淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2506201200163400
中文論文名稱 以電鍍銅法製備薄膜式氮化鎵發光二極體元件及其應力分析
英文論文名稱 Stress Analysis of Transferred Thin-GaN Light-Emitting Diode Fabricated by Cu Electroplating
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 100
學期 2
出版年 101
研究生中文姓名 吳仕勤
研究生英文姓名 Shin-Chin Wu
電子信箱 bard84589951@hotmail.com
學號 699401146
學位類別 碩士
語文別 中文
口試日期 2012-05-25
論文頁數 67頁
口試委員 指導教授-張正良
共同指導教授-許世杰
委員-劉正毓
委員-吳宛玉
委員-黃建堯
中文關鍵字 發光二極體  電鍍  應力分析  量子侷限史塔克效應  內部量子效率 
英文關鍵字 Light-Emitting Diode  Electroplating  Stress Analysis  Quantum-Confined Stark Effect  Internal Quantum Efficiency 
學科別分類
中文摘要 本實驗乃利用電鍍(Electroplating)技術取代晶圓鍵合(Wafer Bonding)以達到基板轉移之目的,此技術可達到低成本、解決良率問題、減少晶圓鍵合衍生出的熱應力等優點,並利用雷射剝離(Laser Lift-Off)技術移除導電性、散熱性均不佳的藍寶石基板(Al2O3, Sapphire),以製作薄膜式氮化鎵發光二極體(Thin-GaN LED)之元件。此外,藉由拉曼(Raman)量測及Kozawa方程式計算來探討成長在不同電鍍銅基板厚度下的氮化鎵磊晶層之應力變化,並獲得磊晶層之最小殘留應力,且透過改變氮化鎵磊晶層應力來減少量子侷限史塔克效應(Quantum-Confined Stark Effect, QCSE)以達到增進氮化鎵發光二極體元件之內部量子效率(Internal Quantum Efficiency, IQE)為目的。最後,光致發光光譜(Photoluminescence, PL)用於分析磊晶層能隙變化。
結果發現,波長出現藍位移,如此證明利用基板轉移的方式使磊晶層之應力狀態被獲得改善,並進一步避免了QCSE現象及提升內部量子效率。
英文摘要 We use electroplating technique instead of wafer bonding, because the technique can achieve cost saving、solve yield issues and avoid thermal stress derived from the wafer bonding. Then, laser lift-off technique to remove sapphire substrate which has low thermal and electrical conductivity. In this way, we can get the complete thin-GaN LED structure.
Also, we apply this structure to analyze QCSE phenomena under various thicknesses of copper substrate to reach the goal of under various thicknesses of copper substrate and further enhance the internal quantum efficiency. Besides, we use Raman measurement and Kozawa equation to calculate the changes of the compressive stress of GaN epitaxial layer. PL spectra is adopted to prove the changes of energy bandgap of GaN epitaxial layer.
Finally, we find the blue shift and confirm that it can avoid QCSE phenomena by changing stress-state of GaN epilayer.
