§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2506200910054200
DOI 10.6846/TKU.2009.00933
論文名稱(中文) 多輸入多輸出超寬頻系統之通道容量研究
論文名稱(英文) A Study of Channel Capacity of Multiple-Input Multiple-Output Ultra-Wide Band Systems
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系博士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 97
學期 2
出版年 98
研究生(中文) 劉俊良
研究生(英文) Chun-Liang Liu
學號 692350043
學位類別 博士
語言別 繁體中文
第二語言別
口試日期 2009-06-11
論文頁數 96頁
口試委員 指導教授 - 丘建青(chiu@ee.tku.edu.tw)
委員 - 林信標
委員 - 余金郎
委員 - 丘建青
委員 - 嚴雨田
委員 - 李慶烈
關鍵字(中) 超寬頻
多輸入多輸出
通道容量
射線追蹤通道模型
非對稱天線部署
共通道干擾
關鍵字(英) ultra-wide band
multiple-input multiple-output approach
channel capacity
ray-tracing channel model
asymmetric antenna deployment
co-channel interference
第三語言關鍵字
學科別分類
中文摘要
本文主要研究超寬頻系統結合多輸入多輸出之通道容量研究,一方面,超寬頻系統本身即具有高通道容量的特性,另一方面,多輸入多輸出可以有效的用來增加通道容量,為了滿足未來高傳輸率的需求,合併此二者是可以預期的。根據理論,超寬頻系統結合多輸入多輸出可以明顯的提升系統容量,然而,當應用在真實的環境裡,某些問題是需要進一步克服的。因此,本文以此合併系統為基底,分析此系統通道容量在真實的環境裡計算的問題,並提出適合的解決方法。
藉由儀器測量去取得通道特性是最直接且有效的方法,但是,此方法往往耗時、昂貴且具有諸多限制,相較於此,藉由模擬可以解決此缺點。然而,模擬的準確性是必需的,因此,本文提出兩種模擬方法,並將之與某篇相關文獻中利用儀器測量的結果做比較,研究結果證明藉由此二模擬方法是否可以有效解決儀器測量的缺點,且具有良好的準確性。
本文藉由模擬去計算此合併系統在真實環境下之通道容量,首先計算對稱天線部署與非對稱天線部署對此系統之通道容量,以往多輸入多輸出大部分都是使用對稱天線部署,然而,在某些情況下,非對稱天線部署反而比對稱天線部署來的適合,研究結果將用來判定何種天線部署最適合此合併系統。
其次,在單一共通道干擾影響下,計算此合併系統的通道容量,對於蜂巢式系統而言,因為有大量的共通道干擾存在,所以此干擾可以假設成隨機變數,然而,此假設可能不適合此合併系統,因為此系統屬於無線個人區域網路且共通道干擾來源少,研究結果將用來判斷是否多輸入多輸出具有抵抗共通道干擾的能力,此外在共通道干擾下,不同天線陣列應用於此合併系統的影響也被量化呈現。
英文摘要
This dissertation focuses on the research of channel capacity of multiple-input multiple-output ultra-wide band (UWB) systems. On the one hand UWB systems possess a nature of high channel capacity, and on the other hand multiple-input multiple-out (MIMO) approach can be used to enhance channel capacity effectively. Thus, it is expectable that UWB systems can be combined with multiple-input multiple-output approach to fulfill the necessity of high transmission rate in the future. It is well-known that UWB systems combining multiple-input multiple-out approach can yield high data rates in theory. However, some problems must be overcome further in order for the combined system to work in the realistic environment. As a result, this dissertation analyzes the problems on channel capacity of the combined system in the realistic environment, and proposes a suitable method to tackle them.
By measurement is the most direct and useful method to predict channel characteristics of the realistic environment, but the method is often expensive, time-consuming and having a lot of natural restrictions. In contrast to measurement, the same process can be carried out through simulation to overcome these drawbacks as long as the accuracy of the simulation can be proven. Therefore, this dissertation proposes two simulation methods, and they are compared with the measured results given by related works in the literature. Our study results demonstrate that the simulation methods not only can eliminate the drawbacks of measurement but also yield good computation accuracy.
