淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-2506201422332400
中文論文名稱 建構個人化服務人員與小費估計之推薦機制
英文論文名稱 A Hybrid Approach for Personalized Tour Guide Service and Tip Estimation
校院名稱 淡江大學
系所名稱(中) 企業管理學系碩士班
系所名稱(英) Department of Business Administration
學年度 102
學期 2
出版年 103
研究生中文姓名 容健芳
研究生英文姓名 Chien-Fang Jung
學號 601610016
學位類別 碩士
語文別 中文
口試日期 2014-05-27
論文頁數 71頁
口試委員 指導教授-張瑋倫
委員-李月華
委員-張德民
中文關鍵字 服務小費  推薦系統  自我組織映射  協同式推薦 
英文關鍵字 Tips of service  Self-organizing maps  collaborative filtering approach  Recommendation system 
學科別分類
中文摘要 服務業的成長在經濟發展中顯著而易見,而服務中人員所造成的服務異質性仍是服務提供中維持服務品質的一項難解的難題之一。過去許多研究探討並試圖解決因雙方(服務人員與顧客)的個人因素所產生的品質不穩定,包括了服務人員的工作適配度、員工教育訓練以及工作激勵等角度進行討論;也討論了顧客在服務流程中扮演的角色以及服務預期與服務體驗差距產生的服務認知價值,但卻鮮少討論到服務傳遞者與服務參與者彼此間的互動關係所導致的服務品質差異。
本研究將研究範圍聚焦在觀光導覽服務上,建立一套新的服務流程,將服務精神回歸到以人為本。利用自我組織映射分群法以及協同式過濾推薦法,建立一套全新的機制,將服務人員的選擇及小費金額的給予兩種服務程序,緊扣於顧客認知價值下的選擇。透過自我組織映射法中非監督式的學習網絡,將顧客資料進行分群,來把推薦基準拉近至特質相似的顧客群。再透過協同式過濾推薦法,利用過去顧客的偏好進行新顧客的偏好預測,來推薦合適的服務人員。最後利用自我組織映射分群法,找出被同一服務人員服務過的顧客進行分群,計算出建議的小費金額。在此機制的運行下,能將顧客為主的精神完全融入服務流程,有效提昇顧客的滿意度,同時提昇員工的工作滿意度,造成服務品質提昇的正向循環。
研究結果顯示,研究所提出的機制透過與旅遊決策相關的顧客特性為預測基礎,有效的預測出顧客對不同服務人員的喜好,並指派合適服務人員進行服務。評估指標的表現上,人員推薦系統的平均準確率達81%,最高到85%。研究也證實,在未知服務人員服務特性的狀況下,所推薦出的服務人員,事後觀察其服務特性,發現與顧客所喜好的服務特性雷同,亦即利用此機制選擇服務人員,比起過往隨機指派服務人員的方式,更能滿足顧客對服務的期待。
另外,利用過去顧客的體驗服務經驗與當地的小費文化融合,計算出建議的服務小費金額給予顧客做參考。結果顯示,建議小費金額與顧客對該導覽人員的評分呈現正相關,亦即顧客的平均給分越高者,其小費建議金額會越高。證實了以此系統計算出的小費建議金額,能幫助顧客有所憑據的給予小費金額又不失自身感受到的服務價值。
英文摘要 The growth of service industry impacts the economic development nowadays. However, service heterogeneity is still one of the complex problems to maintain superior service quality. Existing researches attempted to discuss and solve the problem of unstable service quality caused by human beings, such as the appropriateness of job for service providers and education training of staff to standardize the process and control service quality. In addition, some literature investigated the role of customer in service delivering process and the gap between their expectation and perception. Nevertheless, a few researches emphasized on the effect of interaction between service providers and customers that may result in different level of service quality.
This research proposes a new service process by utilizing self-organizing maps and collaborative filtering to form a hybrid approach (including choosing the service providers and the amounts of given tips) based on customer perception. Through the unsupervised learning network, self-organizing maps can cluster and discover the similar segments of customers. Next, we use collaborative filtering approach to predict new customer’s preference based on similar segments.
