淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2506201209422100
中文論文名稱 協商中的對手喜好預測與協商策略應用
英文論文名稱 Opponent's preferences prediction and strategies develop in E-negotiation
校院名稱 淡江大學
系所名稱(中) 資訊管理學系碩士班
系所名稱(英) Department of Information Management
學年度 100
學期 2
出版年 101
研究生中文姓名 葉學杰
研究生英文姓名 Hsueh-Chieh Yeh
學號 699630983
學位類別 碩士
語文別 中文
口試日期 2012-05-26
論文頁數 60頁
口試委員 指導教授-張昭憲
委員-張應華
委員-戚玉樑
委員-陳育亮
中文關鍵字 對手喜好預測  協商支援  協商戰略與策略  自動化協商 
英文關鍵字 Opponent's Preferences Prediction  Negotiation support  Negotiation Strategies and Tactics  Automated negotiation 
學科別分類 學科別社會科學管理學
學科別社會科學資訊科學
中文摘要 電子化協商的發展方興未艾,各種協商支援系統也紛紛被提出。在眾多的支援項目中,最受人矚目的莫過於對手喜好預測。若能了解對手喜好,便有機會主導協商流程,達成預設目標。學者們雖然提出了許多對手喜好預測方法,但多以精準預測為目標,鮮少考慮當了解對手喜好之後,己方該以何種策略來因應,使預測的積極效果大打折扣。有鑑於此,本研究致力發展一套具有動態策略調整能力的對手喜好預測方法,其能根據預測結果,在協商中導引雙方的出價過程,取得預設的協商結果。為達成此目的,我們首先以Faratin提出的協商模型為基礎,配合基因演算法,預測對手可能的喜好。為了描述協商者的態度,我們設計了多種目標函數,以引導協商流程的進行。當進行動態策略調整時,我們則以預測結果為基礎,透過內部模擬協商,找出可行的策略調整方式,以符合目標式的規範。為驗證方法的有效性,本研究進行了大量的模擬實驗。實驗結果顯示:有預測的一方,無論協商者選擇何種策略目標,均能提升己方的效用值。當雙方均使用喜好預測,且均以自利(selfish)為目標時,可得到最佳的效用總合。若選擇互利或慷慨為遠程目標,則可降低協商回合數,並提高協商成功率。當配合動態策略調整,則效果可獲得進一步提升,顯示動態策略調整的必要性與有效性。
英文摘要 The development of E-Negotiation is still growing as various Negotiation Supporting Systems are also being offered one after another. Among various Supporting Systems, nothing is getting more attention than opponent’s preferences predictions. If we understand opponent’s preferences, we can get the chance to lead the negotiation process and achieve the preset goal. Though scholars have offered many methods to predict opponent’s preferences, most of them focus on accuracy, rather than knowing what tactics to respond one understood their preferences which end up reducing the effects of predictions. In regard to this fact, this research dedicates to develop opponent’s preference prediction which have the ability of dynamic tactics, it can attain the predicted negotiation outcome. In order to attain this goal. First, we use the negotiation model which put forward by Faratin as base, working in coordination which Genetic algorithm to predict possible opponent’s preference. To describe negotiation’s attitude, we design several object function to guide the process of negotiation. When doing the adjustment of dynamic tactics, we find out practicable method of tactic adjustment by simulative negotiation inside on the basis of predictive result to confirm with objective standard. To testing the validity of the method, this research has proceeded abundant of simulated experiments. The result of the research shows that no matter what kind of tactics’ goal the negotiation have chosen , they can an upgrade their own utility value in the side which has doing prediction. When both sides use opponent’s preferences prediction and also make selfish as their goal, it can get the best combination of utility. If we choose mutually beneficial or generosity as the long-term object, we can reduce the rounds of negotiation and raise the rate of success at the same time. The effect can obtain further promotion when matching up dynamic tactics. Then, it reveals the necessity and validity in adjustment of dynamic tactics.
