§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2506200814544900
DOI 10.6846/TKU.2008.00901
論文名稱(中文) 震盪式熱管之製造與分析
論文名稱(英文) Fabrication and Analysis of Pulsating Heat Pipes (PHPs)
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系博士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 96
學期 2
出版年 97
研究生(中文) 林玉興
研究生(英文) Yu-Hsing Lin
學號 893340033
學位類別 博士
語言別 英文
第二語言別
口試日期 2008-06-20
論文頁數 91頁
口試委員 指導教授 - 康尚文(swkang@mail.tku.edu.tw)
委員 - 陳志臣(jcchen@cc.ncu.edu.tw)
委員 - 王啟川(ccwang@itri.org.tw)
委員 - 陳增源(tychen@mail.tku.edu.tw)
委員 - 楊龍杰(ljyang@mail.tku.edu.tw)
委員 - 康尚文(swkang@mail.tku.edu.tw)
關鍵字(中) 震盪式熱管
銀奈米流體
填充率
聚二甲基矽氧烷
翻模
可視化
流場
關鍵字(英) Pulsating Heat Pipes
Silver Nano-fluid
Filled Ratio
PDMS
Turn over the Mold
Visualization
Flow Pattern
第三語言關鍵字
學科別分類
中文摘要
本篇論文共有三大主題,其一是描述將銀奈米流體應用於銅質震盪式熱管之研究,其二乃是利用聚二甲基矽氧烷應用於震盪式熱管之製作及其三最後之可視化探討。
第一部份是將二種不同濃度(100ppm及450ppm)之銀奈米流體,充填於內徑2.4mm的銅管中,以作震盪式熱管性能之測試;其填充率各為20%、40%、60%及80%四種,功率從5W加熱至85W,比較不同濃度及填充率之熱管性能為何;最後實驗結果顯示,濃度相同之最佳填充率是為60%,填充率相同之最佳濃度則為100ppm;如加熱功率與填充率相同(85W、60%), 則100ppm之銀奈米流體,其加熱段與冷凝段之溫差較純水低7.79°C、熱阻值亦較純水少0.092°C /W。
第二部份是利用聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)翻模製作震盪式熱管,三維尺寸各為長56mm、寬49mm及流道內徑2mm;完成震盪式熱管製作、真空處理、充填、封裝及測試平台等,本實驗使用之工作流體為甲醇及乙醇、填充率是為60%,功率從3W加熱至8W,實驗過程中並使用高速攝影機,拍攝工作流體在流道內之作動情形暨性能效果之分析。最後測試結果顯示,甲醇之工作流體在垂直放置時性能較優,輸入功率為3W時,熱阻值較乙醇少4.5°C/W;輸入功率為4W時,加熱段平均溫度亦較乙醇低15°C,由實驗觀察本震盪式熱管,垂直放置較水平放置容易啟動(重力影響)。
第三部份是利用聚二甲基矽氧烷之可視化透明效果,配合高速攝影機,觀察汽-液柱在流道內之作動情形與探討流場之運行模式;隨著不同之加熱功率,亦可清楚觀察工作流體在流道內之作動情形、流場型態之變化(如由細泡型流場轉變為彈狀型流場再轉變為連續之彈狀型流場)、汽泡在加熱段成核、汽泡與汽泡之結合或分裂與汽泡之崩潰或消失等。另當輸入較高之熱通量時,汽-液柱則會開始朝一固定方向在流道內作大幅度之循環。
英文摘要
This dissertation has three parts. The first part describes the nano-fluid applicable to the study of PHP with copper tubes. The second part discusses the materials used in PDMS applying to PHP research and finally a discussion of observations made in the research project.
The first part presents preliminary experimental results on using copper tube having internal and external diameter with 2.4mm and 3mm respectively to carry out the experimental pulsating heat pipe. The working fluids include the silver nano-fluid water solution and pure water.
In order to study and measure the efficiency, we compare with 20nm silver nano-fluid at different concentration (100ppm and 450ppm) and various filled ratio (20%, 40%, 60%, 80% respectively), also applying with different heating power (5W, 15W, 25W, 35W, 45W, 55W, 65W, 75W, 85W respectively). According to the experimental results in the midterm value (i.e. 40%, 60%) of filled ratio shows better performance results. In the majority 60% of efficiency is considered much better. The heat dissipation effect is analogous in sensible heat exchange, where 60% has more liquid slugs that will carry more sensible heat, so in 60% of filled ratio, the heat dissipation result is better than 40%, and the best filled fluid is 100ppm silver nano-fluid. 