The proposed approach can effectively forecast customer’s preferences among service providers and assign appropriate employee to serve. Based on customer service experience and the local culture for tips, we can calculate the appropriate amount of tips as recommendation for customers. To blend customer-oriented spirit into service process, the proposed method also can effectively improve the level of satisfaction of customers.
The result shows average value of MAP (mean average value) is 81% and the maximum value of MAP is 85%, which is good for the experiment. The attributes of recommending employees can fit to customer preference more. In other words, our approach can effectively bridge the gap between customer expectation and perception. Finally, the result also reflects on the amount of suggesting tips (i.e., the more the employee can match to the preference, the more tips customer may give).
論文目次 目錄
目錄 I
圖目錄 II
表目錄 IV
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機 6
第三節 研究問題與目的 10
第二章 文獻探討 12
第一節 自我組織映射圖(Self-Organizing Maps) 12
第二節 協同式過濾推薦法(Collaborative Filtering Recommendation) 15
第三節 服務小費 19
第三章 研究方法 21
第一節 研究架構 21
第二節 自我組織映射網路(Self-Organizing Maps) 22
第三節 協同式過濾推薦(Collaborative Filtering Recommendation) 27
第四節 整合建議小費 32
第四章 研究分析 36
第一節 研究資料 36
第二節 評估指標 40
第三節 研究結果分析 43
第五章 研究結果 54
第一節 結論 54
第二節 管理意涵 59
第三節 研究限制 60
參考文獻 62


圖目錄
圖1.1 世界各國服務業所佔GDP百分比趨勢(前五名) 1
圖1.2 OECD會員國各行業就業人口比率 2
圖1.3觀光業貢獻GDP成長比率 3
圖1.4 SERVQUAL模型 8
圖3.2 SOM示意圖 23
圖3.3 SOM輸出層網路示意圖 24
圖3.4 SOM資料映射示意圖 25
圖3.5 朝向BMU集中示意圖 25
圖3.6使用者基礎(USER-BASED)與項目基礎(ITEM-BASED)之比較 28
圖3.7 箱型圖 34
圖3.8範例箱型圖 34
圖4.1準確率和回應率定義圖 40
圖4.2 資料分群圖(以顧客為基礎) 44
圖4.3 不同導覽人員數的推薦結果比較 47
圖4.4 1000筆資料分群(以不同導覽人員為基礎) 48
圖4.5 各群資料筆數與平均誤差值 49
圖4.6 資料筆數與平均誤差值比較 50
圖4.7 顧客評分與小費建議金額比較 53
圖5.1 評分總分與推薦次數關係圖 55
圖5.2 各評估指標走勢圖 56
圖5.3 目標資料分群離散程度與平均誤差比較 56
圖5.4 導覽特性與推薦次數比較 57
圖5.4 小建議金額與顧客平均分數關係圖 58
圖5.5 服務生命循環圖 59




表目錄
表1.1 2012年世界各國服務業所佔GDP百分比(前五名) 2
表1.2全球小費收取概況 5
表1.3 服務中的客製化及服務人員判斷程度 7
表1.4美國小費建議指引範例 9
表2.1 過去研究對自我組織映射法之應用 14
表2.2 近期協同式過濾推薦法研究比較 18
表2.3 近期服務小費研究比較 20
表3.1 使用者評分項目矩陣 29
表3.2 小費建議範例1 32
表3.3 小費建議範例2 33
表4.1 模擬資料整理表 39
表4.2 准確率和回應率元素狀態說明圖 41
表4.2 導覽人員推薦表 44
表4.3 導覽人員評分總數 45
表4.4 研究資料稀疏性 45
表 4.5 導覽人員過去評分分數 46
表4.6 正確率、準確率、回應率與F1指標 46
表4.6 正確率、準確率、回應率與F1指標(續) 47
表4.7 群內資料與平均誤差關係 49
表4.8 A3群組與A4群組內資料 51
表4.9 B1群組內資料 51
表4.10 C2群組與C4群組內資料 51
表4.10 C2群組與C4群組內資料(續) 52
表4.11 導覽人員服務特性受喜好程度 52
表4.12 平均絕對誤差值 52
表5.1 顧客屬性表 54
表5.2 評估指標平均值 55
表5.3 導覽人員特性 57
參考文獻 參考文獻
Ahn, H. J. (2008). “A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem.” Information Sciences, Vol. 178(1), pp. 37-51.