論文目次 中文摘要 I
英文摘要 III
目錄 V
圖目錄 VIII
表目錄 XI

第一章 序論 1
1-1 前言 1
1-2 研究目的 2
1-3 論文架構 5
第二章 理論基礎與實驗裝置及原理 6
2-1 發光二極體之相關理論 (Light Emitting Diode, LED) 6
2-1-1 簡介 6
2-1-2 發光二極體主要結構 7
2-1-3 發光二極體效率介紹 8
2-1-3-1 內部量子效率 (Internal Quantum Efficiency, IQE) 8
2-1-3-2 光取出效率 (Light Extraction Efficiency, LEE) 9
2-1-3-3 外部量子效率 (External Quantum Efficiency, EQE) 9
2-2 氮化鎵薄膜之特性 9
2-2-1 薄膜應力 9
2-2-2 薄膜應力來源 10
2-2-3 極化現象 12
2-2-4 極化現象之影響 14
2-3 實驗裝置及原理 15
2-3-1 電子槍及熱蒸鍍 (E-gun and Thermal Evaporation) 15
2-3-2 電鍍技術 (Electroplating Technology) 16
2-3-3 雷射剝離技術 (Laser Lift-Off Technology) 18
2-3-4 拉曼光譜量測 (Raman Spectrum) 19
2-3-4-1 拉曼光譜原理 19
2-3-4-2 聲子振動模式 22
2-3-5 光激發螢光光譜 (Photoluminescence, PL) 23
第三章 實驗方法與步驟 25
3-1 氮化鎵晶片結構 25
3-2 晶片清洗 26
3-3 電子槍蒸鍍金屬層 26
3-4 電鍍銅製程 27
3-5 雷射剝離製程 30
3-6 ICP乾蝕刻製程 30
3-7 定義晶片區域 30
3-8 鈍化層(Passivation Layer)製作 31
3-9 定義N型電極區域 32
第四章 結果與討論 34
4-1 熱應力 34
4-2 本質應力 36
4-3 電流密度影響應力 38
4-4 晶粒(Grain Size)成長誘導應力 41
4-4-1 薄膜成長機制 41
4-4-2 薄膜應力演變 42
4-4-3 晶粒尺寸演變 44
4-5 Raman量測 45
4-6 變功率PL量測 51
4-7 變溫PL量測 53
第五章 結論與未來展望 56
5-1 結論 56
5-2 未來展望 56

圖目錄
圖1.1 直接能隙與間接能隙比較圖 2
圖1.2 半導體材料之能隙發光光譜圖 2
圖1.3 Wurtzite結構示意圖 4
圖1.4 氮化鎵之(0001)面與藍寶石基板之(0001)面原子排列關係圖 4
圖1.5 材料晶格常數與能隙關係圖 5
圖2.1 發光二極體之多重量子井結構 6
圖2.2 目前市面上主流LED之結構圖 7
圖2.3 電流聚集現象 8
圖2.4 薄膜應力示意圖 10
圖2.5 氮化鎵磊晶層磊晶至Sapphire之熱應力示意圖 11
圖2.6 左圖為氮化鎵之Wurtzite結構,右圖為自發極化現象 13
圖2.7 氮化鎵磊晶層之極化現象 14
圖2.8 量子侷限史塔克效應 15
圖2.9 電子槍及熱蒸鍍機外觀示意圖 16
圖2.10 電鍍裝置圖 18
圖2.11 雷射剝離(Laser Lift-Off)示意圖 19
圖2.12 瑞利散射、史托克散射和反史托克散射示意圖 21
圖2.13 光譜強度比較圖 21
圖2.14 拉曼震動模態示意圖 23
圖2.15 電子躍遷示意圖 24
圖3.1 氮化鎵晶片結構 25
圖3.2 Thin-GaN製程示意圖 29
圖3.3 定溫、定電流密度下、改變時間之銅厚度曲線圖 29
圖4.1 熱應力變化示意圖 36
圖4.2 本質應力變化示意圖 38
圖4.3 不同電流密度下,銅原子繞射面比較圖 39
圖4.4 不同電流密度下,銅之舒張應力比較圖 39
圖4.5 由ICDD提供的銅繞射資訊的標準圖譜 40
圖4.6 銅基板厚度為200 μm之晶格繞射圖譜 40
圖4.7 薄膜沉積步驟 42
圖4.8 Low-atom Mobility和High-atom Mobility之應力變化 43
圖4.9 晶粒聚集前後示意圖 44
圖4.10 晶粒大小變化示意圖 44
圖4.11 銅基板厚度與氮化鎵磊晶層壓縮應力釋放量曲線圖 46
圖4.12 銅厚度和舒張應力之關係圖 49
圖4.13 三種不同銅厚度下之晶粒尺寸 49
圖4.14 不同銅厚度之SEM示意圖 50
圖4.15 不同銅厚度之變功率PL光譜圖 51
圖4.16 銅厚度為300 μm之變溫PL光譜圖 54

表目錄
表2.1 氮化物之晶格常數和熱膨脹係數材料參數 12
表2.2 各材料之熱傳導係數 17
表3.1 常見金屬之功函數 33
表4.1 不同厚度銅基板厚度下激發功率與波長位移量比較表 52
參考文獻 [1] E. F. Schubert “Light-Emitting Diodes” 2nd ed., Cambridge University Press, New York (2006)
[2] I. Akasaki and H. Amano “Crystal growth and conductivity control of group III nitride semiconductors and their application to short wavelength light emitters” Jpn. J. Appl. Phys., vol. 36, pp. 5393-5408 (1997)
[3] Y. Honda, Y. Iyechika, T. Maeda, H. Miyakei and K. Hiramatsui “Transmission Electron Microscopy Investigation of Dislocations in GaN Layer Grown by Facet-Controlled Epitaxial Lateral Overgrowth” Jpn. J.Appl. Phys., vol. 40, pp. L309–L312 (2001)
[4] William A. Melton and Jacques I. Pankove ”GaN growth on sapphire” Journal of Crystal Growth, Vol. 178, No. 1, pp. 168-173 (1997)
[5] 逢甲大學材料科學研究所 研究生:曾素芬 碩士論文
[6] S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama, “High-power InGaN single-quantum-well structure blue and violet light-emitting-diodes” Applied Physics Letters, vol. 67, pp. 1868 (1995)
