淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2506201217512000
中文論文名稱 影響醫生使用電子病歷的驅力與阻力之研究
英文論文名稱 The Drivers and Resistance of Doctors Adopted Electronic Medical Record System
校院名稱 淡江大學
系所名稱(中) 企業管理學系碩士在職專班
系所名稱(英) Department of Business Administration
學年度 100
學期 2
出版年 101
研究生中文姓名 翁玉霞
研究生英文姓名 Yu-Hisa Weng
學號 799610257
學位類別 碩士
語文別 中文
口試日期 2012-06-02
論文頁數 47頁
口試委員 指導教授-吳坤山
委員-李月華
委員-張巧真
中文關鍵字 電子病歷  感到威脅性  不公平認知  認知有用性  知覺行為控制  主觀規範  使用意向 
英文關鍵字 Electronic Medical Records (EMR)  Perceived Threat  Perceived Inequality  Perceived Usefulness  Perceived Behavior Control  Subject Norm  Behavior Intention 
學科別分類 學科別社會科學管理學
中文摘要 論文名稱:影響醫生使用電子病歷的驅力與阻力之研究 頁數:47
校系(所)組別:淡江大學企業管理學系碩士在職專班
畢業時間及提要別:100學年度第2學期學位論文提要


研究生:翁玉霞 指導教授:吳坤山 博士

論文提要內容:


有鑑於電子病歷(Electronic Medical Record, EMR)具有減少醫療疏失、提升醫療品質、提高醫師的看診效率等優點,世界先進國家皆積極發展中。醫師是使用電子病歷系統最主要且為最關鍵的人物,如同任何一項新科技產品剛發明或剛上市的時候,定有部分消費者願意採用新科技產品,部分消費者則會抗拒使用新科技產品,電子病歷系統的使用對醫生來說也是如此。
然而在紙本病歷數位化的前提下,除了須仰賴資訊技術環境的改善外,醫生在繁重的工作負荷下,尚需不斷學習新的相關技能,及配合電子化尚須接受適當的操作訓練,否則將無法勝任此工作的改變。醫生對這些額外工作上的要求,其接受程度也大不一致,特別是其對電子病歷推動的接受度與行為意向之問題,更是鮮少有研究對其加以探討。緣此,本研究將以國內各醫院包括醫學中心、區域醫院及地區醫院的執業醫師為研究對象,探討醫生使用電子病歷系統的不公平認知、感到威脅性、認知有用性、知覺行為控制、主觀規範與使用意向間之關聯。本研究總計發放122份問卷,因採現場人員發放問卷及同時回收,故回收樣本數為122份,有效樣本回收率為100%。透過敘述性統計、信度分析、效度分析、及結構方程模型(Structural Equation Modeling, SEM)中之偏最小平方估計法(Partial Leat Square, PLS)進行分析,其主要研究結果如下:
1.醫生對電子病歷的認知有用性顯著正向影響行為意向。
2.感到威脅性顯著負向影響醫生使用電子病歷的意願。
3.不公平認知顯著正向醫生對電子病歷的認知威脅性。
4.知覺行為控制顯著正向影響醫生使用電子病歷的意願。
5.主觀規範顯著正向醫生對電子病歷的認知有用性。
關鍵字:電子病歷、感到威脅性、不公平認知、認知有用性、知覺行為控制、主觀規範、使用意向
英文摘要 Title of Thesis:
The Drivers and Resistance of Doctors Adopted Electronic Medical Record System Total pages:47
Key word: Electronic Medical Records (EMR), Perceived Threat, Perceived Inequality, Perceived Usefulness, Perceived Behavior Control, Subject Norm, Behavior Intention
Name of Institute: Executive Master’s Program of Business Administration (EMBA) in General Management
Graduate date: June, 2012 Degree conferred : Master
Name of student: Weng, Yu-Hisa Advisor: Wu, Kun-Shan, Ph.D
翁玉霞 吳坤山 博士
Abstract:
In the light of the electronic medical records (EMR) has the advantages of reducing medical negligence, enhancing the quality of healthcare, improving the efficiency of the physician’s inspection service, and so on, advanced countries in the world are actively developing. Physicians are the most important and most critical figures who use electronic medical records system. As with any new technology products have just invented or newly launched, there must be some consumers willing to adopt new technology products, some consumers will be reluctant to use them. The similar phenomenon is also happened to the use of electronic medical records system by physicians.