This dissertation calculates the channel capacity of the combined system by simulation in the realistic environment. First, the channel capacity affected by symmetric and asymmetric antenna deployment is calculated. Symmetric antenna deployment is used for multiple-input multiple-out in most researches. However, asymmetric antenna deployment is more suitable than symmetric antenna deployment in some scenarios. The study results are used to decide which deployment is suitable for the combined system. 
Next, the channel capacity of the combined system with single co-channel interference is calculated. Since a lot of co-channel interferences exist for cellular systems, the interferences can be assumed as random variable. However, the assumption may be unsuitable for the combined system because the system belongs to wireless personal area network (WPAN) and just few co-channel interferences exist. The study results are used to decide whether MIMO can effectively reduce co-channel interference (CCI), and quantify the effects of applying different antenna arrays on the combined system.
第三語言摘要
論文目次
TABLE OF CONTENTS

CHINESE ABSTRACT..........................................Ⅰ
ENGLISH ABSTRACT......................................... Ⅲ
CHAPTER 1 INTRODUCTION....................................01
1.1 Research Background...................................01
1.2 Research Motivation ..................................03
1.2.1 Simulation versus measurement.......................03
1.2.2 Symmetric deployment versus asymmetric deployment...04
1.2.3 MIMO capacity affected by co-channel interference...05
1.3 Chapter Outline.......................................07
CHAPTER 2 THEORETICAL EXPRESSION..........................08
2.1 Description of MIMO-NB System.........................08
2.2 Channel Capacity of MIMO-NB System....................10
2.2.1 Based on CSI-B......................................10
2.2.2 Based on CSI-R only.................................11
2.2.3 Outage capacity and ergodic capacity................12
2.3 The Factors Affecting MIMO Capacity...................12
2.3.1 Spatial degree of freedom...........................12
2.3.2 Eigenmatrix and condition number....................13
2.3.3 Spatial correlation.................................14
2.4 Channel Capacity of MIMO-NB System with Single CCI....14
2.4.1 System description..................................14
2.4.2 Capacity expression based on CSI-B..................15
2.5 Channel Capacity of MIMO-UWB System...................17
2.5.1 Capacity expression.................................17
2.5.2 Channel normalization...............................18
CHAPTER 3 CHANNEL MODELING................................27
3.1 The Modified S-V Channel Model........................27
3.1.1 Original process....................................27
3.1.2 Post-processing description.........................30
3.2 The Modified Ray-Tracing Channel Model................31
3.2.1 Environmental framework.............................31
3.2.2 Antenna description.................................32
3.2.3 Boundary condition..................................34
3.2.4 Ray-tracing process.................................34
CHAPTER 4 CAPACITY CALCULATION BY DIFFERENT METHODS.......44
4.1 Introduction..........................................44
4.2 Numerical Results.....................................44
4.2.1 By the homemade ray-tracing channel model...........45
4.2.2 By the modified S-V channel model...................47
4.3 Summary...............................................48
CHAPTER 5 CAPACITY FOR SYMMETRIC AND ASYMMETRIC DEPLOYMENTS...............................................57
5.1 Introduction..........................................57
5.2 Numerical Results.....................................58
5.2.1 Antenna deployment versus SNRt......................59
5.2.2 Antenna deployment versus simulation environment....60
5.2.2.1 Simple room versus complicated room...............60
5.2.2.2 LOS scenario versus NLOS scenario.................61
5.2.3 Nt > Nr versus Nr > Nt..............................62
5.3 Summary...............................................62
CHAPTER 6 MIMO CAPACITY AFFECTED BY SINGLE CCI............73
6.1 Introduction..........................................73
6.2 Numerical Results.....................................74
6.2.1 CCI without antenna array...........................75
6.2.2 CCI with antenna array..............................77
6.3 Summary...............................................78