[7] 國立中央大學化學工程與材料工程研究所 研究生:周本哿 碩士論文
[8] Esther Alarcon-Llado, Surani Bin-Dolmanan, Vivian Kai Xin Lin, Siew Lang Teo, Armin Dadgar, Alois Krost and Sudhiranjan Tripathy “Temperature rise in InGaN/GaN vertical light emitting diode on copper transferred from silicon probed by Raman scattering” J. Appl. Phys. vol. 108, pp. 114501 (2010)
[9] Z.S. Luo, Y. Cho, V. Loryuenyong, T. Sands, N. W. Cheung and M. C. Yoo “Enhancement of (In,Ga)N light-emitting diode performance by laser lift off and transfer from sapphire to silicon” IEEE Photonics Technology Letters, vol. 14, pp. 1400 (2002)
[10] S. C. Hsu and C. Y. Liu “Fabrication of Thin-GaN LED Structures by Au–Si Wafer Bonding” Electrochemical and Solid-State Letters, 9 (5) G171-G173 (2006)
[11] S. Tamulevicius “Stress and Strain in the Vacuum Deposited thin Film” Vacuum, vol. 51, no. 2, pp. 127-139 (1998)
[12] D. S. Campbell, Mechanical Properties of Thin Film. In Handbook of Thin Film Technology, L. I. Massel and R.Glang ed., New York: McGraw-Hill Book Company, pp.12-21 (1970)
[13] Car. V. Thompson and Roland Carel “Stress and grain growth in thin films” J. Mech. Phys. Solids, vol. 44, no. 5, PP. 657473 (1996)
[14] M. Ohring “The Materials Science of Thin film” ACADEMIC. PRESS, INC. San Diego, pp. 419, (1992)
[15] T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide and K. Manabe “Thermal stress in GaN epitaxial layers grown on sapphire substrates” J. Appl. Phys. vol. 77, pp.4389-4392 (1995)
[16] C. Kisielowski “in Semiconductor and Semimetals” edited by J. I. Pankove and T. D. Moustakas, vol. 57, pp 275-317
[17] J. L. Sanchez-Rojas, J. A. Garrido and E. Muooz “Tailoring of internal fields in AlGaN/GaN and InGaN/GaN heterostructure devices”, Phys. Rev. B 61, 2773 (2000)
[18] F. Bernardini, V. Fiorentini and D. Vanderbilt “Spontaneous polarization and piezoelectric constants of III-V nitrides” Phys. Rev. B 56, 10024 (1997)
[19] V. Srikant, J. S. Speck and D. R. Clarke “Mosaic structure in epitaxial thin films having large lattice mismatch” J. Appl. Phys. vol. 82, pp. 4286-4295 (1997)
[20] A. F. Wright “Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN” J. Appl. Phys. vol. 82, pp. 2833-2839 (1997)
[21] O. Gfrorer, T. Schlusener, V. Harle, F. Scholz and A. Hangleiter “Relaxation of thermal strain in GaN epitaxial layers grown on sapphire” Material Science and Engineering, B43, pp. 250-252 (1997)
[22] Fabio Della Sala, Aldo Di Carlo, Paolo Lugli, Fabio Bernardini, Vincenzo Fiorentini, Reinhard Scholz and Jean-Marc Jancu “Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures” Applied Physics Letters, vol. 74, pp. 2002-2004 (1999)
[23] Tohru Honda, Tomoyuki Miyamoto, Takahiro Sakaguchi, Hideo Kawanishi, Fumio Koyama and Kenichi Iga “Effect of piezo electric field on emission characteristics in GaN/AlGaN quantum wells” Journal of Crystal Growth, vol. 189-190, pp. 644-647 (1998)
