淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2506201311594000
中文論文名稱 以微藻處理水產養殖廢水中之氮、磷可行性研究
英文論文名稱 The feasibility of nitrogen and phosphorus removal in aquaculture wastewater by microalgae
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 101
學期 2
出版年 102
研究生中文姓名 吳沛儒
研究生英文姓名 Pei-Ju Wu
學號 600480585
學位類別 碩士
語文別 中文
口試日期 2013-06-04
論文頁數 123頁
口試委員 指導教授-陳俊成
委員-黃思蓴
委員-李柏青
中文關鍵字 微藻  光生物反應器  水產養殖廢水處理 
英文關鍵字 Microalgae  Biophotoreactor  Aquaculture wastewater. 
學科別分類 學科別應用科學環境工程
中文摘要 台灣養殖業逐年發達且每年用水需求大,為了減少養殖廢水的排放及換水所抽取大量的地下水,本研究以海水飼料類的微藻製作光生物反應器探討去除水中氮、磷的效果,並配合利用微藻吸收水中氮磷後會大量繁殖的特性,試驗是否可藉由去除營養鹽的過程而使得微藻大量繁殖,直接作為養殖池內生物的飼料來達到池內原水重複使用、減少抽取地下水及降低業者成本,以達到水資源永續利用的目的。本實驗所用的微藻為周氏扁藻,並培養至光生物反應器中,利用不同環境如光照強度、光源、溫度、硝酸鹽與磷酸鹽濃度及比例調整、曝氣、攪拌等條件,試驗何種條件下較利於本微藻去除水中氮、磷鹽及成長。
本研究結果顯示,周氏扁藻在本環境下最佳去除營養鹽效果及最適生長條件為照度為採用光模擬器且照度為12,000 Lux與12小時光照培養下,經由不同溫度條件培養本微藻也可得知最適合生長及去硝酸鹽溫度為攝氏24 ± 1度,從初始營養鹽比例調整後可明顯看出氮磷比調整至3:1下可有較佳的硝酸鹽去除量。而微藻在一般人工培養下會大量繁殖使得水體中碳源供不應求,在未施予曝氣下周氏扁藻對於硝酸鹽的去除效果不佳且會大量沉澱於反應器底部,而加入曝氣後本微藻不會沉澱於反應器底部,也可在短時間內去除硝酸鹽及快速成長。此外,藉由攪拌實驗可確定曝氣中的攪拌不助於周氏扁藻去除硝酸鹽及快速成長,而磷酸鹽則是在任何條件下,周氏扁藻都可快速且大量的去除。經由結果可得知周氏扁藻在適合的生長環境下可有效去除水中氮、磷,並降低養殖池中的營養鹽,若要做為水生生物的飼料則可額外補充磷源增加成長。
英文摘要 The nitrogen and phosphorus in aquaculture wastewater are difficult and expensive to be removed by traditional wastewater treatment process. Therefore aquaculture industry usually dilutes its wastewater by groundwater or direct outfall to natural water body that cause subsidence in coastal area or algal blooms. This study tries to test the feasibility of using microalgae, namely the Tetraselmis sp., to treat aquaculture wastewater and find the optimal conditions for the Tetraselmis sp. growth and the removal of nitrogen and phosphorus.
The study concludes that Tetraselmis sp. growth in a 12,000 Lux light intensity and 12 hours light/dark period in a bio-photo reactor is better than that cultured under sun light and a 24 ± 1oC is best temperature setting for microalgae grow. An initial N/P ratio of 3/1 provides the best Tetraselmis sp. growth and nutrient removal. When artificial culture was used in growing microalgae, the cultured environment usually encounters limited carbon source and microalgae deposition problems. Aeration was applied to prevent microalgae settlement, to increase microalgae growth and to shorten nitrate removal time. A stirring only without aeration did not improve both microalgae growth and nitrate removal. Compared with nitrate removal, phosphate is always removed faster in all tested cases by Tetraselmis sp.. This study concludes that using Tetraselmis sp. in removing nitrate and phosphate in aquaculture wastewater with appropriate operations is feasible.