We observed through the measurement comparison in thermal performance with pure water. When the heating power is 85W, the average temperature difference and the thermal resistance of evaporator and condenser are decreased by 7.79ºC and 0.092ºC /W respectively.
The second part reports on preliminary experimental results of using polydimethylsiloxane (PDMS) to manufacture a visual pulsating heat pipe with length, width and internal diameter are 56mm, 49mm and 2mm respectively, including the manufacturing process and the vacuuming management for filling and packaging. The experiment used methanol and ethanol as the working fluid. A fix filled ratio (about 60%) and different heating power values (3W to 8W) were used to test thermal performance. A high-speed video camera was used to record the working situation of the working fluid inside the channel. The results are discussed and analyzed.
The experiment discussed in the third part shows that methanol, in a vertical orientation, shows the most efficient results. When the heating power is 3W, the thermal resistance is more than 4.5ºC/W below the value for ethanol as the working fluid. For a heating power of 4W, the average temperature decreases to 15ºC in the evaporator. Also gravity will have impact on the PHP performance: The vertical orientation is the better one, as compared to the horizontal orientation.
Inside the channel of the PDMS PHP, different heating powers were employed to observe the working situation, flow direction of the vapor plug, liquid slug and the structure form of the flow. A high speed video camera was used to record the formation, combination, collapse, flow direction and the different kinds of flow of the bubble. At the same time, we can find out the vapor plug and liquid slug are unstable and uneven in growth and distribution which caused the PDMS PHP to oscillate and work.
第三語言摘要
論文目次
Table of Contents

Title page----------------------------------------------------------------i
Copyright Notice -------------------------------------------------------iii
Signature Form for Committee Member with Oral Examination of Thesis-------------------------------------------------------------------iv
Acknowledgements-----------------------------------------------------v
Abstract (Chinese) ----------------------------------------------------vii
Abstract (English) -----------------------------------------------------ix
Table of Contents-----------------------------------------------------xii
List of Figures----------------------------------------------------------xv
List of Tables---------------------------------------------------------xviii
Nomenclature--------------------------------------------------------xix
Chapter 1 Introduction-----------------------------------------------01
1-1 Motivation---------------------------------------------------------01
1-2 Literature Review--------------------------------------------------03
Chapter 2 Effect of Silver Nano-fluid on PHP Thermal performance-10
2-1 Introduction-------------------------------------------------------10
2-2 Experimental Set-up----------------------------------------------11
2-2-1 PHP Set-up--------------------------------------------------11
2-2-2 Experimental Procedure------------------------------------12
2-3 Results and Discussion--------------------------------------------13
2-3-1 Pure Water as in Working Fluid----------------------------13
2-3-2 Influence of Silver Nano-fluid Concentration--------------14
2-3-3 Influence of Filled Ratio------------------------------------15
Chapter 3 Fabrication of PDMS PHP-----------------------------------18
3-1 Introduction-------------------------------------------------------18
3-2 Specifications of PDMS--------------------------------------------18
3-3 Experimental Set-up----------------------------------------------20
3-3-1 PDMS PHP Designing---------------------------------------20
3-3-2 Aluminum Mould Manufacturing---------------------------21
3-3-3 PDMS PHP Manufacturing----------------------------------22
3-3-4 Extracting and Filling---------------------------------------24
3-3-5 Experimental Apparatus and Parameters------------------24
3-3-6 Experimental Procedure------------------------------------24
3-4 Results and Discussion--------------------------------------------25
3-4-1 Methanol-Vertical Orientation------------------------------25
3-4-2 Ethanol-Vertical Orientation-------------------------------26
3-4-3 Methanol and Ethanol-Horizontal Orientation-------------27
3-4-4 Influences on PDMS PHP of the Gravity-------------------27
3-4-5 Working Analysis-------------------------------------------28
Chapter 4 Visualization of PDMS PHP---------------------------------30
4-1 Introduction-------------------------------------------------------30
4-2 Results and Discussion--------------------------------------------31
4-2-1 Methanol/Vertical Orientation/4W-------------------------31
4-2-2 Methanol/Vertical Orientation/7W-------------------------31
4-2-3 Ethanol/Vertical Orientation/6W---------------------------32
4-2-4 The Working Behavior Analysis inside the PDMS Channel-32
4-2-5 The Flow Pattern inside the Channel of the PDMS PHP---33
Chapter 5 Conclusions-------------------------------------------------36
5-1 Conclusions--------------------------------------------------------36
5-2 Future Experimental Work----------------------------------------38
References-------------------------------------------------------------40
Figures-----------------------------------------------------------------46
Tables------------------------------------------------------------------72
Publication List---------------------------------------------------------77