However under the premise of digitizing paper-based medical records, except for relying on the information technology environment to be improved, doctors with heavy workload still need to keep on learning new skills, and to receive proper operational training to keep up the steps of digitization, would otherwise not be qualified for this change. With regard to these extra requirements, the acceptance of doctors are inconsistent, especially on promoting acceptance of electronic medical records and behavioral intention, but few studies have explored it.
Therefore, with the practicing doctors from domestic hospitals, including medical centers, regional hospitals and district hospitals, as study object, the present research paper investigates the relationships of the use of electronic medical records system by doctors among percived inequality, perceived threat, perceived usefulness, perceived behavioral control, subjective norm, and behavior intention. This study surveyed 122 questionnaires, due to the site personnel put out and took back questionnaires simultaneously, thus recovery of the sample is 122, and the effective sample rate of 100%. Through analyzing of descriptive statistics, reliability analysis, validity analysis, and Partial Least Square (PLS) of Structural Equation Modeling (SEM), the main findings are as follows:
1.Doctors’ perceived usefulness towards EMR is significantly positively associated with their behavior intention.
2.Doctors’ perceived threat towards EMR is significantly negatively associated with their usage intention.
3.Doctors’ perceived inequality towards EMR is significantly positively associated with their perceived threat.
4.The perceived behavioral control is significantly positively is associated with their usage intention of EMR.
5.Subject norm is significantly positively associated with doctors’ perceived usefulness towards EMR.

論文目次 目 錄
目 錄 I
表 目 錄 III
圖 目 錄 IV
第一章 緒論 1
第一節 研究背景及動機 1
第二節 研究目的 2
第三節 研究流程 3
第二章 文獻探討 5
第一節 電子病歷發展及預期效益 5
第二節 知覺行為控制及行為意向 8
第三節 認知有用性 9
第四節 主觀規範 11
第五節 不公平認知及感到威脅性 12
第三章 研究方法與設計 14
第一節 研究架構 14
第二節 研究假設 15
第三節 研究變項操作型定義與衡量 17
第四節 研究對象與範圍 20
第五節 資料分析方法 21
第四章 實證分析結果 23
第一節 樣本結構分析 23
第二節 研究變項之因果關係 24
第五章 研究結論與建議 32
第一節 研究結論與發現 32
第二節 管理意涵 35
第三節 研究限制 35
第四節 後續研究方向及建議 36
參考文獻 38
中文部分: 38
英文部分: 38
附錄一:正式問卷 46

表 目 錄
表4-1 正式樣本特性 24
表4-2 研究構面之信效度表 27
表4-3 相關係數矩陣 28
表4-4 研究模型路徑分析結果表 30
表4-5 影響行為意圖之路徑 31
表5-1 研究假說資料彙整表 32

圖 目 錄
圖1-1 研究流程圖 4
圖2-1 電子病歷發展的五大階段 5
圖2-2 衛生署近年推動電子病歷四大方向 7
圖3-1 研究假設和架構圖 14
圖4-1 本研究模式之路徑分析 30
參考文獻 中文部分:
1.Rich Lee’s Blog 資訊科技與文化, 行為意向(Behavior Intention) 分析 http://richchihlee.wordpress.com/tag/behavior-intention/。
2.李婉怡、趙珮如(2004)。醫療產業員工對電子病歷之科技接受模式探討-以中南部地區為例。醫務管理期刊,5(2),243-269。
3.高芙蓉(2010)。資訊技術接受模型研究的新進展。情報雜誌, 29(6), 170-176。
4.黃秀麗(2010)。扶輪社會員入住養生村行為意向之研究。淡江大學企業管理學系碩士在職專班碩士論文。

英文部分:
1.Adams, J. S. (1979). Inequity in Social Exchange, In R. M. Steers & L. W. Porter, eds., Motivation & Work Behavior. New York: McGraw-Hill, 111-124.