論文目次 目錄.....................VI
圖目錄.....................X
表目錄.....................XV
第一章 前言.....................1
1.1研究緣起.....................1
1.2 研究目的.....................5
第二章 文獻回顧.....................7
2.1光合作用.....................7
2.1.1光反應.....................8
2.1.2暗反應.....................9
2.2微藻之生長控制因子.....................12
2.2.1光源.....................12
2.2.2碳源.....................16
2.2.3氮源.....................17
2.2.4磷源.....................20
2.2.5溫度.....................21
2.2.6鹽度.....................22
2.2.7 pH值.....................22
2.3微藻去除氮、磷之優勢.....................23
2.4周氏扁藻相關文獻探討.....................26
2.5 光生物反應器培養系統.....................28
2.5.1開放式培養系統.....................28
2.5.2密閉式培養系統.....................29
第三章 實驗材料與方法.....................30
3.1微藻來源、特性與應用.....................30
3.2微藻前培養.....................35
3.3培養基組成.....................36
3.4海水來源.....................38
3.5實驗儀器與設備.....................40
3.5.1培養系統.....................40
3.5.2分析系統.....................41
3.6光模擬器.....................41
3.7實驗方法.....................44
3.7.1初始營養鹽濃度對於微藻成長及去除氮磷之影響................44
3.7.2不同光源及初始微藻濃度對於微藻成長及去除氮磷之影響...........45
3.7.3營養鹽濃度比例調整對於微藻成長及去除氮磷之影響..............47
3.7.4光照強度對於微藻成長及去除氮磷之影響.....................49
3.7.5曝氣對於微藻成長及去除氮磷之影響.....................50
3.7.6曝氣與攪拌對於微藻成長及去除氮磷之影響.....................51
3.7.7高濃度硝酸鹽與磷酸鹽對於微藻成長及去除氮磷之影響............53
3.8析方法.....................55
3.8.1光照強度分析.....................56
3.8.2微藻生長濃度分析.....................56
3.8.2.1分光光度計與血球計數器測定法.....................56
3.8.2.2 微藻乾重分析.....................59
3.8.3營養鹽分析與校正.....................61
第四章 結果與討論.....................64
4.1初始營養鹽濃度對於微藻成長及去除氮磷之影響..................64
4.2不同光源及初始微藻濃度對於微藻成長及去除氮磷之影響............70
4.3營養鹽濃度比例調整對於微藻成長及去除氮磷之影響...............79
4.4光照強度對於微藻成長及去除氮磷之影響.....................88
4.5曝氣對微藻對於微藻成長及去除氮磷之影響.....................96
4.6曝氣與攪拌對於微藻成長及去除氮磷之影響.....................100
4.7高濃度硝酸鹽與磷酸鹽對於微藻成長及去除氮磷之影響.............107
第五章 結論與建議.....................114
5.1 結論.....................114
5.2 建議.....................117
參考文獻.....................118
圖目錄
圖1-1台灣各縣市水產養殖業比例.....................2
圖1-2台灣水產養殖面積比例.....................3
圖1-3台灣水產養殖用水量.....................4
圖1-4利用微藻去除養殖廢水中氮、磷概念圖.....................6
圖2-1光合作用反應機制.....................8
圖2-2 光反應示意圖.....................9
圖2-3暗反應示意圖.....................11
圖2-4太陽與葉綠素吸收光譜.....................13
圖2-5光合作用色素之吸收光譜.....................14
圖2-6光合作用速率與光照強度關係圖.....................15
圖2-7濃度為1 g / L的螺藻在500 umol photon m-2s-1之光徑..16
圖2-8水中碳源被微藻利用之情形.....................17
圖2-9 DB、CN、GP吸收不同氮源之情形.....................20
圖2-10開放式藻類培養系統示意圖.....................28
圖2-11密閉式藻類培養系統示意圖.....................29
圖3-1周氏扁藻生長時期示意圖.....................31
圖3-2以顯微鏡觀察周氏扁藻型態.....................31
圖3-3微藻在水產養殖業上的應用示意圖.....................33
圖3-4周氏扁藻前培養實驗圖.....................35
圖3-5 Micro Algae Grow培養基.....................37
圖3-6培養基在顯微鏡下的情況.....................37
圖3-7海水採樣位子.....................38
圖3-8光模擬器.....................42
圖3-9初始營養鹽濃度對於微藻成長及去除氮磷之影響實驗照片..........45
圖3-10不同光源及初始微藻濃度對於微藻成長及去除氮磷之影響實驗照片...46
圖3-11透析法實驗示意圖.....................47
圖3-12營養鹽濃度比例調整對於微藻成長及去除氮磷之影響照片......48
圖3-13光照強度對於微藻成長及去除氮磷之影響實驗照片...........50
圖3-14曝氣對於微藻成長及去除氮磷之影響實驗照片............51
圖3-15曝氣與攪拌對於微藻成長及去除氮磷之影響實驗照片..............52
圖3-16高濃度硝酸鹽與磷酸鹽對於微藻成長及去除氮磷之影響實驗照片.....54
