淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2506201417310700
中文論文名稱 美國高收益債券型基金之風險管理與擇時能力之實證研究
英文論文名稱 An Empirical Study on the Risk Management and Market Timing Ability of High Yield Bond Funds in America
校院名稱 淡江大學
系所名稱(中) 財務金融學系碩士班
系所名稱(英) Department of Banking and Finance
學年度 102
學期 2
出版年 103
研究生中文姓名 鄭翰紘
研究生英文姓名 Han-Hung Cheng
學號 601530362
學位類別 碩士
語文別 中文
口試日期 2014-06-25
論文頁數 55頁
口試委員 指導教授-李沃牆
委員-張淑華
委員-吳典明
委員-李沃牆
中文關鍵字 高收益債券型基金  擇時能力  Copula  系統性風險 
英文關鍵字 High Yield Bond Funds  Timing Ability  Copula  Systematic Risk 
學科別分類
中文摘要 自2000年網路科技泡沫起,全球利率開始下降。緊接而來的2008年金融海嘯,利率更持續了五年的低水準。進而分析美國債券市場也可以發現從2008年以來高收益債券出現爆發型成長。正因如此,投資者開始轉向以債券為主的共同基金為投資目標。本論文以此為背景探討美國高收益債券型基金之風險管理與擇時能力。首先,本文使用Copula函數檢驗高收益債券基金對於股票市場的風險與收益以及短期利率之影響。接著使用古典擇時模型以及ARMAX-GARCH模型檢驗高收益債券市場的系統性風險和基金擇時能力。
實證結果顯示,高收益債券型基金與股票市場之超額報酬存在正相關,而與短期利率之相關性受到股票市場之影響有輕微正相關。擇時能力的部分我們發現多數高收益債券型基金經理人沒有擇時能力,而不論使用Copula函數還是擇時模型皆出現顯著正向的系統性風險。
由於美國高收益債券市場完整且不缺乏流動性,高收益債券型基金經理可以靈活的調整自己的投資組合配置和系統性風險,但實證卻無法檢定出基金經理人有擇時能力。換句話說,美國的高收益債券市場雖然有足夠的規模和流動性,但本文仍然建議投資人在選擇美國高收益債券基金商品時要更注意系統性風險。
英文摘要 Since 2000, dot-com bubble, global interest rates began to decline. Immediately came the 2008 financial crisis, more sustained low level of interest rates for five years. Further analysis of the U.S. bond market can also be found explosive type growth since 2008 high yield bond. For this reason, investors are turning to the bond-based mutual funds as an investment target. In this paper, in order to investigate the background of risk management and timing ability of U.S. high yield bond funds. Firstly, we apply Copula function test the high yield bond funds for the equity markets affect the risk and benefit, and short-term interest rates affect. Then using timing ability classical model and ARMAX-GARCH model test high yield bond market systemic risk and fund timing ability.
The empirical results show that high yield bond funds and stock market that excess returns there is a positive correlation, and short-term interest rates with a slight positive correlation by stock market the impact. As to the timing ability, we found that most high yield bond fund managers do not have the ability, and regardless of the model using Copula functions or market timing are still significantly positive systemic risk.
Because the robustand without lack of liquidity of the U.S. high yield bond market, fund managers have the flexibility to adjust their portfolio allocation and systemic risk, but did not test fund managers have the timing ability. In other words, the U.S. high yield bond market there is sufficient size and liquidity, but this paper is still the proposed investment choice of the high yield bond fund goods in U.S. should pay more attention to systemic risk.