2.Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In J. Kuhl and J. Beckman (Eds.), Action Control: From cognition to behavior, 11-39. Berlin: Springer-Verlag.
3.Ajzen, I. (1989). Attitude Structure and Behavior, in A.R. Pratkanis, S.J. Breckler, and A.G. Greenwald (Eds.). Attitude Structure and Function, Lawrence Erlbaum Associates, Hillsdale, NJ, 241-274.
4.Ajzen, I and Driver, B. L.(1992). Application of the theory of planned behavior to leisure choice. Journal of Leisure Research, 24(3), 207-224.
5.Ajzen, I., and Fishbein, M. (1980), Understanding attitudes and predicting social behavior. Englewood Cliffs, NJ: Prentice Hall, 113-129.
6.Anderson, J. C. and Gerbing, D. W. (1988). Structural equations modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103, 411-423.
7.Barclay, D., Higgins, C. and Thompson, R. (1995). The partial least squares (PLS) approach to causal modeling: Personal computer adoption and use as an illustration. Technology Studies, 2(2), 285–309.
8.Bagozzi, R. P. and Yi, Y. (1988). On the Evaluation of Structural Equation Models. Journal of the Academy of Marketing Science, 16, 75-94.
9.Bhattacherjee, (2001). Understanding information systems continuance: An expectaion-confirmation model. MIS Quarterly, 25(3), 351-370.
10.Bhattacherjee, A., and Hikmet, N. (2007). Physicians’ resistance toward healthcare information technology: a theoretical model & empirical test. European Journal of Information System, 16(6), 725-737.
11.Bhattacherjee, A. and Hikmet, N. (2008). Reconceptualizing Organizational Support & Its Effects on Information Technology Usage: Evidence from the Healthcare Sector. Journal of Computer Information Systems, 69-76.
12.Campbell, D. T., and Fiske, D. W. (1959). Convergent and discriminant validation by multitrait-multimethod matrix. Psychological Bulletin, 56 (2), 81-105.
13.Cenfetelli, R. T., and Schwarz, A (2011). Identifying and testing the inhibitors of technology usage intentions. Information System Research, 22(4), 808-823.
14.Chau, P.Y.K. and Hu, P.J.H. (2001). Information technology acceptance by individual professionals: a model comparison approach. Decision Sciences, 32(4), 699-719.
15.Chau, P. Y. K., and Hu, P. J. H. (2002). Investigating healthcare professionals’ decisions to accept telemedicine technology: an empirical test of competing theories. Information Management, 39(4), 297-311.
16.Chismar, W.G. and Wiley-Patton, S. (2003). Does the extended technology acceptance model apply to physicians? Proceedings of the 36th Hawaii International Conference on System Sciences, 160-167. doi:10.1109 / HICSS.2003.1174354 DOI:dx.doi.org.
17.Chin, W. (1998). Issues and Opinion on Structural Equation Modeling. MIS Quarterly, 22(1), 7–16.
18.Davis, F. D., Bagozzi, R. P. and Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Sciences, 35(8), 982-1003.
19.Davis, F. D. (1989). Perceived usefulness, perceived ease of use, & user acceptance of information technology. MIS Quarterly, 13(3), 319-340.
20.Diamon, M. A. (1986). Resistance to change: a psychoanalytic critique of Argyris & Schon’s contributions to organization theory & intervention. Journal of Management Studies 23(5), 543-562.
21.Duck, J. D. (1993). Managing change: the art of balancing. Harvard. Business Review, 71(6),109-118.
22.Fishbein, M. and Ajzen, I. (1975). Belief, attitude, intention & behavior: on introduction to theory & research. Addison-Wesley, Reading, MA.
23.Fishbein, M. and Ajzen I. (1980) Understanding Attitudes & Predicting Social Behavior, Englewood Cliffs, NJ:Prentice-Hall.
24.Fornell, C. and Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39-50.
25.Fu, Jen-Ruei (2006). VISUAL PLS 1.04b1.
http://www2.kuas.edu.tw/prof/fred/vpls/index.html.
26.Gefen, D., Straub, D., and Boudreau, M. (2000). Structural Equation Model Techniques and Regression: Guidelines for Research Practice. Communication of Assocation for Information System, 7, 1-78.