Ambroise, C., Seze, G., Badran, F. and Thiria, S. (2000). Hierarchical clustering of self- organizing maps for cloud classification. Neurocomputing, Vol. 30, pp. 47–52.
Amold, S. J. (1979). A Test of Clusters. Journal of Marketing Reasearch, Vol. 16(4), pp. 545-551.
Barragans-Martinez, A. B., Costa-Montenegro, E., Burguillo, J. C., Rey-Lopez, M., Mikic-Fonte, F. A. and Peleteiro, A. (2010). A hybrid content-based and item-based collaborative filtering approach to recommend TV programs enhanced with singular value decomposition. Information Sciences, Vol. 180, pp. 4290–4311.
Basara Heather, G., and May, Y. (2008). Community health assessment using self-organizing maps and geographic information systems. International Journal of Health Geographics, Vol. 7(67).
Becanovic, V. (2000). Image object classification using saccadic search, spatio- temporal pattern encoding and self-organization. Pattern Recognition Letters, Vol. 21, pp. 253–263.
Booms, B. H. and Bitner, M. J. (1981). Marketing Strategies and Organizational Structures for Service Firms, in Marketing of Services, ed. J. h. Donnelly and W. R. George, pp. 47-51.
Cattinelli, I., Bolzoni, E., Barbieri, C., Mari, F., Martin-Guerrero, J. D., Soria-Olivas, E., Martinez-Martinez, J. M., Gomez-Sanchis, J., Amato, C., Stopper A, and Gatti, E. (2012). Use of Self-Organizing Maps for Balanced Scorecard analysis to monitor the performance of dialysis clinic chains. Health Care Manag Sci, Vol. 15, pp.79–90.
Chang, P. C. and Lai, C. Y. (2005). A hybrid system combining self-organizing maps with case-based reasoning in wholesaler’s new-release book forecasting. Expert Systems with Applications, Vol. 29, pp. 183–192.
Chang, W.L. (2014). Service Mining Framework and Application . NY: Business Expert Press.
Chen, D, Chang, R. and Huang, Y. (2000). Breast cancer diagnosis using self- organizing map for sonography. Ultrasound in Medicine and Biology, Vol. 26, pp. 405–411.
Chen, N., Ribeiro, B., Vieira, A. and Chen, A. (2013). Clustering and visualization of bankruptcy trajectory using self-organizing map. Expert Systems with Applications, Vol.40, pp.385–393.
Choi, K. and Suh, Y. (2013). A new similarity function for selecting neighbors for each target item in collaborative filtering. Knowledge-Based Systems, Vol. 37, pp. 146-153.
Churilov, L., Bagirov, A., Schwartz, D., Smith, K. and Michael, D. (2005). Data mining with combined use of optimization techniques and self-organizing maps for improving risk grouping rules: Application to prostate cancer patients. Journal of Management Information Systems, Vol. 21(4), pp. 85–100.
Daily infographic. Tipping Etiquette around the World. Retrieved October 12, 2013, from http://dailyinfographic.com/tipping-etiquette-around-the-world-infographic
Eklund, T., Back, B., Vanharanta H. and Visa A. (2003). Using the self-organizing map as a visualization tool in financial benchmarking. Information Visualization, Vol. 2, pp. 171–181.
Fiedler, F. E. (1967). A Theory of Leadershi effectiveness. New York, US: McGraw-Hill.
Frawley, W., Shapiro, G. P. and Matheus, C. (1992). Knowledge Discovery in Databases: An Overview. AI Magazine, Vol. 13(3), pp. 213-228.
Gao, F., Xing, C., Du, X. and Wang, S. (2007). Personalized Service System Based on Hybrid Filtering for Digital Library. Tsinghua Science & Technology, Vol. 12(1), pp. 1-8.
Goldberg, D., Nichols, D., Oki, B. M. and Terry, D. (1992). Using collaborative filtering to weave an information tapestry. Communications of the ACM, Vol. 35(12), pp. 61-70.
Gronroos, C. (1981). Internal marketing–an integral part of marketing theory. Marketing of services, 236-238.
