淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2506200809323900
中文論文名稱 利用基因法則最佳化室內天線位置之分析
英文論文名稱 Optimal Antenna Location in Indoor Environment Using Genetic Algorithm
校院名稱 淡江大學
系所名稱(中) 電機工程學系碩士班
系所名稱(英) Department of Electrical Engineering
學年度 96
學期 2
出版年 97
研究生中文姓名 陳彥甫
研究生英文姓名 Yen-Fu Chen
學號 695440155
學位類別 碩士
語文別 中文
口試日期 2008-06-12
論文頁數 65頁
口試委員 指導教授-丘建青
委員-嚴雨田
委員-丘建青
委員-李慶烈
委員-林信標
委員-余金郎
中文關鍵字 超寬頻  基因法則  位元錯誤率  失效率 
英文關鍵字 Ultra-wide band  Genetic algorithm  Bit error rate  Outage probability 
學科別分類 學科別應用科學電機及電子
中文摘要 由於無線電波在室內環境中容易受到遮蔽物的影響,例如:牆壁、天花板以及傢俱等,造成無線電波經由多重反射、繞射等路徑而到達接收天線,此一現象稱之為多路徑效應(multi-path effect)。由於此效應造成的符際間干擾(InterSymbol Inference, ISI) ,導致通訊位元錯誤率(Bit Error Rate, BER)及失效率(outage probability)增加,亦即通話品質變差。射線彈跳追蹤法可以模擬複雜環境、預測無線通訊傳輸時的特性以及減少工作時間與成本。為了得知其脈衝響應(impulse responses),本文利用射線彈跳追蹤法(Shooting and Bouncing Ray/image techniques, SBR/Image techniques)和快速反傅立葉轉換(Inverse Fast Fourier Transform, IFFT)技術計算其脈衝響應。使用二進制的脈波振幅調變(Binary Pulse Amplitude Modulation, BPAM)方法,進而計算超寬頻通訊系統的位元錯誤率。本篇論文裡,吾人分別針對四種狀況,並且利用基因法則最佳化室內的發射天線位置,之後探討其在超寬頻(Ultra-Wide Band, UWB) 通訊上對位元錯誤率的影響。
這四種不同的狀況分別為: 1. 發射器在室內自由移動、每個接收器以0.3公尺間隔均勻分佈固定在桌上(例如:手機對電腦) 2. 發射器在桌上自由移動、每個接收器以0.3公尺間隔均勻分佈固定在桌上(例如:電腦對電腦) 3. 發射器在室內自由移動、每個接收器以0.75公尺間隔均勻分佈在室內環境(例如:手機對手機) 4. 發射器在桌上自由移動、每個接收器以0.75公尺間隔均勻分佈在室內環境(例如:電腦對手機) 。最後數值結果顯示使用基因法則最佳化室內的發射天線位置確實可以降低環境失效率。
英文摘要 A novel optimization procedure for the location of the transmitter in ultra-wideband (UWB) wireless communication systems is presented. The impulse responses of different transceiver locations are computed by shooting and bouncing ray/image (SBR/Image) techniques and inverse fast Fourier transform (IFFT). By using the impulse responses of these multi-path channels, the bit error rate (BER) performance for binary pulse amplitude modulation (BPAM) impulse radio UWB communication system are calculated. Based on the BER performance, the outage probability for any given location of the transmitter can be computed. The optimal antenna location for minimizing the outage probability is searched by genetic algorithm (GA). There are four different transceiver locations considered in the simulation. These four cases are (i) the transmitter is mobile in the whole indoor environment and the receivers are located on the tables with intervals distribution (ii) the transmitter is mobile but only set on the tables and the receivers are located on the tables with uniform distribution (iii) the transmitter is mobile and the receivers are uniform intervals distribution in the whole indoor environment (iv) the transmitter is mobile but only set on the tables and the receivers are uniform distribution in the whole indoor environment. Numerical results have shown that our proposed method is effect to find the optimal location for transmitting antenna to reduce BER and outage probability.