27.Gefen, D. and Straub, D. (2005). A Practical Guide to Factorial Validity Using PLS-Graph: Tutorial and Annotated Example. Communications of the Association for Information Systems, 16, 91-109.
28.Gray, J. L. and Stark, F. A. (1984). Organizational behavior concepts & applications. 3rd edition. Charles E. Merrill Publishing. Co., Columbus, Ohio.
29.Hair, J.F., Anderson , R.E., Tatham , R.L. and Black, W.C. (1998). Multivariate Data Analysis, 5th ed. Upper Saddle River, NJ: Prentice Hall.
30.Hu, P., Chau, P., Sheng, O., and Tam, K. (1999). Examining the technology acceptance model using physician acceptance of telemedicine technology. Journal of Management Information System, 16(2), 91-113.
31.Hulland, J. (1999). Use of Partial Least Squares (PLS) in Strategic Management Research: A Review of Four Recent Studies. Strategic Management Journal, 20(2), 195-204.
32.Joshi, K. (1991). A model of users’ perspective on change: the case of information systems technology implementation. MIS Quarterly, 15(2), 229-242.
33.Judson, A.S. (1991). Changing Behavior in Organizations: Minimizing Resistance to Change. Cambridge, MA: Basil Blackwell, Inc., P48.
34.Kaplan, B. (1987). The influence of medical values & practices on medical computer applications, Proceedings, MEDCOMP’82: The First IEEE Computer Society International Conference on Medical Computer Science/Computational Medicine. Silver Spring, MD.: IEEE Computer Society Press; 1982: 83-88. Reprinted in: Anderson, J. G., & Jay, S.J.(Eds.), Use & impact of computers in clinical medicine. Springer, New York, 39-50.
35.Keil, M., Beranek, P. M., and Konsynski, B. R. (1995). Usefulness & ease of use: field study evidence regarding task considerations. Decision Support Systems 13(1), 75-91.
36.Kemper, A.R., Uren, R.L. and Clark, S.J., (2006). Adoption of Electronic Health Records in Primary Care Pediatric Practices. Pediatrics, 118(1), 20-24.
37.King, N. and Anderson, N. (1995). Innovation & change in organizations. Routledge, London & New York.
38.King, W. R. and He, J. (2006). A meta-analysis of the technology acceptance model. Information Management, 43(6), 740-755.
39.Lapointe, L. and Rivard, S. (2005). A multilevel model of resistance to information technology implementation. MIS Quarterly, 29(3), 461-491.
40.Larum H, Ellingsen G, Faxvaag A (2001). Doctors' use of electronic medical records systems in hospitals: cross sectional survey. BMJ, 323, 1344-1348.
41.Lee, Y., Kozar, K. A. and Larsen, K. R. T. (2003). The technology acceptance model: past, present & future. Communications of the Association for Information Systems 12, 752-780.
42.Lee, S. M., Kim, I., Rhee, S., and Trimi, S. (2006). The role of exogenous factors in technology acceptance: the case of object-oriented technology. Information Management, 43(4), 469-480.
43.Legris, P., Ingham, J., and Collerette, C. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & management, 40, 191-204.
44.Lin, C., Lin, I-C, and Roan, J. (2012). Barriers to Physicians’ Adoption of Healthcare Information Technology: An Empirical Study on Multiple Hospitals. Journal of Medical Systems, 36(3), 1965-1977.
45.Lin, T. C., Sun, P. C., & Hsu, J. C. (2000). The determinants of information system resistance behavior: an empirical study based on theory of planned behavior. Journal of e-Business, 2(2), 1-26.
46.Lin, C.H., Lin, I.C., Roan, J.S. and Yeh, J.S. (2012). Critical Factors Influencing Hospitals' Adoption of HL7 Version 2 Standards: An Empirical Investigation. Journal of Medical Systems, 36(3), 1183-1192.
47.Liu, L., and Ma, Q. (2005). The impact of service level on the acceptance f application service oriented medical records. Information Management. 42(8), 1121-1135.