Gronroos, C. (1984). A Service Quality Model and Its Marketing Implications. European Journal of Marketing, Vol. 18(4), pp. 37-45.
Gronroos, C. (1984). A Service Quality Model and its Marketing Implications, European Journal of Marketing, Vol. 18(4), pp. 36-44.
Gronroos, C. (1990). Relationship Approach to Marketing in Service Contexts: The Marketing and Organizational Behavior Interface. Journal of Business Research, Vol. 20, pp. 3-11.
Hajek, P., Henriques, R. and Hajkova, V.(2014). Visualising components of regional innovation systems using self-organizing maps—Evidence from European regions. Technological Forecasting & Social Change, Vol. 84, pp. 197-214.
Herzberg, F. B., Mausner and Snyderman, B. (1959). The Motivation to Work. New York, US: John Wiely and Sons Inc.
Hoffman, K. D. and T. N. Ingram (1992). Service provider job satisfaction and customer-oriented performance. Journal of Services Marketing, Vol. 6(2), pp. 68-78.
Holland, J. L. (1985). Making vocational choices: A theory of vocational personalities and work environments. (2nd ed) Englewood, NS :Prentice-Hall.
Homans, G. (1961). Social behavior: Its elementary forms. New York: Harcourt Brace.
Hu, M. Y. and Tsoukalas, C. (2003). Explaining consumer choice through neural networks: The Stacked general approach. Journal of Operational Research, Vol. 146(3), pp.650–661.
Juran, J. M. (1986). A Universal Approach to Managing for Quality. Quality Progress, Vol. 12, pp.19-24.
Juran, J. M. (1988). Juran on Planning for Quality. New York, US: Free Press.
Kauko, T. (2007). A Heterodox Economic Analysis of the Housing Market Structure in Budapest Using Neural Network Classification. Journal of Real Estate Literature, Vol. 15(1), pp. 87-124.
Keaveney, S. M. (1995). Customer Switching Behavior in Service Industries: An Exploratory Study. Journal of Marketing, Vol. 59(April), pp. 71-82.
Kiang, M. Y. and Fisher, D. M. (2008). Selecting the right MBA schools – An application of self-organizing map networks. Expert Systems with Applications, Vol. 35, pp. 946–955.
Kiang, M. Y., Hu, M. Y. and Fisher, D. M. (2006). An extended self-organizing map network for market segmentation—a telecommunication example. Decision Support Systems, Vol.42, pp. 36–47.
Kim, Y. A., Song H. S. and Kim, S. H. (2005). Strategies for preventing defection based on the mean time to defection and their implementations on a self-organizing map. Expert Systems, Vol. 22(5), pp. 265-278.
Kleinberg, J. and Sandler, M. (2008). Using mixture models for collaborative filtering. Journal of Computer and System Sciences, Vol. 74, pp. 49–69.
Kotler, Philip (1961). Marketing management: Analysis, planning, implementation, and control. New Jersey, US: Prentice Hall.
Lansiluoto, A. and Eklund, T. (2008). On the suitability of the self-organizing map for analysis of the macro and firm level competitive environment. Business Intelligence Journal, Vol. 15(4), pp. 402-419.
Lee, H. J. and Park, S. J. (2007). MONERS: A news recommender for the mobile web. Expert Systems with Applications, Vol. 32, pp. 143–150.
Lee, S. K., Cho, Y. H. and Kim, S. H. (2010). Collaborative filtering with ordinal scale-based implicit ratings for mobile music recommendations. Information Sciences, Vol. 180, pp. 2142–2155.
Lien, C. J. (2005). Revisiting the Problem of Market Segmentation: A New Approach Using Self-Organizing Maps, a Data Mining Technique, in Database Marketing. Available from ProQuest Information and Learning.
Lin, A.J., Hsu, C.L. and Li, E.Y.(2014). Improving the effectiveness of experiential decisions by recommendation systems. Expert Systems with Applications, Vol. 41(10), pp. 4904–4914.
Liu, D. R., Lai, C. H. and Chiu, H. (2011). Sequence-based trust in collaborative filtering for document recommendation. Int. J. Human-Computer Studies, Vol. 69, pp. 587-601.