圖3-17實驗分析流程圖.....................55
圖3-18光模擬器內不同網格所代表之照度.....................56
圖3-19血球計數器.....................58
圖3-20微藻數量對應其吸光值之檢量線.....................59
圖3-21混凝沉澱後的周氏扁藻.....................60
圖3-22乾燥後的周氏扁藻.....................61
圖3-23微藻重量與吸光值檢量線.....................61
圖3-24海水與去離子水中硝酸鹽測值校正線.....................63
圖3-25海水與去離子水中磷酸鹽測值校正線.....................63
圖4-1 初始營養鹽濃度對於周氏扁藻生長曲之影響..................65
圖4-2初始營養鹽濃度對於微藻去除硝酸鹽量之影響.................65
圖4-3初始營養鹽濃度對於微藻去除磷酸鹽量之影響.................66
圖4-4營養鹽對於微藻生長狀況之影響.....................67
圖4-5初始營養鹽濃度對周氏扁藻生長狀態照片.....................68
圖4-6不同光源對於周氏扁藻的成長影響.....................71
圖4-7自然光下初始微藻濃度之微藻成長曲線.....................73
圖4-8 自然光下初始微藻濃度對於硝酸鹽的去除量.....................74
圖4-9自然光下初始微藻濃度對於磷酸鹽的去除量.....................74
圖4-10 初始微藻濃度對周氏扁藻生長狀態照片.....................77
圖4-11 氮磷比例調整對於周氏扁藻去除磷酸鹽之影響.................80
圖4-12氮磷比例調整對於周氏扁藻去除硝酸鹽之影響..................81
圖4-13氮磷比例調整對於周氏扁藻生長之影響.....................82
圖4-14高濃度硝酸鹽實驗結果.....................83
圖4-15低濃度硝酸鹽實驗結果.....................84
圖4-16營養鹽濃度比例調整對周氏扁藻生長狀況照片..................86
圖4-17 光照強度對於周氏扁藻生長之影響.....................88
圖4-18 周氏扁藻在不同光照強度下的成長量.....................89
圖4-19光照強度對於周氏扁藻去除磷酸鹽之影響.....................90
圖4-20光照強度對於周氏扁藻去除硝酸鹽之影響.....................91
圖4-21曝氣對於周氏扁藻去除氮源之影響.....................93
圖4-22 未曝氣下反應器內pH值變化.....................93
圖4-23光照強度對於周氏扁藻生長情況照片.....................94
圖4-24 曝氣實驗結果.....................96
圖4-25曝氣vs.未曝氣下對周氏扁藻生長之影響.....................97
圖4-26曝氣vs.未曝氣下對周氏扁藻去除硝酸鹽之影響................98
圖4-27曝氣 vs.未曝氣下對周氏扁藻去除磷酸鹽之影響...............98
圖4-28曝氣對周氏扁藻生長情況照片.....................99
圖4-29 加入營養鹽後造成周氏扁藻產生沉澱現象照片...............100
圖4-30 攪拌實驗組之微藻生長狀況示意圖.....................101
圖4-31 曝氣及攪拌對微藻生長之影響.....................102
圖4-32曝氣及攪拌對於周氏扁藻去除硝酸鹽影響.....................103
圖4-33曝氣及攪拌對於周氏扁藻去除磷酸鹽影響.....................104
圖4-34曝氣與攪拌對反應器內pH值影響.....................105
圖4-35高曝氣流量與攪拌實驗之微藻生長狀況照片.................106
圖4-36高濃度營養鹽實驗之微藻生長狀況照片.....................108
圖4-37 反應器內高濃度磷酸鹽實驗產程磷酸鹽沉澱現象..............110
圖4-38高磷酸鹽濃度實驗結果.....................111
圖4-39高硝酸鹽濃度實驗結果.....................111
表目錄
表2-1光反應與暗反應之比較.....................12
表2-2常用於廢水處理的微藻.....................25
表2-3周氏扁藻相關研究.....................26
表3-1微藻在水產業之應用..................... 34
表3-2 Micro Algae Grow培養基Part A成分.....................36
表3-3 Micro Algae Grow培養基Part B成分.....................36
表3-4海水性質.....................39
表3-5微藻培養實驗設備清單.....................40
表3-6分析微藻、水質之設備清單.....................41
表3-7光模擬器設備功能介紹.....................43
表3-8初始營養鹽實驗初始條件.....................44
表3-9實驗初始條件.....................46
表3-10實驗初始條件.....................48
表3-11實驗初始條件.....................49
表3-12實驗初始條件.....................50
表3-13實驗初始條件.....................52
表3-14實驗初始條件.....................53
表3-15透析膜規格.....................60
表4-1初始與最後之微藻重量.....................75
表4-2微藻初始與最後的重量.....................85
表4-3初始與最後之微藻重量.....................90
表4-4初始與最後之微藻重量.....................109
參考文獻 1.Aidar, E., Gianesella-Galvao, S. M. F., Sigaud, T. C. S., Asano, C. S., Liang, T. H., Rezende, K. R. V., . . . Sandes, M. A. L. (1994). Effects of light quality on growth, biochemical composition and photo synthetic production in Cyclotella caspia Grunow and Tetraselmis gracilis (Kylin) Butcher. Journal of Experimental Marine Biology and Ecology, 180(2), 175-187.
