-108.
45. Sousa RG, Magalhães WF, Freitas RFS. Glass transition and thermal stability of poly(N-isopropylacrylamide) gels and some of their copolymers with acrylamide. Polymer Degradation and Stability 1998;61:275-281.
46. Kwon OH, Kikuchi A, Yamato M, Okano T. Accelerated cell sheet recovery by co-grafting of PEG with PIPAAm onto porous cell culture membranes. Biomaterials 2003;24:1223-1232.
47. Ohya S, Sonoda H, Nakayama Y, Matsuda T. The potential of poly(N-isopropylacrylamide) (PNIPAM)-grafted hyaluronan and PNIPAM-grafted gelatin in the control of post-surgical tissue adhesions. Biomaterials 2005;26:655-659.
48. Wang XL, Huang J, Chen XZ, Yu XH. Graft polymerization of N-isopropylacrylamide into a microporous polyethylene membrane by the plasma method: technique and morphology. Desalination 2002;146:337-343.
49. Panda A, Manohar SB, Sabharwal S, Bhardwaj YK, Majali AB. Synthesis and swelling characteristics of poly (N-isopropylacrylamide) temperature sensitive hydrogels crosslinked by electron beam irradiation. Radiation Physics and Chemistry 2000;58:101-110.
50. Kishi R, Hirasa O, Ichijo H. Fast responsive poly(N-isopropylacrylamide) hydrogels prepared by γ-ray irradiation. Polymer Gels and Networks 1997;5:145-151.
51. Liang L, Feng X, Peurrung L, Viswanathan V. Temperature-sensitive membranes prepared by UV photopolymerization of N-isopropylacrylamide on a surface of porous hydrophilic polypropylene membranes. Journal of Membrane Science 1999;162:235-246.
52. Nakajima K, Honda S, Nakamura Y, Redondo FL, Kohsaka S, Yamato M, Kikuchi A, Okano T. Intact microglia are cultured and non-invasively harvested without pathological activation using a novel cultured cell recovery method. Biomaterials 2001;22:1213-1223.
53. Jeong B, Kim SW, Bae YH. Thermosensitive sol–gel reversible hydrogels. Advanced Drug Delivery Review 2002;54:37-51.
54. Yoo MK, Sung YK, Lee YM, Cho CS. Effect of polyelectrolyte on the lower critical solution temperature of poly(N-isopropyl acrylamide) in the poly(NIPAAm-co-acrylic acid) hydrogel. Polymer 2000;41:5713-5719.
55. Lee WF, Shieh CH. pH-thermoreversible hydrogels. I. Synthesis and swelling behaviors of the (N-isopropylacrylamide-co-acrylamide-co-2-hydroxyethyl methacrylate) copolymeric hydrogels. Journal of Applied Polymer Science 1999;71:221-231.
56. Huglin MB, Liu Y, Velada JL. Thermoreversible swelling behaviour of hydrogels based on N-isopropylacrylamide with acidic comonomers. Polymer 1997;38:5785-5791.
57. Khare AR, Peppas NA. Swelling/deswelling of anionic copolymer gels. Biomaterials 1995;16:559-567.
58. Liu L, Li Y, Li Y, Fang YE. Rapid N-phthaloylation of chitosan by microwave irradiation. Carbohydrate Polymers 2004;57:97-100.
59. Shigemasa Y, Usui H, Morimoto M, Saimoto H, Okamoto Y, Minami S, Sashiwa H. Chemical modification of chitin and chitosan 1: preparation of partially deacetylated chitin derivatives via a ring-opening reaction with cyclic acid anhydrides in lithium chloride/N,N-dimethylacetamide. Carbohydrate Polymers 1999;39:237-243.
60. Nishimura SI, Kohgo O, Kurita K. Chemospecific Manipulations of a Rigid Polysaccharide: Syntheses of Novel Chitosan Derivatives with Excellent Solubility in Common Organic Solvents by Regioselective Chemical Modifications. Macromolecules 1991;24:4745-4748.