Liu, H., Hu, Z., Mian, A., Tian, H. and Zhu, X. (2013). A new user similarity model to improve the accuracy of collaborative filtering. Knowledge-Based Systems, upcoming.
López-Nores, M., Blanco-Fernández, Y., Pazos-Arias, J. J. and Gil-Solla, A. (2012). Property-based collaborative filtering for health-aware recommender systems. Expert Systems with Applications, Vol. 39, pp. 7451–7457.
Lovelock, C. H. (1983). Classifying Services to Gain Strategic Marketing Insights, Journal of Marketing, Vol. 47(3), pp. 9-20.
Lynn, M and Graves, J. (1996). Tipping: An incentive/reward for service? Hospitality Research Journal, Vol. 20(1), pp. 1-14.
Martin Guerrero, J. D., Marcelli, D., Soria-Olivas, E., Mari, F., Martinez-Martinez, J. M., Soley Bech, I., Martinez-Sober, M., Scatizzi, L., Gomez-Sanchis, J., Stopper, A., Serrano-Lopez, A. J. and Gatti, E. (2012). Self-Organising Maps: A new way to screen the level of satisfaction of dialysis patients. Expert Systems with Applications, Vol. 39(10), 8793-8798.
Melville, P., Mooney, R. J. and Nagarajan, R. (2002). Content-boosted collaborative filtering for improved recommendations, Proceedings of International Conferences, pp. 187-192.
Nelson, D. W., Bellander, B. M., MacCallum, R. M., Axelsson, J., Alm, M., Wallin, M., Weitzberg, E. and Rudehill, A. (2004). Cerebral microdialysis of patients with severe traumatic brain in- jury exhibits highly individualistic patterns as visualized by cluster analysis with self-organizing maps. Critical Care Medicine, Vol. 32(12), pp. 2428–2436.
Nilashi, M., Ibrahim, O.B. and Ithnin, N. (2014). Hybrid recommendation approaches for multi-criteria collaborative filtering. Expert Systems with Applications, Vol. 41(10), pp. 3879–3900.
Organization for Economic Co-operation and Development (n.d.). Short-Term Labour Market Statistics MetaData: Employment by industry. Retrieved October 12, 2013, from http://stats.oecd.org/index.aspx?queryid=38899#
Papagelis, M. and Plexousakis, D. (2005). “Qualitative analysis of user-based and item-based prediction algorithms for recommendation agents.” Engineering Applications of Artificial Intelligence, Vol. 18(7), pp. 781-789.
Parasuraman, A., Zeithaml, V. A., and Berry, L. L. (1988). SERVQUAL: A Multiple-Item Scale for Measuring Customer Perceptions of Service Quality. Journal of Retailing, 64(Spring), pp. 12–40.
Resnick, P. and Varian, H. R. (1997). Recommender systems. Communications of the ACM 40, pp. 56–58.
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J. G. (1994). An open architecture for collaborative filtering of netnews. In Proceedings of ACM CSCW’94 Conference on Computer-Supported Cooperative Work, pp. 175-186.
Resta, M. (2011). Assessing the efficiency of health care providers: a SOM perspective. Lecture notes in computer science, Vol. 6731, pp 30–39.
Sarwar, B. M., Karypis, G., Konstan, J. A. and Riedl, J. (2001). Item-based collaborative filtering recommendation algorithms. Proceedings of the 10th International Conference on World Wide Web, pp. 285–295.
Sarwar, B. M., Konstan, J. A., Borchers, A., Herlocker, J., Miller, B. and Riedl, J. (1998). Using filtering agents to improve prediction quality in the GroupLens research collaborative filtering system, Proceedings of International Conferences on ACM Computer Supported Cooperative Work, pp. 345–354.
Schafer, J. B., Konstan, J. and Riedi, J. (1999). Recommendersystemsine-commercen. Proceedings of the ACM Conference on Electronic Commerce, pp. 158–166.
Schein, A. I., Popescul, A., Ungar, L. H. and Pennock, D. M. (2002, August). Methods and metrics for cold-start recommendations. In Proceedings of the 25th annual international ACM SIGIR conference on Research and development in Information Retrieval (pp. 253-260). ACM.