2.Asian, S., Kapdan, K.I. (2006). Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological engineering, 28, 64-70.
3.Bates, S.S., 1976. Effects of light and ammonium on nitrate uptake by two species of estuarine phytoplankton. Limnol. Oceanogr. 21, 212– 218.
4.Becker, E.W. (1994). Microalgae : biotechnology and microbiology. Cambridge University Press.
5.Borowitzka, M. A. (1999). "Commercial production of microalgae: ponds, tanks, tubes and fermenters." Journal of Biotechnology 70(1-3): 313-321.
6.Chen, S.Y., L.Y. Pan, and A.C. Lee. 2010. Evaluating the culture condition of marine microalgae Tetraselmis chui and its role in a tilapia-microalgae-clam semi-recirculating culture system on the efficiency of removing total ammonia nitrogen in water. J. Fish. Soc. Taiwan 37: 99-109.
7.Chen, S.-Y., Pan, L.-Y., & Lee, A.-C. 2010. The Effects of Temperature on the Growth of and Ammonia Uptake by Marine Microalgae. J. Fish. Soc. Taiwan 37: 126-134.
8.Cloern, J.E., 1977. Effects of light intensity and temperature on Cryptomonas ovata (Cryptophyceae) growth and nutrient uptake rates. J. Phycol. 13, 389– 395.
9.Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294-306.
10.Deevey, E. S., Jr., “Mineral Cycles.” Scientific American, 223, 3, 148 (1970).
11.Falkowski, P. G., A. Sukenik, and R. Herzig. 1989. Nitrogen limitation in Isocrysis galbana (Haptophyceae). II. Relative abundance of chloroplast proteins. Journal of Phycology 25: 471-478
12.Falkowski, P.G., Dubinsky, Z., Wyman, K., 1985. Growth–irradiance relationships in phytoplankton. Limnol. Oceanogr.30, 311 –321.
13.Flynn, K.J. 1991. Algal carbon-nitrogen metabolism: a biochemical basis for modeling the interaction between nitrate and ammonium uptake. J. Plankton Res. 13: 373-387.
14.Goldman J. C., “Identification of Nitrogen as a Growth-Limiting Nutrient in Wastewaters and Coastal Marine Waters Through Continuous Culture Algal Assays.” Water Res., 10, 97 (1976).
15.Hernandez, J.P., de-Bashan, L.E., Bashan, Y. (2006). Starvation enhances phosphorus removal from wastewater by the microalga Chlorella spp. co-immobilized with Azospirillum brasilense. Enzyme and Microbial Technology, 38, 190-198.
16.Hisashi Hoshida, Takayuki Ohira, Akira Minematsu, Rinji Akada and Yoshinori Nishizawa (2005)Accumulation of eicosapentaenoic acid in nannochloropsis spp . in response to elevated CO2 concentrations. Journal of Applied Phycology, 17, 29-34.
17.Hu, Q. (2007). Environmental Effects on Cell Composition. Handbook of Microalgal Culture, Blackwell Publishing Ltd: 83-94.