論文目次 目錄
第一章 概論..........................................P.1
1.1 研究背景......................................P.1
1.2 研究動機......................................P.6
1.3 研究內容簡介..................................P.7
第二章 基因演算法則..................................P.8
2.1 前言..........................................P.8
2.2 基因演算法之基本概念..........................P.10
2.3 介紹基因演算法則中的運算方式..................P.13
第三章 UWB通道計算模型...............................P.20
3.1 無線電波傳撥通道分析..........................P.20
3.2 通道計算模型分析..............................P.22
3.2.1 利用射線追蹤法計算頻域響應....................P.23
3.2.2 利用何米特法與快速反傅立葉轉換計算出時域響應..P.26
3.3 射線彈跳追蹤法程式流程分析....................P.28
3.4 系統模擬架構..................................P.32
3.4.1 發射訊號波形..................................P.33
3.4.2 位元錯誤率之計算..............................P.34
第四章 模擬數值結果..................P.38
4.1 模擬實驗環境及設定................ P.38
4.2 模擬結果分析....................P.41
第五章 結論......................P.52
參考文獻.......................P.53
附錄........................P.58

圖目錄
圖 2.1 基因演算法之流程圖..............................P.12
圖 2.2 基因演算法單點交配示意圖........................P.16
圖 3.1 求得通道脈衝響應的步驟..........................P.22
圖 3.2 何米特程序的信號處理步驟........................P.27
圖 3.3 SBR/Image程式流程圖.............................P.31
圖 3.4 二位元脈衝振幅調變位元錯誤率系統架構圖..........P.32
圖 3.5 傳送高斯二次微分脈波的波型......................P.33
圖 3.6 FCC對室內及室外超寬頻系統的頻段及輻射能量限制...P.34
圖4.1 室內環境平面圖.................P.39
圖4.2 GA-1 和Txc 天線位置其失效率比較圖........P.41
圖 4.3 GA-1在不同的基因世代計算過程中失效率變化情形..P.42
圖4.4 GA-2A 和GA-2B 以及GA-2C 天線位置其失效率比較圖..P.43
圖 4.5 GA-2A在不同的基因世代計算過程中失效率變化情形..P.43
圖 4.6 GA-2B在不同的基因世代計算過程中失效率變化情形..P.44
圖 4.7 GA-2C在不同的基因世代計算過程中失效率變化情形..P.44
圖4.8 GA-3 和Txc 天線位置其失效率比較圖........P.45
圖4.9 Txc 天線位置其錯誤率分佈圖............P.46
圖4.10 GA-3 天線位置其錯誤率分佈圖...........P.46
圖 4.11 GA-3在不同的基因世代計算過程中失效率變化情形..P.47
圖4.12 GA-4A 和GA-4B 以及GA-4C 天線位置其失效率比較圖.P.48
圖4.13 GA-4A 天線位置其錯誤率分佈圖..........P.48
圖4.14 GA-4B 天線位置其錯誤率分佈圖..........P.49
圖4.15 GA-4C 天線位置其錯誤率分佈圖..........P.49
圖4.16 GA-4A在不同的基因世代計算過程中失效率變化情形.P.50
圖4.17 GA-4B在不同的基因世代計算過程中失效率變化情形.P.50
圖4.18 GA-4C在不同的基因世代計算過程中失效率變化情形.P.51

表目錄
表2.1 基因演算法相關名詞解釋與中英對照表..............P.9
表4.1 基因法則設定參數................................P.40
參考文獻 [1]. “Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems,” FCC, Washington, DC, 2002, FCC report and order, adopted February 14, 2002, released July 15, 2002.
[2]. 工業技術研究院 產業經濟與資訊服務中心, Ultra-wide band 技術分析與探討
[3]. M.Z. Win, R.A. Scholtz, M.A. Barnes, “Ultra-wide bandwidth signal propagation for indoor wireless communications, ” IEEE International Conference on Towards the Knowledge Millennium, Vol. 1, pp. 56 - 60, June 1997.
[4]. V. Hovinen, M. Hamalainen,T. Patsi, “Ultra wideband indoor radio channel models: preliminary results, ” IEEE conference on Ultra Wideband Systems and Technologies, pp. 75-79, May 2002.
[5]. D. Cassioli, M.Z. Win, and A.F. Molisch, “The ultra-wide bandwidth indoor channel: from statistical model to simulations, ” IEEE Journal on Selected Areas in Communications, Vol. 20, No. 6, pp.1247 - 1257, August 2002.
[6]. J. Karedal, S. Wyne, P. Almers, F. Tufvesson, and A.F. Molisch, ”Statistical analysis of the UWB channel in an industrial environment,’ IEEE Conference on Vehicular Technology, Vol. 1, pp. 81 – 85, September 2004.
[7]. A. H. Wong, M. J. Neve and K.W. Sowerby, “Antenna selection and deployment strategies for indoor wireless communication systems,” IET Communications, Vol. 1, No. 4, pp. 732 – 738, August 2007.
[8]. D.C.K. Lee, M.J. Neve, and K. W. Sowerby, “The impact of structural shielding on the performance of wireless systems in a single-floor office building,” IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 6, NO. 5, pp. 1787-1795, MAY 2007.
[9]. J.M. Johnson and V. Rahmat-Samii, “Genetic algorithms in engineering electromagnetics,” IEEE Antennas and Propagation Magazine, Vol.39, No.4, pp. 7-21, August 1997.
[10]. T.A. Chen (1998), Applying Advanced Operators to Improve the Efficiency of Genetic Algorithm, Master Thesis, Tamkang University, Taiwan, 1998.
[11]. R. C. Qiu, “A study of ultra-wideband wireless propagation channel and optimum UWB receiver design,” IEEE Journal on Selected Areas in Communications , Vol. 20, No.9, pp. 1628–1637, December 2002.