[24] G. Traetta, A. Passaseo, M. Longo, D. Cannoletta, R. Cingolani, M. Lomascolo, A. Bonfiglio, A. Di Carlo, F. Della Sala, P. Lugli, A. Botchkarev and H. Morkoc “Effects of the spontaneous polarization and piezoelectric fields on the luminescence spectra of GaN/Al0.15Ga0.85N quantum wells” Physica E 7 929-933 (2000)
[25] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano and I. Akasaki, “Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells” J. Appl. Phys. vol. 36, pp. L382–L385 (1997)
[26] T. Takeuchi, S. Sota, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka and N. Yamada “Quantum-confined Stark effect in strained GaInN quantum wells on sapphire (0001)” J. Crystal Growth, vol. 189-190, pp. 616–620 (1998)
[27] S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars and T. Sota “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures” Appl. Phys. Lett. vol. 73, pp. 2006–2008 (1998)
[28] E. T. Yu, X. Z. Dang, P. M. Asbeck, S. S. Lau and G. J. Sullivan “Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures” J. Vac. Sci. Technol. B 17, 1742 (1999)
[29] L.-H. Peng, C.-W. Chuang and L.-H. Lou “Piezoelectric effects in the optical properties of strained InGaN quantum wells” Appl. Phys. Lett. vol. 74, pp. 795–797 (1999)
[30] R. A. Hogg, C. E. Norman, A. J. Shields, M. Pepper and N. Iizuka “Comparison of spontaneous and piezoelectric polarization in GaN/Al0.65Ga0.35N multi-quantum-well structures” Appl. Phys. Lett. vol. 76, pp. 1428−1430 (2000)
[31] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche and K. H. Ploog “Nitride semiconductors free of electrostatic field for efficient white light-emitting diodes” Nature, vol. 406, pp. 865−868 (2000)
[32] L. Jia, E. T. Yu, D. Keogh, P. M. Asbeck, P. Miraglia, A. Roskowski and R. F. Davis “Polarization charges and polarization-induced barriers in AlxGa1–xN/GaN and InyGa1–yN/GaN heterostructures” Appl. Phys. Lett. vol. 79, pp. 2916−2918 (2001)
[33] F. Renner, P. Kiesel, G. H. Dohler, M. Kneissl, C. G. Van de Walle and N. M. Johnson “Quantitative analysis of the polarization fields and absorption changes in InGaN/GaN quantum wells with electroabsorption spectroscopy” Appl. Phys. Lett. vol. 81, pp. 490–492 (2002)
[34] T. Takeuchi, C. Wetzel, H. Amano and I. Akasaki “Piezoelectric effect in group-III nitride-based heterostructures and quantum wells” in III-V Nitride Semiconductors Applications and Devices, E. T. Tu and M. O. Manasreh, Eds., New York: Taylor & Francis pp. 402–412. (2003)
[35] L.-H. Peng, C.-W. Shih, C.-M. Lai, C.-C. Chuo and J.-I. Chyi “Surface band-bending effects on the optical properties of indium gallium nitride multiple quantum wells” Appl. Phys. Lett. vol. 82, pp. 4268-4270 (2003)
[36] Chi-Feng Huang, Cheng-Yen Chen, Chih-Feng Lu and C. C. Yang “Reduced injection current induced blueshift in an InGaN/GaN quantum well light-emitting diode of prestrained growth” Appl. Phys. Lett. vol. 91, pp. 051121 (2007)