CHAPTER 7 CONCLUSIONS.....................................88
REFERENCE ................................................91

LIST OF FIGURES

Figure 2.1 A sketch of MIMO-NB system.....................20
Figure 2.2 A matrix representation of MIMO-NB system......21
Figure 2.3 An equivalent architecture of MIMO-NB system based on CSI-B............................................22
Figure 2.4 A sketch of MIMO-NB system with single CCI.....23
Figure 2.5 A matrix representation of MIMO-NB system with single CCI................................................24
Figure 2.6 An equivalent architecture of MIMO-NB system with single CCI based on CSI-B............................25
Figure 3.1. Typical power delay profile for UWB communication.............................................37
Figure 3.2. A sketch of an environmental framework constructed by triangular facets..........................38
Figure 3.3. The normalized radiation patterns of the UWB antennas:(a) E-plane pattern (b) H-plane pattern..........39
Figure 3.4. A diagram of linear polarization:
(a) Vertical polarization (b) Horizontal polarization.....40
Figure 3.5. Flow chart of the ray-tracing process.........41
Figure 3.6. A diagram of the icosahedron with Ntes=2......42
Figure 4.1. Layout of the indoor MIMO-UWB channel measurement in the first room.............................50
Figure 4.2. Layout of the indoor MIMO-UWB channel measurement in the second roo.............................51
Figure 4.3. CDFs of the channel capacities obtained by the modified ray-tracing channel model for different array sizes at SNR=10dB for LOS scenario........................52
Figure 4.4. CDFs of the channel capacities obtained by the modified ray-tracing channel model for different array sizes at SNR=10dB for NLOS scenario.......................53
Figure 4.5. CDFs of the channel capacities obtained by the modified S-V channel model for different array sizes at SNR=10dB for LOS scenario.................................54
Figure 4.6. CDFs of the channel capacities obtained by the modified S-V channel model for different array sizes at SNR=10dB for NLOS scenario................................55
Figure 5.1. Layout of the fist room.......................64
Figure 5.2. Layout of the second room.....................65
Figure 5.3. A sketch of different antenna deployment
(a) 1X5 deployment (b) 2X4 deployment (c) 3X3 deployment..66
Figure 5.4. Ergodic capacities of UWB systems with different antenna deployments for LOS scenario in the first room......................................................67
Figure 5.5. Ergodic capacities of UWB systems with different antenna deployments for LOS scenario in the second room...............................................68
Figure 5.6. Ergodic capacities of UWB systems with different antenna deployments for NLOS scenario in the first room................................................69
Figure 5.7. Ergodic capacities of UWB systems with different antenna deployments for NLOS scenario in the second room...............................................70
Figure 5.8. Ergodic capacities of UWB systems with symmetric, Nr < Nt and Nr < Nt antenna deployments for LOS scenario in the first room................................71
Figure 6.1. Layout of a small personal communication environment...............................................79
Figure 6.2. Layouts of SA and PA: 
(a) Spatial linear array (b) Tri-polar array..............80
Figure 6.3. The ergodic capacities of UWB systems for MIMO-SA and SISO with and without single CCI...................81
Figure 6.4. The ergodic capacities of UWB systems for MIMO-PA and SISO with and without single CCI...................82
Figure 6.5. VRc for MIMO-SA, MIMO-PA and SISO.............83
Figure 6.6. The ergodic capacities UWB systems for both MIMO-SA and MIMO-PA with and without single CCI...........84
Figure 6.7. The ergodic capacities of UWB systems for MIMO-SA with CCI-SA, CCI-PA and no CCI.........................85
Figure 6.8. The ergodic capacities of UWB systems for MIMO-PA with CCI-SA, CCI-PA and no CCI.........................86
Figure 6.9. VRc for both MIMO-SA and MIMO-PA 
with CCI-SA, CCI-PA and no CCI............................87

LIST OF TABLES

Table 2.1. The numbers of spatial degree of freedom for different systems.........................................26
Table 3.1. Parameter setting for the IEEE UWB channel model.....................................................43
Table 4.1. 