Appendix A Patent: Flat Pulsating Heat Spreader (PHS) -------------79
A-1 Introduction-------------------------------------------------------80
A-1-1 Illustration the Patent Technology-------------------------80
A-1-2 Manufacturing Technology Category Contained in This Invention --------------------------------------------------80
A-2 Patent Illustration-------------------------------------------------81
A-2-1 Technology in Advance-------------------------------------81
A-2-2 Purpose of Invention---------------------------------------83
A-2-3 Contents of Technology------------------------------------84
A-3 Conclusions--------------------------------------------------------86
References-------------------------------------------------------------88
Figures-----------------------------------------------------------------90

List of Figures
Fig.1-01 Basic principle of PHP----------------------------------------46
Fig.1-02 Heat transfer is possible at any position for PHP-----------46
Fig.1-03 Schematic of a typical bubble pump------------------------47
Fig.2-01 Schematic of experimental set-up --------------------------47
Fig.2-02 Parametric experimental results for rise velocity of cylindrical bubble in various stagnant liquids contained in a channel-48
Fig.2-03 Photograph of PHP loop--------------------------------------48
Fig.2-04 Heat input versus average temperature difference for 20% in filled ratio ----------------------------------------------------49
Fig.2-05 Heat input versus average thermal resistance for 20% in filled ratio----------------------------------------------------49
Fig.2-06 Heat input versus average temperature difference for 40% in filled ratio ----------------------------------------------------50
Fig.2-07 Heat input versus average thermal resistance for 40% in filled ratio----------------------------------------------------50
Fig.2-08 Heat input versus average temperature difference for 60% in filled ratio----------------------------------------------------51
Fig.2-09 Heat input versus average thermal resistance for 60% in filled ratio----------------------------------------------------51
Fig.2-10 Heat input versus average temperature difference for 80% in filled ratio----------------------------------------------------52
Fig.2-11 Heat input versus average thermal resistance for 80% in filled ratio----------------------------------------------------52
Fig.3-01 Manufacturing Process of PDMS PHP----------------------53
Fig.3-02 Schematic view of aluminum mould-----------------------53
Fig.3-03 Aluminum mould after milling------------------------------54
Fig.3-04 PDMS mould-------------------------------------------------54
Fig.3-05 PDMS basic--------------------------------------------------54
Fig.3-06 PDMS mould with thermocouples ---------------------------55
Fig.3-07 Finished bonding of PDMS PHP-----------------------------55
Fig.3-08 Schematic of extracting and filling--------------------------55
Fig.3-09 Schematic of experimental set-up--------------------------56
Fig.3-10 Time versus temperature/methanol/vertical orientation--56
Fig.3-11 Time versus temperature/ethanol/vertical orientation-----56
Fig.3-12 Heating power versus average temperature of evaporator /vertical orientation-----------------------------------------57
Fig.3-13 Heating power versus thermal resistance/vertical orien- tation---------------------------------------------------------57
Fig.3-14 Dry out phenomenon of methanol/horizontal orientation-57
Fig.3-15 Heating power versus average temperature of evaporator /horizontal orientation---------------------------------------58
Fig.3-16 Heating power versus thermal resistance/horizontal orien- tation---------------------------------------------------------58
Fig.3-17 Heating power versus average temperature of evaporator-58
Fig.3-18 Heating power versus thermal resistance------------------59
Fig.4-01 Photos of vertical working with methanol/4W--------------60
Fig.4-02 Photos of vertical working with methanol/7W-1------------61
Fig.4-02 Photos of vertical working with methanol/7W-2----------62
Fig.4-03 Photos of vertical working with ethanol/6W-1--------------63
Fig.4-03 Photos of vertical working with ethanol/6W-2-------------64
Fig.4-04 Photos of working inside the channel-----------------------65
Fig.4-05 Schematic flow directions with vapor plug and liquid slug-66
Fig.4-06 Photo of liquid-vapor distribution inside the vertical orien- tation---------------------------------------------------------67
Fig.4-07 Flow pattern of the inner U bend----------------------------67
Fig.4-08 Photos of vapor plugs merging------------------------------68
Fig.4-09 Flow pattern of the minute bubble--------------------------68
Fig.4-10 Flow pattern of the slug bubble-----------------------------69
Fig.4-11 Flow pattern of the continuous slug bubble-----------------69
Fig.5-01 Photograph of PCP PHP--------------------------------------70
Fig.5-02 Photograph of stainless steel tube PHP---------------------70
Fig.5-03 Photograph of glass tube PHP (front) ----------------------71
Fig.5-04 Photograph of glass tube PHP (back) ----------------------71

List of Tables
Table 3.1 Material Property Database of PDMS-----------------------72
Table 3.2 Channel - internal diameter range of different working fluids (for a saturation temperature of 20°C) --------------------75
Table 3.3 Design of the experiment parameters----------------------75
Table 3.4 Experimental data of horizontal orientation----------------76
Table 3.5 Thermo-physical properties of different working fluids----76
參考文獻
[1] Information on http://www.tsheatronics.co.jp/english/technology/index.html (2008).