[37] J. H. Ryou, W. Lee, J. Limb, D. Yoo, J. P. Liu, and R. D. Dupuis, Z. H. Wu, A. M. Fischer and F. A. Ponce “Control of quantum-confined Stark effect in InGaN/GaN multiple quantum well active region by p-type layer for III-nitride-based visible light emitting diodes” Appl. Phys. Lett. vol. 92, pp. 101113 (2008)
[38] S. P. Łepkowski, H. Teisseyre, T. Suski, P. Perlin, N. Grandjean and J. Massies, “Piezoelectric field and its influence on the pressure behavior of the light emission from GaN/AlGaN strained quantum wells” Appl. Phys. Lett. vol. 79, pp. 3693-3695 (2001)
[39] J.K. Sheu, G.C. Chi, Y.K. Su, C.C. Liu, C.M. Chang, W.C. Hung and M.J. Jou “Luminescence of an InGaN/GaN multiple quantum well light-emitting diode” Solid-State Electronics, vol. 44, no. 6, pp. 1055-1058 (2000)
[40] Y.-L. Li, Y.-R. Huang and Y.-H. Lai “Efficiency droop behaviors of InGaN/GaN multiple-quantum-well light-emitting diodes with arying quantum well thickness” Appl. Phys. Lett. vol. 91, pp. 181113-1-181113-3 (2007)
[41] M.-H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. iprek and Y. Park “Origin of efficiency droop in GaN-based ight-emitting diodes” Appl. Phys. Lett. vol. 91, pp. 183507-1-183507-3 (2007)
[42] S. C. Hsu, B. J. Pong, W. H. Li, Thomas E. Beechem III, Samuel Graham and C. Y. Liu “Stress relaxation in GaN by transfer bonding on Si substrates” Appl. Phys. Lett. vol. 91, pp. 251114 (2007)
[43] Ansgar Laubsch, Matthias Sabathil, Werner Bergbauer, Martin Strassburg, Hans Lugauer, Matthias Peter, Stephan Lutgen, Norbert Linder, Klaus Streubel, Jorg Hader, Jerome V. Moloney, Bernhard Pasenow and Stephan W. Koch ”On the origin of IQE-’droop’ in InGaN LEDs” Phys. Status Solidi (C) vol. 6, no. S2, pp. 913–S916 (2009)
[44] JaeWon Lee, Youngjo Tak, Jun-Youn Kim, Hyun-G iHong, Suhee Chae, Bokki Min, Hyungsu Jeong, Jinwoo Yoo, Jong-Ryeol Kim and Youngsoo Park “Growth of high-quality InGaN/GaN LED structures on (111) Si substrates with internal quantum efficiency exceeding 50%” Journal of Crystal Growth, vol. 315 pp. 263–266 (2011)
[45] Shui-Jinn Wang, Kai-Ming Uang, Shiue-Lung Chen, Yu-Cheng Yang, Shu-Cheng Chang, Tron-Min Chen, and Chao-Hsuing Chen and Bor-Wen Liou “Use of patterned laser liftoff process and electroplating nickel layer for the fabrication of vertical-structured GaN-based light-emitting diodes” Appl. Phys. Lett. vol. 87, pp. 011111-1 (2005)
[46] W. Y. Lin, D. S. Wuu, K. F. Pan, S. H. Huang, C. E. Lee, W. K. Wang, S. C. Hsu, Y. Y. Su, S. Y. Huang and R. H. Horng “High-Power GaN–Mirror–Cu Light-Emitting Diodes for Vertical Current Injection Using Laser Lift off and Electroplating Techniques” IEEE Photonics Technology Letters, vol. 17, pp. 1809-1811 (2005)
[47] Shiue-Lung Chen, Shui-Jinn Wang, Kai-Ming Uang, Tron-Min Chen, Wei-Chi Lee and Bor-Wen Liou “Fabrication of Dicing-Free Vertical-Structured High-Power GaN-Based Light-Emitting Diodes
With Selective Nickel Electroplating and Patterned Laser Liftoff Techniques” IEEE Photonics Technology Letters, vol. 19, no. 6 (2007)