(a) First-order statistics of the channel capacities for different array sizes at SNR=10dB, calculated by the modified ray-tracing channel model........................56
(b) First-order statistics of the channel capacities for different array sizes at SNR=10dB, given in [14]..........56
(c) First-order statistics of the channel capacities for different array sizes at SNR=10dB, calculated by the modified S-V channel model................................56
Table 5.1. Values of SNRL and SNRH for different situations................................................72
參考文獻
[1] Gergory D. Durgin, Space-Time Wireless Channels. New Jersey: Prentice Hall PTR, 2003.
[2] David Tse and Pramod Viswanath, Fundamentals of Wireless Communication. United Kingdom: Cambridge University Press, 2005.
[3] “FCC notice of proposed rule making, revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems,” FEDRAL COMMUNICATIONS COMMISION, Washington, DC, ET-Docket 98-153, 2000.
[4] Maria-Gabriella Di Benedetto and Guerion Giancola, Understanding Ultra Wide Band Radio Fundamentals. New Jersey: Prentice Hall PTR, 2004.
[5] Ian Oppermann, Matti H&auml;m&auml;l&auml;inen and Jari Iinatti, UWB Theory and Applications. New Jersey: Prentice Hall PTR, 2004.
[6] H&uuml;seyin Arslan, Zhi-Ning Chen and Maria-Gabriella Di Benedetto, ULTRA WIDEBAND WIRELESS COMMUNICATION. New Jersey: John Wiley & Sons, Inc., 2006.
[7] Zhemin Xu, Sana Sfar and Rick S. Blum, “Analysis of MIMO Systems With Receive Antenna Selection in Spatially Correlated Rayleigh Fading Channels,” IEEE Trans. Veh. Technol., vol.58, no.1, Jan. 2009, pp. 251-262.
[8] Cheng-shan Xiao, and Yahong Rosa Zheng, “On the Ergodic Capacity of MIMO Triply Selective Rayleigh Fading Channels,” IEEE Trans. Wireless Commun., vol.7, no.61, June 2008, pp. 2272-2279.
[9] Liuqing Yang and Georgios B. Giannakis, “Ultra-Wideband Communications: An Idea Whose Time Has Come,” IEEE Signal Processing Mag., vol. 21, no. 6, Nov. 2004, pp. 26-54.
[10] Sumit Roy, Jeff R. Foerster, V. Srinivasa Somayazulu and Dave G. Leeper, “Ultrawideband Radio Design: The Promise of High-Speed, Short-Range Wireless Connectivity,” Proc. IEEE, vol. 92, no. 2, Feb 2004, pp. 295-311.
[11] S. Cherry, “Edholm’s law of bandwidth,” IEEE Spectr., vol. 41, no. 7, July 2004, pp. 58–60.
[12] Feng Zheng and Thomas Kaiser, “On the Evaluation of Channel Capacity of UWB Indoor Wireless Systems,” IEEE Trans. Signal Process., vol. 56, no. 12, Dec. 2008, pp. 6106-6113.
[13] M. D. Migliore, D. Pinchera, A. Massa, R. Azaro, “An Investigation on UWB-MIMO Communication Systems Based on an Experimental Channel Characterization,” IEEE Trans. Antennas Propagat., vol. 56, no. 9, Sept. 2008, pp. 3081-3083.
[14] Wasim Q. Malik and David J. Edwards, “Measured MIMO Capacity and Diversity Gain with Spatial and Polar Arrays in Ultrawideband Channels,” IEEE Trans. Commun., vol. 55, no. 12, Dec. 2007, pp. 2361-2370.
[15] Ajit Rajagopalan, Gaurav Gupta, Anand S. Konanur, Brian Hughes and Gianluca Lazzi, “Increasing Channel Capacity of an Ultrawideband MIMO System Using Vector Antennas,” IEEE Trans. Antennas Propagat., vol. 55, no. 10, Oct. 2007, pp. 2880-2887.
[16] W.Q. Malik, “MIMO capacity and multipath scaling in ultra-wideband channels,” IEEE Electron. Lett., vol.44, no.6, Mar. 2008, pp. 427-428.