48.Lopez-Nicolas, C., Molina-Castillo, F. J., and Bouwman, H. (2008). An assessment ofadvanced mobile services acceptance: Contributions from TAM & diffusion theory models, Information & Management, 45(6), 359-364.
49.Lu, J., Yao, J. E. and Yu, C. S. (2005), Personal innovativeness, social influences & adoption of wireless Internet services via mobile technology, The Journal of Strategic Information Systems, 14(3), 245-268.
50.Luecke, R. (2003). Harvard Business Essentials: Managing Change & Transition. Harvard Business School Press, Boston, Mass, 2003.
51.Ludwick, D.A. and Doucette, J. (2009). Adopting electronic medical records in primary care: lessons learned from health information systems implementation experience in seven countries. International Journal of Medical Informatics 78, 22-31.
52.Ma, Q. and Liu, L. (2004). The technology acceptance model: A meta-analysis of empirical findings, Journal of Organizational and End User Computing, 16(1), 59-72.
53.Mathieson, K., Peacock, E., and Chin, W. (2001). Extending the technology acceptance model: the influence of perceived user resources. Database for Advances in Information Systems 32(3), 86-113.
54.Moore, G. C. and Benbasat, I. (1995). Integrating diffusion of innovations and theory of reasoned action models to predict utilization of information technology by end-users. Proceedings of the first IFIP WG 8.6 working conference on the diffusion and adoption of information technology, Oslo, Norway. 132-146.
55.Nunnally, J. C. (1978). Psychometric Theory. New York, NY: McGraw-Hill.
56.Nysveen, H., Pedersen, P. E., and Thorbjornsen, H. (2005). Intentions to use mobile services: Antecedents & cross-service comparisons. Journal of the Academy of Marketing Science, 33(3), 330-346.
57.Pavlou, P. A. and Fygenson, M. (2006). Understanding and Predicting Electronic Commerce Adoption: An Extension of the Theory of Planned Behavior. MIS Quarterly, 30(1), 115-143.
58.Randeree, E. (2007). Exploring physician adoption of EMRs: a multi-case analysis. Journal of Medical Systems, 31(6), 489-496.
59.Robbins, S. P. (1992). Organizational Behavior, 6th edition. Prentice-hall, NY.
60.Sun, H., and Zhang, P. (2006). The role of moderating factors in user technology acceptance. International Journal of Human-Computer Studies, 64, 53-78.
61.Venkatesh, V. and Davis, F. D. (1996). A model of the antecedents of perceived ease of use: Development & test. Decision sciences, 27, 451-481.
62.Venkatesh, V. and Morris, M. G. (2000). Why don’t men ever stop to ask for directions? Gender, social influence, & their role in technology acceptance & usage behavior. MIS Quarterly,24, 115-139.
63.Venkatesh, V. and Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Studies, Management Science, 46(2), 186-204.
64.Venkatesh, V. (2000). Determinants of perceived ease of use: integrating control, intrinsic motivation, & emotion into the technology acceptance model. Information System Research, 11(4), 342-365.
65.Venkatesh, V. (2000). Determinants of Perceived Ease of Use: Integrating Control, Intrinsic Motivation, & Emotion into the Technology Acceptance Model,‖ Information Systems Research 11(4), 342-365.
66.Venkatesh, V., Morris, M. G., Davis, G. B., and Davis, F. D. (2003). User acceptance of information technology: tpward a unified view. MIS Quarterly 27(3), 425-478..
67.Venkatesh, V., and Bala, H. (2008). Technology acceptance model 3 & a research agenda on interventions. Decision Sciences 39(2), 273-315.
68.Walster, E., Walster, G. W., and Berscheid, E. (1978). Equity theory and research. Boston: Allyn and Bacon.
69.Wu,J.h., Wang, S.C. and Lin, L. M. (2007). Mobile computing acceptance factors in the healthcare industry: A structural equation model. International Journal of Medical Informatics, 76(1), 66-77.
70.Yarbrough, A. K. and Smith, T. B. (2007). Technology acceptance among physicians: a new take on TAM. Medical Care and Research Review,. 64(6), 650-672.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2017-07-04公開。
  • 同意授權瀏覽/列印電子全文服務,於2017-07-04起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信