[2] David Reay and Peter Kew, “Heat Pipes/Fifth Edition/Theory, Design and Applications,” Butter-Heinemann, (2006).
[3] C. Y. Tsai, H. T. Chien, P. P. Ding, B. Chan, T. Y. Luh and P. H. Chen, “Effect of Structural Character of Gold Nano-particles in Nano-fluid on Heat Pipe Thermal Performance,” Materials Letters, 58 (2004) 1461– 1465.
[4] S. W. Kang, W. C. Wei, S. H. Tsai and S.Y. Yang, “Experimental Investigation of Silver Nano-fluid on Heat Pipe Thermal Performance,” Applied Thermal Engineering, (2006) 2377-2382.
[5] H. B. Ma, C. Wilson, Q. Yu, K. Park, S. U. S. Choi, and Murli Tirumala, “An Experimental Investigation of Heat Transport Capability in a Nano-fluid Oscillating Heat Pipe,” Journal of Heat Transfer, 128 (2006) 1213-1216.
[6] H. B. Ma, C. Wilson, B. Borgmeyer, K. Park, Q. Yu, S. U. S. Choi and Murli Tirumala, “Effect of Nano-fluid on the Heat Transport Capability in an Oscillating Heat Pipe,” Applied Physics Letters, 88 (2006) 143116.
[7] K. Park and H. B. Ma, “Nano-fluid Effect on Heat Transport Capability in a Well-Balanced Oscillating Heat Pipe,” Journal of Thermophysics and Heat Transfer, 21 (2) (2007) 443-445.
[8] Yi Wai Chiang, Masahiro Kawaji and Christian Lu, “Experimental Investigation of Unlooped Pulsating Heat Pipe (PHP) Performance,” Proceedings of the 14th International Heat Pipe Conference, (2007) 270-275.
[9] B. Y. Tong, K. Ooi and T. N. Wong, “Closed-Loop Pulsating Heat Pipe,” Applied Thermal Engineering, 21 (18) (2001) 1845-1862.
[10] W. Qu and T. Ma, “Experimental Investigation on Flow and Heat Transfer of a Pulsating Heat Pipe,” Journal of Engineering Thermophysics, 23 (5) (2002) 596-598.
[11] S. Khandekar, M. Groll, P. Charoensawan and P. Terdtoon, “Pul- sating Heat Pipes: Thermo-fluidic Characteristics and Comparative Study with Single Phase Thermosyphon,” Proceedings of the 12th International Heat Transfer Conference, (2002) 459-464.
[12] S. Khandekar, M. Schneider, P. Schafer, R. Kulenovic and M. Groll, “Thermofluid Dynamic Study of Flat Plate Closed Loop Pulsating Heat Pipes,” Microscale Thermophysical Engineering, 6 (4) (2002) 303-318.
[13] P. Charoensawan, S. Khandekar, M. Groll and P. Terdtoon, “Closed Loop Pulsating Heat Pipes Part A: Parametric Experimental Investigations,” Applied Thermal Engineering, 23 (2003) 2009-2020.
[14] J. L. Xu, Y. X. Li and T. N. Wong, “High Speed Flow Visuali- zation of Closed Loop Pulsating Heat Pipe,” International Journal of Heat and Mass Transfer, 48 (2005) 3338-3351.
[15] Y. H. Lin, C. C. Hsu, H. L. Chen, Z. Y. Wu and S. W. Kang, “Experimental Investigation of Silver Nano-fluid on Pulsating Heat Pipe Thermal Performance,” Proceedings of the 8th International Heat Pipe, (2006) 369-374.
[16] Y. H. Lin, C. C. Hsu, H. L. Chen, Z. Y. Wu and S. W. Kang, “Effect of Silver Nano-fluid on Pulsating Heat Pipe Thermal Performance,” Applied Thermal Engineering, 28 (2008) 1312-1317.