[17] Liuqing Yang, Jian Li, and Yi Jiang, ” Capacity-approaching transceiver design for asymmetric UWB links,” IEEE Int. Signals, Systems and Somputers Conf., Oct. 2005, pp. 151-155.
[18] Mohsen Eslami and Witold A. Krzymien, “Downlink Limited Feedback Transmission Schemes for Asymmetric MIMO Channels,” IEEE Veh. Technol. Conf. (VTC2008), Sept. 2008, pp. 1-5.
[19] Huilin Xu and Liuqing Yang, “Low-Complexity Transceiver Design for Asymmetric SingleMulti-Band UWB Links,” IEEE Int. Commun. Conf. (ICC’08), May 2008, pp. 3760-3764.
[20] Hsiao-feng Lu, “Optimal Diversity Multiplexing Tradeoff of Constrained Asymmetric MIMO Systems,” IEEE Global Telecommunications Conf., Dec. 2008, pp. 1-5.
[21] Sumei SUN, Ying-Chang Liang, and Tjeng Thiang TJHUNG, “Space-Time Precoding for Asymmetric MIMO Channels,” IEEE Wireless Commun. and Networking Conf. (WCNC 2008), April 2008, pp. 2006.
[22] A. J. Paulraj, R. Nabar and D. Gore, Introduction to Space-Time Wireless Communication. U.K.: Cambridge Univ. Press, 2003.
[23] Matthew Webb, Mark Beach and Andrew Nix, “Capacity limits of MIMO channels with co-channel interference,” IEEE Veh. Technol. Conf. (VTC2004), May 2004, vol. 2, pp. 703-707.
[24] Ming Kang, Lin Yang, and Mohamed-Slim Alouini, “Capacity of MIMO Rician channels with multiple correlated Rayleigh co-channel interferers,” IEEE Global Telecommunications Conf., Dec. 2003, vol. 2, pp. 1119-1123.
[25] Marco Chiani, Moe Z. Win and Hyundong Shin, “Capacity of MIMO Systems in the Presence of Interference,” IEEE Global Telecommunications Conf., Dec. 2006, pp. 1-6.
[26] T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: John Wiley & Sons, 1991.
[27] Zhemin Xu, Sana Sfar and Rick S. Blum, “Analysis of MIMO Systems With Receive Antenna Selection in Spatially Correlated Rayleigh Fading Channels,” IEEE Trans. Veh. Technol., vol. 58, no. 1, Jan. 2009, pp. 251-262.
[28] Wei-Ju Chang, Jenn-Hwan Tarng and Szu-Yun Peng, ” Frequency-Space-Polarization on UWB MIMO Performance for Body Area Network Applications,” IEEE Antennas Wirel. Propag. Lett., vol. 7, 2008, pp.577-580. 
[29] Juan F. Valenzuela-Vald&eacute;s, Miguel A. Garc&iacute;a-Fern&aacute;ndez, Antonio M. Mart&iacute;nez-Gonz&aacute;lez, and David A. S&aacute;nchez-Hern&aacute;ndez, “The Influence of Efficiency on Receive Diversity and MIMO Capacity for Rayleigh-Fading Channels,” IEEE Trans. Antennas Propagat., vol. 56, no. 5, May 2008, pp. 1444-1450.
[30] J. B. Andersen, “Array gain and capacity for known random channels with multiple element arrays at both ends,” IEEE J. Sel. Areas Commun., vol. 18, no. 11, Nov. 2000, pp. 2172–2178.
[31] Joseph Sahaya Kulandai Raj, Arokiasamy Shyam Prabu, Narayanan Vikram, and Joerg Schoebel, “Spatial Correlation and MIMO Capacity of Uniform Rectangular Dipole Arrays,” IEEE Trans. Antennas Propagat. Lett., vol. 7, 2008, pp97-100.