論文目次 目 錄

謝 辭 I
目 錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 4
第三節 研究架構與流程 5
第二章 相關文獻探討 6
第一節 美國債券及共同基金市場介紹 6
第二節 風險管理相關文獻 12
第三節 擇時能力相關文獻 15
第四節 Copula函數相關文獻 18
第三章 資料與研究方法 21
第一節 資料介紹 21
第二節 Copula模型 22
第三節 古典擇時與ARMAX-GARCH 以CAPM 模型為基礎 28
第四章 實證結果與分析 31
第一節 Copula關聯性分析 31
第二節 擇時能力 40
第五章 結論與建議 44
第一節 Copula關聯性分析 44
第二節 擇時能力 46
第三節 建議 47
參考文獻 49


表目錄
表 1:美國各債券發行量(單位:10億美元) 6
表 2:美國各債券平均每日交易量(單位:10億美元) 7
表 3:美國公司債市場平均每日交易量(單位:10億美元) 9
表 4:美國各共同基金持有資產(單位:10億美元) 10
表 5:美國各共同基金新淨現金流動(單位:10億美元) 11
表 6:基金代碼與基金名稱 21
表 7:高收益債券型基金與道瓊工業指數超額報酬敘述統計 31
表 8:高收益債券型基金與道瓊工業指數超額報酬靜態相關性 32
表 9:高收益債券型基金績效與短期利率靜態相關性 36
表 10:基金淨值敘述統計量 40
表 11:T-M模型和T-M-ARMAX-GARCH模型結果 41
表 12:H-M模型和H-M-ARMAX-GARCH模型結果 42
表 13:C-L模型和C-L-ARMAX-GARCH模型結果 43


圖目錄
圖1:信用評等分類 1
圖2:美國公司債市場發行量 9
圖3:Gaussian Copula蒙地卡羅500次產生隨機變數分佈圖 23
圖4:Student-t Copula蒙地卡羅500次產生隨機變數分佈圖 24
圖5:Clayton Copula蒙地卡羅500次產生隨機變數分佈圖 25
圖6:Gumbel Copula蒙地卡羅500次產生隨機變數分佈圖 26
圖7:Frank Copula蒙地卡羅500次產生隨機變數分佈圖 27
圖8:高收益債券型基金與道瓊工業指數超額報酬動態相關性 33
圖9:高收益債券型基金績效與短期利率動態相關性 37

參考文獻 一、 中文文獻
1. 李育峰、周潮(2010),「基於Copula函數的我國CPI與PPI相關性分系」,甘肅金融,第3卷,頁61-64。
2. 李建興、沈中華、顏碧霞(2010),「基金風險狀態與投資人之處分效果:追蹤門檻模型的應用」,管理學報,第27卷5期,頁459-477。
3. 李喬銘(2013),台灣債券型基金之風險管理、擇時能力與門檻效果之實證研究,私立淡江大學財務金融學系博士論文。
4. 李顯儀、廖婉琳(2012),「獲獎基金擇股、擇時能力與平均風格之分析」,台灣金融財務季刊,第13卷3期,頁69-92。
5. 沈青孺(2012),美國總體經濟變數與通貨膨脹關聯性結構探討-Copula模型之應用,私立淡江大學財務金融學系碩士論文。
6. 周建新、于鴻福、張千雲(2009),「利率期限結構變動與債券型基金投資績效」,臺大管理論叢,第20卷1期,頁189-225。
7. 林志娟、江妙真、張慶暉、溫博仕(2005),「平衡型共同基金績效評估與擇時能力研究」,智慧科技與應用統計學報,第3卷1期,頁109-131。
8. 林勝宏(2004),國際股市關聯性結構之研究-Copula模型之應用,國立台灣科技大學資訊管理學系碩士論文。
9. 陳森松、黃憲彰、王南喻、張華然(2007),「檢視債券型基金績效與流量之動態關聯-應用多元隨機波動模式」,企業管理學報,第74期,頁41-65。
10. 楊朝成、廖咸興(1998),「台灣封閉型基金擇時能力之研究-持股比率分析」,台大管理論叢,第9卷1期,頁87-112。
11. 賴奕豪、江福松、林煌傑(2010),「極端報酬下亞洲股市之蔓延效果:應用Copula分析法」,經濟與管理論叢,第6卷第2期,頁247-270。


二、 英文文獻
1. Alexander, K., S. Ruenzi and T. Thiele, (2009),“Employment Risk, Compensation Incentives and Managerial Risk Taking: Evidence from the Mutual Fund Industry,”Journal of Financial Economics, Vol.92, Issue.1, pp.92-108.