18.Jacob-Lopes, E., Scoparo, C. H. G., et al. (2009). Effect of light cycles (night/day) on CO2 fixation and biomass production by microalgae in photobioreactors. Chemical Engineering and Processing: Process Intensification 48(1): 306-310.
19.Lavens, P; Sorgeloos, P. (1996)Manual on the production and use of live food for aquaculture FAO Fisheries Technical Paper. No. 361. Rome, FAO. 295p.
20.Lin, Ying-Feng, Jing, Shuh-Ren, Lee, Der-Yuan, Chang, Yih-Feng, Shih, Kai-Chung (2006) Effect of hydraulic loading rate on nitrate removal from groundwater using constructed wetlands. In CD Proceeding of Water2006 Conference. Auckland, New Zealand.
21.Lourenco, S. O., Marquez, U. M. L., Mancini-Filho, J., Barbarino, E., & Aidar, E. (1997). Changes in biochemical profile of Tetraselmis gracilis I. Comparison of two culture media. Aquaculture, 148(2–3), 153-168. doi: http://dx.doi.org/10.1016/S0044-8486(96)01416-0
22.Martinez, M.E., Sanchez, S., Jimenez, J.M., Yousfi, El F., Munoz, L. (2000). Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresource Technology,73,263-272.
23.Masojidek, J., Kobližek, M., et al. (2007). Photosynthesis in Microalgae. Handbook of Microalgal Culture, Blackwell Publishing Ltd: 20 – 39.
24.McCarthy, J.J., W.R. Taylor, and J.L. Taft. 1977. Nitrogenous nutrition of the plankton in the Chesapeake Bay. I. Nutrient availability and phytoplankton preferences. Limnology and Oceanography 22: 996-1011
25.Merrett, M. J. 1990. Inorganic carbon transport in some marine microalgal species. Canadian Journal of Botany 69: 1032-1039.
26.Meseck, S. L., Alix, J. H., & Wikfors, G. H. (2005). Photoperiod and light intensity effects on growth and utilization of nutrients by the aquaculture feed microalga, Tetraselmis chui (PLY429). Aquaculture, 246(1–4), 393-404.
27.Molina Grima, E., Belarbi, E. H., et al. (2003). "Recovery of microalgal biomass and metabolites: process options and economics." Biotechnology Advances 20(7-8): 491-515.
28.Morris, I. 1980. The Physiological Ecology of Phytoplankton. Blackwell Scientific Publication, Oxford, pp. 625.
29.Ogbonna, J. C. and Tanaka, H. (2000). “Light requirement and photosynthetic cell cultivation – Development of processes for efficient light utilization in photobioreactors.” Journal of applied Phycology 12(3): 207-218
30.Ogbonna, J.C., Yada, H., Masui, H., Tanaka, H. (1996). Novel Internally Illuminated Stirred-Tank Photobioreactor for Large-Scale Cultivation of Photosynthetic Cells. Journal of Fermentation and Bioengineering, 82, 61-67.
31.Olguin, EJ. (2003). Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnol Advances, 22, 81-89.
32.Philips, S. 1997. A biology of the algae. Second edition. Cambridge University Press, London, pp. 259.
33.Pulz (2001). "Photobioreactors: production systems for phototrophic microorganisms." Applied Microbiology and Biotechnology 57(3): 287-293.
34.Raven, J.A., 1984. A cost–benefit analysis of photon absorption by photosynthetic unicells. New Phytol. 94, 593– 625.
35.Renaud S.M., Thinh L.V., Lambrinidis, G., Parry D.L. (2002). Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture, 211, 195-214.
36.Renaud, S. M., Zhou, H. C., et al. (1995). “Effect of temperature on growth, total lipid content and fatty acid composition of recently isolated tropical microalgae Isochrysis sp., Nitzschia closterium, Nitzschia paleacea, and commercial species I sochrysis sp. (clone T.ISO).” Journal of Applied Phycology 7(6): 595-602
37.Richmond, A. (1986). Microalgaculture. Crit Rev Biotechnol, 4, 368-438.
38.Rose, P.D., Maart, B.A., Dunn, K.M., Rowswell, R.A., Britz, P. (1996). High rate algal oxidation ponding for the treatment of tannery effluents. Water Science and Technology, 33, 219-227.
39.Ryther, J. H. and Dunstan, W. M., “Nitrogen, Phosphorus, and Eutrophication in the Coastal Marine Environment.” Science, 171, 1008 (1971).