[32] Padam L. Kafle, Apichart Intarapanich, Abu B. Sesay, John McRory,and Robert J. Davies, “Spatial Correlation and Capacity Measurements for Wideband MIMO Channels in Indoor Office Environment,” IEEE Trans. Wirel. Commun., vol. 7, no. 5, MAY 2008, pp.1560-1571.
[33] Raymond H. Y. Louie, Matthew R. McKay and Iain B. Collings, “Impact of Correlation on the Capacity of Multiple Access and Broadcast Channels with MIMO-MRC,” IEEE Trans. Wirel. Commun., vol. 7, no. 6, June 2008, pp.2397-2407.
[34] O. Fernandez, M. Domingo, and R. P. Torres, “Empirical analysis of the correlation of MIMO channels in indoor scenarios at 2 GHz,” Inst. Electr. Eng. Proc. Commun., vol. 152, no. 1, Feb. 2005, pp. 82-88.
[35] P. Kyritsi, D. C. Cox, R. A. Valenzuela, and P. W. Wolniansky, “Correlation analysis based on MIMO channel measurements in an indoor environment,” IEEE J. Sel. Areas Commun., vol. 21, no.5, Jun. 2003, pp. 713-720.
[36] Hamid Reza Bahrami and Tho Le-Ngoc, “MIMO Precoder Designs for Frequency-Selective Fading Channels Using Spatial and Path Correlation,” IEEE Trans. Veh. Technol., vol. 57, no. 6, Nov. 2008, pp. 3441-3452.
[37] M. Chiani, M. Z. Win, and A. Zanella, “On the capacity of spatially correlated MIMO Rayleigh-fading channels,” IEEE Trans. Inf. Theory, vol. 49, no. 10, Oct. 2003, pp. 2363–2371.
[38] R. O. LaMaire and M. Zorzi, “Effect of correlation in diversity systems with Rayleigh fading, shadowing, and power capture,” IEEE J. Sel. Areas Commun., vol. 14, no. 3, Apr. 1996, pp. 449–460.
[39] Channel Modeling Sub-committee Report Final, IEEE Std., p802.15-02/368r5-SG3a, Dec. 2002.
[40] Susana Loredo, Alberto Rodr&iacute;guez-Alonso and Rafael P. Torres, “Indoor MIMO Channel modeling by Rigorous GO/UTD-Based Ray Tracing,” IEEE Trans. Veh. Technol., vol. 57, no. 2, Mar. 2008, pp. 680-692.
[41] David K. Cheng, Field and Wave Electromagnetisc. USA: Addison-Wesley Publishing Company Press, 1989.
[42] A. Muqaibel, A. Safaai-Jazi, A. Bayram, A.M. Attiya and S.M. Riad, ” Ultrawideband through-the-wall propagation,” IEE Proc.-Microw. Antennas Propag., vol. 152, no. 6, Dec. 2005, pp. 581-588.
[43] E. Gueguen, F. Thudor and P. Chambelin, “A low cost UWB printed dipole antenna with high performance,” IEEE Int. Ultra-Wide Band Conf. (ICU’05), Sept. 2005, pp. 88-92.
[44] F. T. Talom, B. Uguen, L. Rudant, J. Keignart, J. F. Pintos and P. Chambelin, “Evaluation and Characterization of an UWB Antenna in Time and Frequency Domains,” IEEE Int. Ultra-Wide Band Conf. (ICU’06), Sept. 2006, pp. 669-673.
[45] Constantine A. Balanis, Advanced Engineering Electromagnetics. USA: John Wiley & Sons Press, 1989.
[46] Magdy F. Iskander and Zhengqing Yun, “Propagation Prediction Models for Wireless Communication Systems,” IEEE Trans. Microwave Theory Tech., vol. 50, no.3, Mar. 2002, pp. 662-673.
[47] Shin-Hon Chen, Shyh-Kang Jeng, “An SBR/image approach for radio wave propagation in indoor environments with metallic furniture,” IEEE Trans. Antennas Propagat., vol. 45, no. 1, Jan. 1997, pp. 98-106.
[48] X. C. Jakes, Microwave Mobile Communication. NEW YORK: Wiley, 1974.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信