[12]. B. Uguen, E. Plouhinee, Y. Lostanlen, and G. Chassay, “A deterministic ultra-wideband channel modeling,” IEEE Conference on Ultra-Wideband System Technologies, pp. 1–5, May 2002.
[13]. Y. Zhang, “Ultra-wide bandwidth channel analysis in time domain using 3-D ray tracing,” High Frequency Postgraduate Student Colloquium of IEEE, pp. 189-194, September 2004.
[14]. E. W. Kamen and B. S. Heck, Fundamentals of Signals and Systems Using the Weband Matlab, Prentice-Hall, 2000.
[15]. J.M. Johnson and V. Rahmat-Samii, “Genetic algorithms in engineering electromagnetics,” IEEE Antennas and Propagation Magazine, Vol. 39, No. 4, pp. 7-21, August 1997.
[16]. J.A. Vasconcelos, J. A. Ramirez, R. H. C. Takahashi, and R. R. Saldanha, "Improvements in genetic algorithms," IEEE Transactions on Magnetics, Vol. 37, No.5, pp. 3414-3417, September 2001.
[17]. S. H. Chen and S. K. Jeng ,“An SBR/Image approach for indoor radio propagation in a corridor,” IEICE TRANSACTIONS on Electronics, Vol. E78-C, No.8, pp. 1058-1062, August 1995
[18]. S. H. Chen and S. K. Jeng, “SBR/Image approach for radio wave propagation in tunnels with and without traffic,” IEEE Transactions on Vehicular Technology, Vol. 45, No.3, pp. 570-578, August 1996.
[19]. I. Oppermann, M. Hamalainen and J. Iinatti, UWB Theory and Applications, John Wiley & Sons, 2004.
[20]. E. W. Kamen and B. S. Heck, Fundamentals of Signals and Systems Using the Web and Matlab, Prentice-Hall, 2000.
[21]. B. Sklar, Digital Communications:Fundamentals and Applications 2/e, Prentice Hall PTR, 2004
[22]. Tian Zhi and G.B Giannakis, “BER sensitivity to mistiming in ultra-wideband impulse Radios-part I: nonrandom channels,” IEEE Transactions on Signal Processing, Vol. 53, No. 4, pp. 1550 -1560, April 2005.
[23]. K. Siwiak, P. Withington and S. Phelan, “Ultra-wide band radio: the emergence of an important new technology,” IEEE VTS 53rd .Vehicular Technology Conference, 2001. VTC 2001 Spring. Vol. 2, pp. 1169 – 1172, May 2001.
[24]. K. Siwiak, “Ultra-wide band radio: introducing a new technology,” IEEE VTS 53rd .Vehicular Technology Conference, 2001. VTC 2001 Spring. Vol. 2, pp. 1088 - 1093, May 2001.
[25]. E. Saberinia and A.H Tewfik, “Single and multi-carrier UWB communications,” IEEE Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings. Vol. 2, pp. 343 - 346, July 2003.
[26]. Zhi Tian and G.B. Giannakis, “BER sensitivity to mistiming in ultra-wideband impulse radios - part II: fading channels,” IEEE Transactions on Speech, and Signal Processing, Vol. 53, No.5, pp. 1897 - 1907, May 2005.
[27]. Chien-Ching Chiu and Chi-Ping Wang, “Bit error rate performance of high-speed tunnel communication,” IEEE MTT-S International Microwave and Optoelectronics Conference, 1997, Vol. 1, pp. 186 - 191, August 1997.
[28]. A. S. Jazi, S. M. Riad, A. Muqaibel, and A. Bayram, “Through-the-Wall Propagation and Material Characterization,” DARPA NETEX Program Report, November 2002.
[29]. S. Imada and T. Ohtsuki, “Pre-RAKE diversity combining for UWB systems in IEEE 802.15 UWB multipath channel,” IEEE Joint with Conference on Ultra wideband Systems and Technologies. Joint UWBST & IWUWBS. 2004 International Workshop on Ultra Wideband Systems, pp. 236 - 240, May 2004.
[30]. D.J. Gargin, “A fast and reliable acquisition scheme for detecting ultra wide-band impulse radio signals in the presence of multi-path and multiple access interference” 2004 International Workshop on Ultra Wideband Systems, pp. 106 - 110, May 2004.
[31]. B. Mielczarek, M.O. Wessman and A. Svensson, “Performance of coherent UWB Rake receivers with channel estimators,” IEEE 58th Vehicular Technology Conference, Vol.3, pp. 1880 - 1884, October 2003.
[32]. M. Hamalainen and J. Iinatti, “Analysis of Interference on DS-UWB System in AWGN Channel,” 2005 IEEE International Conference on Ultra-Wideband, pp. 719 - 723, September 2005.
[33]. S. Kandukuri and S. Boyd, “Optimal power control in interference-limited fading wireless channels with outage-probability specifications,” IEEE Transactions on Wireless Communications, Vol.1, No.1, pp. 46 - 55, January 2002.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2010-06-25公開。
  • 同意授權瀏覽/列印電子全文服務,於2010-06-25起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信