論文目次 目錄
第一章 緒論 1
第二章 相關理論與技術 6
2.1協商類型 6
2.2協商模型 7
2.3協商戰略與策略 9
2.4基因演算法 11
第三章 對手喜好預測 13
3.1對手喜好預測之重要性 13
3.2對手喜好預測之方法 15
3.3使用基因演算法進行對手喜好預測 18
第四章 了解對手喜好狀況下之策略調整 20
4.1預測提案表與候選提案集 20
I. 預測提案表 20
II. 候選提案集 22
4.2 協商目標的設定 23
4.2.1 以效用值為主之策略目標 23
4.2.2 以回合數與成功率為主之策略目標 26
4.3己方策略動態調整 28
4.4 考量對手喜好預測與動態策略調整之協商流程 30
第五章 實驗與結果分析 32
5.1實驗設計與評量指標 32
5.2 實驗結果 34
5.2.1對手喜好預測之準確度 35
5.2.2對手喜好預測之效能(以效用值為目標) 37
5.2.3 對手喜好預測之效能: 以回合數與成交率為考量 40
5.2.4策略動態調整之效能驗證 41
5.2.5 對手喜好變動之效能驗證 42
5.2.6對手喜好變動與策略動態調整之效能驗證 45
5.2.7雙方都具有預測能力 47
5.2.8雙方具有預測能力且喜好變動與策略動態調整 50
第六章 結論與未來研究 53
參考文獻 55
附錄:協商實驗結果 58

表目錄
表 3 1:對手喜好預測參數 17
表 3 2:對手喜好預測之基因編碼 18
表 3 3:基因編碼長度 19
表 4 1:預測提案表 21
表 4 2:以效用值為主之策略目標 25
表 4 3:不同策略與假想對手協商之協商結果 29
表 5 1:實驗相關參數 33
表 5 2:雙方皆無預測對手喜好之協商結果(整合式協商) 37
表 5 3:雙方皆無預測對手喜好之協商結果(分配式協商) 37
表 5 4:我方預測對手喜好之協商結果(整合式協商) 39
表 5 5:我方預測對手喜好之協商結果(分配式協商) 39
表 5 6:以效用值為主之策略(整合式協商) 40
表 5 7:以雙方關係為主之策略(整合式協商) 41
表 5 8:無策略動態調整之協商結果(分配式協商) 42
表 5 9:策略動態調整之協商結果(分配式協商) 42
表 5 10:雙方皆無預測之對手喜好改變(分配式變整合式) 44
表 5 11:我方預測對手之對手喜好改變(分配式變整合式) 44
表 5 12:雙方皆無預測之對手喜好改變(整合式變分配式) 45
表 5 13:我方預測對手之對手喜好改變(整合式變分配式) 45
表 5 14:對手喜好變動(分配式變整合式) 46
表 5 15:對手喜好變動與策略動態調整(分配式變整合式) 46
表 5 16:雙方皆預測對手喜好之分配式協商結果(效用值) 47
表 5 17:雙方皆預測對手喜好之分配式協商(雙方效用和) 48
表 5 18:雙方皆預測對手喜好之分配式協商(雙方效用差) 48
表 5 19:雙方皆預測對手喜好之分配式協商(協商回合數) 48
表 5 20:雙方皆預測對手喜好之分配式協商(協商成交數) 49
表 5 21:雙方皆預測對手之分配式協商(均等效率距離) 49
表 5 22:雙方皆無預測之對手喜好改變(分配式變整合式) 50
表 5 23:雙方皆預測對手且喜好變動與策略動態調整(效用值) 51
表 5 24:雙方皆預測對手且喜好變動與策略動態調整(效用和) 51
表 5 25:雙方皆預測對手且喜好變動與策略動態調整(效用差) 51
表 5 26:雙方皆預測對手且喜好變動與策略動態調整(回合數) 52
表 5 27:雙方皆預測對手且喜好變動與策略動態調整(成交數) 52
表5 28:雙方皆預測對手且喜好變動與策略動態調整(均等效率距離) 52

圖目錄
圖 2 1:基因演算法流程圖 12
圖 3 1:協商動線圖 14
圖 3 2:對手喜好預測挑選方法 16
圖 4 1:協商空間圖 26
圖 4 2:協商空間圖 27
圖 4 3:考量對手喜好預測與動態策略調整之協商流程 31
圖 5 1:實際對手與預測對手效用序列I 36
圖 5 2:實際對手與預測對手效用序列II 36
圖 5 3:對手喜好變動時機 43

參考文獻 [1] 黃淳韋. 2011. "電子化協商架構下的對手喜好預測與策略運用方法," 淡江大學資管系碩士論文).
[2] 蘇木春. 2004. 機器學習: 類神經網路, 模糊系統以及基因演算法則. 全華科技圖書股份有限公司.