[48] W. K. Wang, S. Y. Huang, S. H. Huang, K. S. Wen, D. S. Wuu and R. H. Horng “Fabrication and efficiency improvement of micropillar InGaN/Cu light-emitting diodes with vertical electrodes” Appl. Phys. Lett. vol. 88, pp. 181113 (2006)
[49] R. H. Horng, C. E. Lee, S. C. Hsu, S. H. Huang, C. C. Wu, C. Y. Kung and D. S. Wuu “High-power GaN light-emitting diodes with patterned copper substrates by electroplating” phys. stat. sol. (a) 201, no. 12, pp. 2786–2790 (2004)
[50] Kai-Ming Uang, Shui-Jinn Wang, Tron-Min Chen, Wei-Chi Lee, Shiue-Lung Chen, Yu-Yu Wang and Hon Kuan “Enhanced Performance of Vertical GaN-Based Light-Emitting Diodes with a Current-Blocking Layer and Electroplated Nickel Substrate” J. Appl. Phys. vol. 48, no. 10, 102101 (2009)
[51] T. Detchprohm, H. Amano, K. Hiramatsu and I. Akasaki ”The growth of thick GaN film on sapphire substrate by using ZnO buffer layer” Journal of Crystal Growth, vol. 128, pp. 384-390 (1993)
[52] W. S. Wong, T. Sands and N. W. Cheung “Damage-free separation of GaN thin films from sapphire substrates” Appl. Phys. Lett. vol. 72, pp. 599 (1998)
[53] M. K. Kelly, O. Ambacher, R. Dimitrov, R. Handschuh and M. Stutzmann “Optical Process for Lif off of Group III-Nitride Films” Phys. Stat Sol. (a), vol. 159, no. 1, pp. R3-R4 (1997)
[54] W. S. Wong, L. F. Schloss, G. S. Sudhir, B. P. Linder, K. M. Yu, E. R. Weber, T Sands and N. W. Cheung “Pulsed excimer laser processing of AlN/GaN thin films” Master. Res. Soc. Symp., Proc. 449, pp. 1011 (1997)
[55] J. Xu, R. Zhang, Y. O. Wang, X. Q. Xiu, B. Shen, S. L. Gu, Y. Shi, Z. G. Liu and Y. D. Zheng “Preparation of large area freestanding GaN by laser lift-off technology” Mater Lett, 56 pp. 43 (2002)
[56] J. M. Zhang, T. Ruf, M. Cardona, O. Ambacher, M. Stutzmann, J. –M. Wagner and F. Bechstedt “Raman spectra of isotopic GaN” Physical Review B, 56 (22), pp.14399-14406 (1997)
[57] Dimitry Kirillov, Heon Lee and James S. Harris, Jr. “Raman scattering study of GaN films” J. Appl. Phys. vol. 88, pp.4058-4062 (1996)
[58] D. Wang, S. Jia, K. J. Chen, K. M. Lau, Y. Dikme, P. van Gemmern, Y. C. Lin, H. Kalisch, R. H. Jansen and M. Heuken “Micro-Raman-scattering study of stress distribution in GaN films grown on patterned Si(111) by metal-organic chemical-vapor deposition” J. Appl. Phys. vol. 97, pp. 056103 (2005)
[59] S. Ruvimov, Z. Liliental-Weber, J. Washburn, K. J. Duxstad, E. E. Haller, Z.-F. Fan, S. N. Mohammad, W. Kim, A. E. Botchkarev and H. Morkoc “Microstructure of Ti/Al and Ti/Al/Ni/Au Ohmic contacts for n-GaN” Appl. Phys. Lett. vol. 69, pp. 1556 (1996)
[60] A. Motayed, R. Bathe, M. C. Wood, O. S. Diouf, R. D. Vispute and S. N. Mohammad “Electrical, thermal and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN” J. Appl. Phys. vol. 93, no. 2, pp. 1087-1094 (2003)
[61] V. Adivarahan, G. Simin, J. W. Yang, A. Lunev, M. A. Khan, N. Pala, M. Shur and R. Gaska, “SiO2-passivated lateral-geometry GaN transparent Schottky-barrier detectors” Appl. Phys. Lett. vol. 77, pp. 863 (2000)