[17] Y. Honghai, M. Groll, S. Khandekar, “Operation Limit of  Closed Loop Pulsating Heat Pipes,” Applied Thermal Engineering, 28 (2008) 49-59.
[18] S. Khandekar, M. Schneider, P. Schäfer, R. Kulenovic and M. Groll, “Visualization of Thermofluiddynamic Phenomena in Flat Plate Closed Loop Pulsating Heat Pipe,” Proc. of the 6th International Heat Pipe Symposium, (2000) 235-247.
[19] S. Khandekar and M. Groll, “On the Definition of Pulsating Heat pipes: An Overview,” Proc. of the 5th Minsk International Seminar (Heat Pipes, Heat Pumps and Refrigerators), (2003) 116-128.
[20] Dan Liberzon, Lev Shemer, and Dvora Barnea, “Upward- pro- pagating Capillary Waves on the Surface of Short Taylor Bubbles,” Physics of Fluids 18, 048103 (2006).
[21] Sameer Khandekar, Piyanun Charoensawan, Manfred Groll and Pradit Terdtoon, “Closed Loop Pulsating Heat pipes Part B: Visualization and Semi-Empirical Molding,” Applied Thermal Engineering, 23 (16) (2003) 2021-2033.
[22] E. Sobierska, J. Shuai, R. Mertz, R. Kulenovic, and M. Groll, “Visualisation and Flow Pattern map for Flow Boiling of Water in a Vertical Micro Channel,” Proc. of the 2nd ASME International Conference on Microchannels and Minichannels, (2004).
[23] M. Groll and S. Khandekar, “Keynote Paper:State of the Art on Pulsating Heat Pipes,” Proc. of the 2nd ASME International Conference on Microchannels and Minichannels, (2004).
[24] Y. Honghai, M. Groll, S. Khandekar, “Operation Limit of Closed Loop Pulsating Heat Pipes,” Applied Thermal Engineering, In Press, Accepted Manuscript, (2007).
[25] Information on
     http://www.giec.ac.cn/english/division/water/development.htm
     (2008).
[26] Akachi H., Polášek F. and Štulc P., “Pulsating Heat Pipes,” Proceedings of the 5th International Heat Pipe Symposium, (1996) 208-217.
[27] Hui-Lun Chen, “Experimental Investigation of Silver Nano-fluid on Pulsating Heat Pipe Thermal Performance,” Master's Thesis, Tamkang University, (2006).
[28] Yu-Hsing Lin, et al., “Fabrication of Mini Type Pulsating Heat Pipe,” Proceedings of the 14th International Heat Pipe Conference, (2007) 281-285.
[29] Yu-Hsing Lin, Shung-Wen Kang and Tsung-Yu Wu, “Fabrication of Polydimethylsiloxane (PDMS) Pulsating Heat Pipe,” Applied Thermal Engineering, Accepted, Mar. (2008).
[30] Information on http://en.wikipedia.org/wiki/Polydimethylsiloxane (2007).
[31] H. Akachi, S. Motoya and S. Maezawa, “Thermal performance of capillary tunnel flat heat pipe,” Proc. 9th International Heat Pipe Conference, Albuquerque, USA (1995), LA-UR-97-1500, 1 (1997) 88-96.
[32] A. A. M. Delil, “Pulsating & Oscillating Heat Transfer Devices in Acceleration Environments from Microgravity to Supergravity,” NLR-TP-2001-001 (2001) and (in abbreviated form) SAE-2002-02-2240 (2002).
[33] S. Hattori, Report 115, Research InstituteTokyo Imperial Uni- versity (1935).
[34] F. P. Bretherton, “The Motion of Long Bubbles in Tubes,” Journal of. Fluid Mechanics, 10 (1961) 161-188.
[35] G.B. Wallis, “One-dimensional Two-phase Flow,” McGraw- Hill, New York, (1969).
[36] R. T. Dobson and T. M. Harms, “Lumped Parameter Analysis of Closed and Open Oscillatory Heat Pipes,” Proceedings of the 11th International Heat Pipe Conference, (1999) 137-142.
[37] White E. and Beardmore R., “The Velocity of Rise of Single Cylindrical Air Bubbles Through Liquids Contained in Vertical Tubes,” Chemical Engineering Science, 17 (1962) 351-361.
[38] Tsung-Yu Wu, “Fabrication of Polydimethylsiloxane (PDMS) Pulsating Heat Pipe,” Master's Thesis, Tamkang University, (2007).
論文全文使用權限
校內
紙本論文於授權書繳交後2年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後2年公開
校外
同意授權
校外電子論文於授權書繳交後2年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信