[3] 顧承憲. 2002. "協商中的對手喜好預測," 淡江大學資管系碩士論文
[4] Barbuceanu, M., and Lo, W.K. 2001. "Multi-Attribute Utility Theoretic Negotiation for Electronic Commerce," Agent-Mediated Electronic Commerce III), pp 15-20.
[5] Blecherman, B. 1999. "Adopting Automated Negotiation," Technology in Society (21:2), pp 167-174.
[6] Carbonneau, R., Kersten, G.E., and Vahidov, R. 2008. "Predicting Opponent’s Moves in Electronic Negotiations Using Neural Networks," Expert Systems with Applications (34:2), pp 1266-1273.
[7] Faratin, P., Sierra, C., and Jennings, N.R. 1998. "Negotiation Decision Functions for Autonomous Agents," Robotics and Autonomous Systems (24:3), pp 159-182.
[8] Foroughi, A. 1998. "Minimizing Negotiation Process Losses with Computerized Negotiation Support Systems," Journal of Applied Business Research (JABR) (14:4), pp 15-26.
[9] Hindriks, K., Jonker, C.M., and Tykhonov, D. 2009. "The Benefits of Opponent Models in Negotiation," IEEE, pp. 439-444.
[10] Hou, C. 2004. "Predicting Agents Tactics in Automated Negotiation," IEEE, pp. 127-133.
[11] Jain, B.A., and Solomon, J.S. 2000. "Effect of Task Complexity and Conflict Handling Styles on Computer-Supported Negotiations," Information & management (37:4), pp 161-168.
[12] Kersten, G.E., and Noronha, S.J. 1999. "Www-Based Negotiation Support: Design, Implementation, and Use," Decision Support Systems (25:2), pp 135-154.
[13] Lee, W.M., and Hsu, C.C. 2010. "An Intelligent Negotiation Strategy Prediction System," IEEE, pp. 3225-2229.
[14] Lim, J. 1999. "Multi-Stage Negotiation Support: A Conceptual Framework," Information and Software Technology (41:5), pp 249-255.
[15] Lim, J. 2003. "A Conceptual Framework on the Adoption of Negotiation Support Systems," Information and Software Technology (45:8), pp 469-477.
[16] Lopes, F., Mamede, N., Novais, A., and Coelho, H. 2001. "Negotiation Tactics for Autonomous Agents," IEEE, pp. 708-714.
[17] Matos, N., Sierra, C., and Jennings, N.R. 1998. "Determining Successful Negotiation Strategies: An Evolutionary Approach," IEEE, pp. 182-189.
[18] Meffert, K., Rotstan, N., Knowles, C., and Sangiorgi, U. 2008. "Jgap-Java Genetic Algorithms and Genetic Programming Package," URL: http://jgap. sf. net).
[19] Mumpower, J.L. 1991. "The Judgment Policies of Negotiators and the Structure of Negotiation Problems," Management Science), pp 1304-1324.
[20] Oliver, J.R. 1996. "A Machine-Learning Approach to Automated Negotiation and Prospects for Electronic Commerce," Journal of Management Information Systems (13:3), pp 83-112.
[21] Raiffa, H., Richardson, J., and Metcalfe, D. 2002. Negotiation Analysis: The Science and Art of Collaborative Decision Making. Belknap Press.
[22] Rangaswamy, A., and Shell, G.R. 1997. "Using Computers to Realize Joint Gains in Negotiations: Toward an" Electronic Bargaining Table"," Management Science), pp 1147-1163.
[23] Rau, H., Tsai, M.H., Chen, C.W., and Shiang, W.J. 2006. "Learning-Based Automated Negotiation between Shipper and Forwarder," Computers & industrial engineering (51:3), pp 464-481.
[24] Schoop, M., and Quix, C. 2001. "Doc. Com: A Framework for Effective Negotiation Support in Electronic Marketplaces," Computer Networks (37:2), pp 153-170.
[25] Su, S.Y.W., Huang, C., Hammer, J., Huang, Y., Li, H., Wang, L., Liu, Y., Pluempitiwiriyawej, C., Lee, M., and Lam, H. 2001. "An Internet-Based Negotiation Server for E-Commerce," the VLDB Journal (10:1), pp 72-90.
[26] Yuying, W., Jiyuan, L., and Feng, Y. 2009. "A Fuzzy Inference Automatic Negotiation System with Bayesian Learning," IEEE, pp. 591-598.


論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2017-06-28公開。
  • 同意授權瀏覽/列印電子全文服務,於2017-06-28起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信