[62] X. A. Cao, P. M. Sandvik, S. F. LeBoeuf and S. D. Arthur “Defect generation in InGaN/GaN light-emitting diodes under forward and reverse electrical stresses” Microelectronics Reliability. vol. 43, pp. 1987 (2003)
[63] Carl V. Thompson and Roland Carel “Stress and grain growth in thin film” J. Mech. Phys. Solids. vol. 44, No. 5, pp. 657473 (1996)
[64] F. Spaepen “Interfaces and stresses in thin film” Acta mater. vol. 48, pp. 31-42 (2000)
[65] Carl V. Thompson “Stress evolution during Volmer-Weber growth of thin films“ Dept. of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
[66] Sunjung Kim, Jun-Ho Jang, Jeong-Soo Lee and David J. Duquette “Stress behavior of electrodeposited copper films as mechanical supporters for light emitting diodes“ Electrochimica Acta. vol. 52, pp. 5258-5265 (2007)
[67] J. A. Floro, E. Chason, R. C. Cammarata and D. S. Srolovitz “Physical Origins of Intrinsic Stresses in Volmer-Weber Thin Films” MRS Bulletin, pp.19-25 (2002)
[68] Felix Lu “Physical mechanisms of residual stress in metallic thin films” Applied Quantum Technologies, Duke University (2008)
[69] Chen, K. S. and Ou, K. S. “Modification of curvature-based thin-film residual stress measurement for MEMS application” J. Micromech. Microeng. 12, pp. 917-924 (2002)
[70] Floro, J. A., Hearne, S. J., Hunter, J. A., Kotula, P., Chason, E., Seel, S.C. and Thompson, C. V. “The dynamic competition between stress generation and relaxation mechanisms during coalescence of Volmer-Weber thin films” J. Appl. Phys. vol. 89, pp. 4886-4897 (2001)
[71] Guduru, P. R., Chason, E. and Freund, L. B. “Mechanics of compressive stress evolution during thin film growth” J. Mech. Phys. Solids. vol. 51, pp. 2127-2148 (2003)
[72] Ya-Ju Lee, Ching-Hua Chiu, Chih Chun Ke, Po Chun Lin, Tien-Chang Lu, Hao-Chung Kuo and Shing-Chung Wang “Study of the Excitation Power Dependent Internal Quantum Efficiency in InGaN/GaN LEDs Grown on Patterned Sapphire Substrate” IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, no. 4 (2009)
[73] D. Fuhrmann, T. Retzlaff, U. Rossow, H. Bremers, A. Hangleiter, G. Ade and P. Hinze “Large internal quantum efficiency of In-free UV-emitting GaN/AlGaN quantum-well structures” Appl. Phys. Lett., vol. 88, pp. 191108 (2006)
[74] E. Y. Lin, C. Y. Chen, T. S. Lay, Z. X. Peng, T. Y. Lin, T. C. Wang, J. D. Tsay “Optical polarization and internal quantum efficiency for InGaN quantum wells on a-plane GaN” Physica B, vol. 405 pp. 1857–1860 (2010)
[75] Satoshi Watanabe, Norihide Yamada, Masakazu Nagashima, Yusuke Ueki, Chiharu Sasaki, Yoichi Yamada, Tsunemasa Taguchi, Kazuyuki Tadatomo, Hiroaki Okagawa, and Hiromitsu Kudo “Internal quantum efficiency of highly-efficient InxGa1-xN-based near-ultraviolet light-emitting diodes” Appl. Phys. Lett., vol. 83, pp. 4906 (2003)
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2017-07-03公開。
  • 同意授權瀏覽/列印電子全文服務,於2017-07-03起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信