40.Sawayama, S., Rao, K.K., Hall, D.O. (1998). Nitrate and phosphate ion removal from water by Phormidium laminosum immobilized on hollow fibres in a photobioreactor. Appl Microbiol Biotechnol, 49, 463-468.
41.Sawyer, C. N., “Cause, Effects, and Control of Aquatic Growths.” Jour. Water Poll. Control Fed., 34, 279 (1962).
42.Shi, J., Bjoern, P., Michael, M. (2007). Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. Journal of Applied Phycology, 19, 417-423.
43.Shipton, C. A. and Barber, J. (1994). “In vivo and in vitro photoinhibition reactions generate similar degradation fragments of D1 and D2 photosystem-II reaction-centre proteins.” European Journal of Biochemistry 220(3): 801-808.
44.Sobczuk, T. M., Camacho, F. G., et al. (2000). Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors. Biotechnology and Bioengineering 67(4): 465-475.
45.Sorensen, B. H., Nyholm, N, Baun A., (1996). Alga Toxicity Tests with Volatile and Hazardous Compounds in Air-Tight Test Flasks with CO2 Enriched Headspace. Chemosphere, 32, 1513-1526.
46.Strickland, J.D.H., O. Holm-Hansen, R.W. Eppley, and R.J. Linne. 1969. The use of a deep tank in plankton ecology. I. Studies of the growth and composition of phytoplankton crops at low nutrient levels. Limnology and Oceanography 14: 23-34.
47.Suh, I. S. and Lee, S. B. (2001). “Cultivation of a cyanobacterium in an internally radiating air-lift photobioreactor.” Journal of applied Phycology 13(4): 381-388.
48.Syrett, P.J. 1981. Nitrogen metabolism of microalgae. Can. Bull.Fish. Aquat. Sci. 210: 182-210.
49.Tchobanoglous, G., F. L. Burton and H. D. Stensel, Wastewater Engineering Treatment and Reuse, fourth ed., Metcalf and Eddy (2004)
50.Theodorou, M.E., I.R. Elrifi, D.H. Turpin, and W.C. Plaxton, W.C. 1991. Effects of phosphorus limitation on respiratory metabolism in the green alga Selenastrum minutum. Plant Physiology 95: 1089-1095.
51.Turpin, D. H. 1991. Effect of inorganic N availability on algal photosynthesis and carbon metabolism. Journal of Phycology 27: 14-20.
52.Tzovenis, I., De Pauw, N., Sorgeloos, P., 2003. Optimization of TISO biomass production rich in essential fatty acids I. Effect of different light regimes on growth and biomass production. Aquaculture 216, 203–222.
53.Wikfors, G. H. (1986). Altering growth and gross chemical composition of two microalgal molluscan food species by varying nitrate and phosphate. Aquaculture, 59(1), 1-14.
54.蔡國鈞、蔣守銘。(2009)。廢水處理實務:「優養元兇:磷、氮或碳」
55.賴芃劭。(2008)。高脂質累積潛力微藻脂分離及生質柴油生長限制因子之探討。國立中興大學環境工程學研究所碩士論文。
56.胡洪营, 李鑫 和 楊佳。(2009)。關於微藻細胞培養的水質深度淨化與高價值生物質生產耦合技術。 Ecology and Environmental Sciences, 18,1122-1127.
57.翁進坪。(2010) 。第三講墨魚種苗培育與餌料生物培養,僑務委員會中華函授學校出版,pp.47。
58.周廷耀。(2003)。碳源的添加對等鞭金藻增殖的影響。國立中山大學海洋生物研究所碩士論文。
59.周宏農, 李佳峰。( 1992)。藻類在廢水處理上的應用。台灣環境保護 3:27-34.
60.蘇威仁。(2011)。複合型光生物反應器之設計及微藻培養之研究。國立成功大學化學工程研究所碩士論文。
61.陳志威 和 吳文騰。(2002)。生生不息的生質能源。科學發展期刊, 359, 9-11.
62.蘇惠美。(2010)。台灣海藻產業的現況與展望。水產試驗所東港生技研究中心。
63.許建雄。(2006)。以無機碳為碳源培養周氏扁藻─培養條件對生長之影響。大葉大學環境工程研究所碩士論文。
64.行政院環保署網站http://www.epa.gov.tw/
65.行政院農委會漁業署http://www.fa.gov.tw/cht/
66.行政院農委會水產試驗所http://tfrin.gov.tw/mp.asp?mp=1
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-06-26公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-06-26起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信