2. Ammann, M., K. Axel and S. Ralf, (2010),“What Drives the Performance of Convertible-Bond Funds?,”Journal of Banking & Finance, Vol.34, Issue.11, pp.2600-2613.
3. Aragon, G., (2005), “Timing Multiple Markets: Theory and Evidence from Balanced Mutual Funds,” Unpublished Working Paper, Arizona State University.
4. Blake, C., E. Elton and M. Gruber,(1993), “The Performance of Bond Mutual Funds,” Journal of Business, Vol.66, No.3, pp.371– 403.
5. Boney, V., G. Comer and L. Kelly, (2009), “Timing the Investment Grade Securitiesmarket: Evidence from High QualitybondFunds,”Journal of Empirical Finance, Vol.16, Issue.1, pp.55-69.
6. Chang, E C and L. Wilbur,(1984), “Market Timing and Mutual Fund Investment Performance,”The Journal of Business, Vol.57, Issue.1, pp.57-72.
7. Chen, D H, C L. Chuang, J R. Lin and C L. Lan,(2013),“Market Timing and Stock Selection Ability of Mutual Fund Managers in Taiwan: Applying The Traditional and Conditional Approaches,”International Research Journal of Applied Finance, Vol.4, Issue.1, pp.75-98.
8. Chen, Y., W. Ferson and H. Peters,(2010), “Measuring the Timing Ability and Performance of Bond Mutual Funds,” Journal of Financial Economics, Vol.98, No.1, pp.72-89.
9. Chiou, S C and R S.Tsay, (2008), “A Copula-Based Approach to Option Pricing and Risk Assessment,” Journal of Data Science, Vol.6, No.3, pp.273-301.
10. Daniel, K., M. Grinblatt, S. Titman and R. Wermers (1997), “Measuring Mutual Fund Performancewith Characteristic-Based Benchmarks,”Journal of Finance, Vol.52, No.3, pp.1035-1058.
11. Detzler M., (1999), “The Performance of Global Bond Mutual Funds,”Journal of Banking and Finance,Vol.23,No.8, pp.1195-217.
12. Elton, E J, M J. Gruber and T. C Green, (2007), “The Impact of Mutual Fund Family Membership on Investor Risk,”Journal of Financial and Quantitative Analysis, Vol.42, Issue.2, pp.257-277.
13. Elton, E J, M J. Gruber and C R. Blake,(1995), “Fundamental Economic Variables, Expected Returns, and Bond Fund Performance,” Journal of Finance, Vol.50, No.4, pp.1229-1256.
14. Gallagher, D. R. and E. Jarnecic,(2002),“The Performance of Active Australian Bond Funds,”Australian Journal of Management, Vol.27, No.2, pp.163-185.
15. Henriksson, R. D. and R. C. Merton,(1981), “On Market Timing and Investment Performance II: Statistical Procedures for Evaluating Forecasting Skills,” Journal of Business, Vol.54, No.4, pp.513–534.
16. Hsu, C. C., C. P. Tseng and Y H. Wang,(2008), “Dynamic Hedging With Futures: a Copula-Based GARCH Model,” Journal of Futures Markets, Vol.28, No.11, pp. 1095-1116.
17. Hu, L., (2006), “Dependence Patterns Across Financial Markets: a Mixed Copula Approach,” Applied Financial Economics, Vol.16, No.10, pp.717-729.
18. Huang, J. J., K. J. Lee, H. M. Liang and W. F. Lin, (2009), “Estimating Value-at-Risk of Portfolio by Conditional Copula - GARCH Method,” Insurance: Mathematics and Economics, Vol.45, Issue 3, pp.315-324.