Schneider, B. and Bowen, D. E. (1985). Employee and Customer Perception of Servicein Banks: Replication and Extension. Journal of Applied Psychology, Vol. 70, pp. 423-433.
Se’verin, E. (2010). Self organizing maps in corporate finance: Quantitative and qualitative analysis of debt and leasing. Neurocomputing, Vol. 73, pp. 2061–2067.
Segrave, K. (1998). Tipping: An American Social History of Gratui-ties. North Carolina, US: McFarland & Company.
Seret, A., Broucke, S. K.L.M.V., Baesens, B. and Vanthienen, J. (2014). A dynamic understanding of customer behavior processes based on clustering and sequence mining. Expert Systems with Applications, Vol. 41(10), pp. 4648–4657.
Shani, G. and Gunawardana, A. (2011). “Evaluating Recommendation Systems.” Recommender Systems Handbook of Springer Science Business Media, pp. 257-297.
Smith, K. A. and Ng, A. (2003). Web page clustering using a self-organizing map of user navigation patterns. Decision Support Systems, Vol. 35, pp. 245– 256.
Solomon, M. R., Surprenant, C., Czepiel, J. A., and Gutman, E. G. (1985). A Role Theory Perspective on Dyadic Interactions: The Service Encounter. Journal of Marketing, Vol. 49(4), pp. 99-111.
Su, J. H., Wang, B. W., Hsiao, C. Y. and Tseng, V. S. (2010). Personalized rough-set-based recommendation by integrating multiple contents and collaborative information. Information Sciences, Vol. 180, pp. 113-131.
The World Bank (n.d.). Services, etc., value added (% of GDP). Retrieved October 12, 2013, from http://data.worldbank.org/indicator/NV.SRV.TETC.ZS/countries/all?display=default
The World Factbook (n.d.). GDP - COMPOSITION, BY SECTOR OF ORIGIN. Retrieved October 12, 2013, from https://www.cia.gov/library/publications/the-world-factbook/fields/2012.html
Tip20!. Tipping Standards – U.S. and International. Retrieved October 12, 2013, from http://www.tip20.com/tipping-standards
Tsaia, C. F. and Hung, C. (2012). Cluster ensembles in collaborative filtering recommendation. Applied Soft Computing, Vol. 12, pp. 1417–1425.
Wang P. Y. and Yang, H. C. (2012). Using collaborative filtering to support college students’ use of online forum for English learning. Computers & Education, Vol. 59, pp. 628–637.
Wei, J. T., Lee, M. C., Chen, H. K. and Wu, H. H. (2013). Customer relationship management in the hairdressing industry: An application of data mining techniques. Expert Systems with Applications, Vol. 40, pp. 7513–7518.
Wiggins, J. L., Peltier, S. J., Ashinoff, S., Weng, S. J., Carrasco, M., Welsh, R. C., Lord, C. and Monk, C. S. (2011). Using a self-organizing map algorithm to detect age-related changes in functional connectivity during rest in autism spectrum disorders. Brain research, Vol. 380, pp.187-197.
Winoto, P., Tang, T. Y. and McCalla G. (2012). Context in a Paper Recommendation System with Collaborative Filtering. The International Review Research in Open and Distance Learning, Vol. 13(5), pp. 56-75.
Wise, W. (2005). Tourism industry and development strategy. Applying ethical research communications, vol. 36, pp. 26-34.
World Travel and Tourism Council (n.d.). Travel & Tourism Trends and Economic Impact(September 2013 Monthly Update). Retrieved October 13, 2013, from http://www.wttc.org/site_media/uploads/downloads/WTTC_monthly_update_September_2013.pdf
Yang, X., Guo, Y., Liu, Y. and Steck, H. (2013). A survey of collaborative filtering based social recommender systems. Computer Communications, upcoming.
Zhang, J., Peng, Q., Sun, S. and Liu, C. (2013). Collaborative filtering recommendation algorithm based on user preference derived from item domain features. Physica A, upcoming.
Zhang, Y., Chen, W. and Yin, Z. (2013). Collaborative filtering with social regularization for TV program recommendation. Knowledge-Based Systems, Vol.54, pp. 310–317.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2019-07-16公開。
  • 同意授權瀏覽/列印電子全文服務,於2019-07-16起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信