61. Tangpasuthadol V, Pongchaisirikul N, Hoven VP. Surface modification of chitosan films. Effects of hydrophobicity on protein adsorption. Carbohydrate Research 2003;338:937-942.
62. Lima IS, Airoldi C. Interaction of copper with chitosan and succinic anhydride derivative-a factorial design evaluation of the chemisorption process. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2003;229:129-136.
63. Rogovina SZ, Vikhoreva GA, Akopova TA, Gorbacheva IN. Investigation of interaction of chitosan with solid organic acids and anhydrides under conditions of shear deformation. Journal of Applied Polymer Science 2000;76:616-622.
64. Kurita K. Controlled functionalization of the polysaccharide chitin. Progress in Polymer Science 2001;26:1921-1971.
65. Li N, Bia R. Copper adsorption on chitosan-cellulose hydrogel beads: behaviors and mechanisms. Separation and Purification Technology 2005;42:237-247.
66. Zeng X, Ruckenstein E. Cross-linked macroporous chitosan anion-exchange membranes for protein separations. Journal of Membrane Science 1998;148:195-205.
67. Gil ES, Hudson SM. Stimuli-reponsive polymers and their bioconjugates. Progress in Polymer Science 2004;29:1173-1222.
68. Lee CF, Wen CJ, Lin CL, Chiu WY. Morphology and temperature responsiveness-swelling relationship of poly(N-isopropylamide-chitosan) copolymers and their application to drug release. Journal of Polymer Science: Part A: Polymer Chemistry 2004;42:3029-3037.
69. Wang M, Qiang J, Fang Y, Hu D, Cui Y, Fu X. Preparation and properties of chitosan-poly(N-isopropylacrylamide) semi-IPN hydrogels. Journal of Polymer Science: Part A: Polymer Chemistry 2000;38:474-481.
70. Lorenzo CA, Concheiro A, Dubovik AS, Grinberg NV, Burova TV, Grinberg VY. Temperature-sensitive chitosan- poly(N-isopropylacrylamide ) interpenetrated networks with enhanced loading capacity and controlled release properties. Journal of Controlled Release 2005;102:629-641.
71. Ciba 公司產品介紹。
72. Xu YX, Kim KM, Hanna MA, Nag D. Chitosan-starch composite film: preparation and characterization. Industrial Crops and Products 2005;21:185-192.
73. Guibal E, Milot C, Eterradossi O, Gauffier C, Domard A. Study of molybdate ion sorption on chitosan gel beads by different spectrometric analyses. International Journal of Biological Macromolecule 1999;24:49-59.
74. Sionkowska A, Wisniewski M, Skopinska J, Kennedy CJ, Wess TJ. Molecular interactions in collagen and chitosan blends. Biomaterials 2004;25:795-801.
75. Kweon HY, Um IC, Park YH. Structural and thermal characteristics of Antheraea pernyi silk fibroin/chitosan blend film. Polymer 2001;42:6651-6656.
76. Liu W, Sun S, Cao Z, Zhang X, Yao K, Lu WW, Luk KDK. An investigation on the physicochemical properties of chitosan/DNA polyelectrolyte complexes. Biomaterials 2005;26:2705-2711.
77. Socrates G. Infrared and Raman Characteristic Group Frequencies. New York:John Wiley&Sons, LTD. Third Edition 2001.
78. Kurita K, Ikeda H, Yoshida Y, Shimojoh M, Harata M. Chemoselective Protection of the Amino Groups of Chitosan by Controlled Phthaloylation:Facile Preparation of a Precursor Useful for Chemical Modifications. Biomacromolecules 2002;3:1-4.
79. Rout DK, Pulapura SK, Gross RA. Liquid Crystalline Characteristics of Site-Selectively-Modified Chitosan. Macromolecules 1993;26:5999-6006.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2008-07-27公開。
  • 同意授權瀏覽/列印電子全文服務,於2008-07-27起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信