19. Huang, J., S. Clemens and Z. Hanjiang, (2011),“Risk Shifting and Mutual Fund Performance,”Review of Financial Studies, Vol.24, Issue.8, pp.2575-2616.
20. Hull, J., (2010), “Risk Management and Financial Institutions,” 2nd Edition, Pearson Prentice Hall.
21. Ivkovich, Z. And W. Scott, (2009),“Individual Investor Mutual Fund Flows,”Journal of Financial EconomicsVol.92, Issue.2, pp.223-237.
22. Jiang, G. T., T. Yao and T. Yu, (2007), “Do Mutual Funds Time the Market? Evidence from Portfolio Holdings,” Journal of Financial Economics, Vol.86, No.3, pp.724-758.
23. Jondeau, E. and R. Michael,(2006),“The Copula-GARCH Model of Conditional Dependencies: An International Stock Market Application,” Journal of International Money and Finance, Elsevier, Vol.25, No.5, pp.827-853.
24. Junker M, A.Szimayer and N. Wagner,(2006), “Nonlinear Term Structure Dependence: Copula Functions, Empirics, and Risk Implications,” Journal of Banking and Finance,Vol.30, No.4, pp.1171-1199.
25. Kaplan, S. and B. J. Garrick, (1981), “On the Quantitative Definition of Risk,” Risk Analysis, Vol.1, No.1, pp.11- 27.
26. Lee, C. F. and S. Rahman,(1990), “Market Timing, Selectivity, and Mutual Fund Performance: An Empirical Investigation,” The Journal of Business, Vol.63, No.2, pp. 261-278.
27. Lee,W. C.and H. N. Lin,(2010), “The Dynamic Relationship between Gold and Silver Futures Markets Based on Copula-AR-GJR-GARCH Model,” Middle Eastern of Finance and Economics, Issue.7,pp.118-129.
28. Litterman, R. and J. Sheinkman, (1991), “Common Factors Affecting Bond Returns,” Journal of Fixed Income, Vol.1, No.1, pp.54–61.
29. Manner, H. and O. Reznikova, (2009), “Time-Varying Copulas: a Survey,” Econometric Reviews, forthcoming.
30. Moneta, F.,(2009),“Measuring Bond Mutual Fund Performance withPortfolio Characteristics,” Job Market Paper.
31. Morey, M. R. and E S. O’Neal,(2006), “Window Dressing in Bond Mutual Funds,”Journal of Financial Research, Vol.29, No.3,pp.325-347.
32. Palaro, H. P. and L. K..Hotta,(2006), “Using Conditional Copula to Estimate Value at Risk,” Journal of Data Science,Vol.4,No.1,pp.93-115.
33. Rodriguez, J. C., (2007), “Measuring Financial Contagion: A copula Approach,” Journal of Empirical Finance,Vol.14,No.3,pp.401-423.
34. Sklar, A., (1959), “Fonctions De Repartition an Dimensions Et LeursMarges,” Institute for Statistics,Vol.8, pp. 229-231.
35. Spiegel, M. and Z. Hong, (2012),“Mutual Fund Risk and Market ShareAdjusted Fund Flows,”Journal of Financial EconomicsVol.108, Issue.2, pp.506-528.
36. Treynor, J. and K..Mazuy,(1966), “Can Mutual Funds Outguess the Market?,” Harvard Business Review, Vol.44, No.4, pp.131–136.
37. Wang, K., Y. H. Chen and S. W. Huang, (2011), “The Dynamic Dependence between the Chinese Market and Other International Stock Markets: A Time-varying Copula Approach,” International Review of Economics and Finance, Vol.20, Issue 4, pp.654-664.

三、相關網站
1.http://www.sifma.org/美國證券業與金融市場協會(Securities Industry andFinancialMarkets Association,SIFMA)
2.http://www.masterhsiao.com.tw/MyPages/homePages/home.php?navil1=10怪老子理財網
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-06-27公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-06-27起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信