§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2506200807481700
DOI 10.6846/TKU.2008.00883
論文名稱(中文) 使用遺傳演算法設計超寬頻系統波形
論文名稱(英文) A Novel DS-UWB Pulses Design Using Genetic Algorithm
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 96
學期 2
出版年 97
研究生(中文) 莊惟鈞
研究生(英文) Wei-Chun Chuang
學號 695441021
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2008-06-12
論文頁數 49頁
口試委員 指導教授 - 丘建青(chiu@ee.tku.edu.tw)
委員 - 嚴雨田
委員 - 丘建青
委員 - 李慶烈
委員 - 林信標
委員 - 余金郎
關鍵字(中) 超寬頻通訊系統
波形設計
基因演算法
射線彈跳追蹤法
關鍵字(英) DS-UWB
pulse design
genetic algorithm
ray tracing mode
第三語言關鍵字
學科別分類
中文摘要
本文中提出使用遺傳演算法在Federal Communications Commission (FCC)規定的頻譜內產生一個超寬頻ultra-wideband(UWB)波形。吾人利用遺傳演算法找出波形的合成參數,再將每個波形相加合成出一個符合FCC 頻譜規範的波形。亦有部份文獻則是以高次微分波形做為傳送波形,但在實際電路實現上有困難且不容易達到。所以本文中提出只利用多個高斯三次微分波形合成,則可以避免上述的困擾。最後與傳統高斯微分波形比較,比較結果得出由遺傳演算法合成波形不僅比傳統的高斯微分波更符合FCC 頻譜規範,而且可以得到較佳的效能。吾人使用上述之波形配合射線彈跳追蹤法(Ray Tracing Mode)模擬真實環境,結果顯示,遺傳演算法設計出波形比傳統高斯波形大量的提升頻寬使用率(spectrum utilization rate),減少多重路徑(multipath)干擾,降低錯誤率以及失效率(outage probability)。文章中提到的射線彈跳追蹤法,可以經由程式設定進而模擬更接近現實環境的通道。本文提出波形合成最佳化方法,不是只有侷限在超寬頻無線系統上,使用者僅需替換不同的適應函式,亦可應用與設計出其他通訊的最佳波形。模擬中利用高斯三次微分波形,只要透過遺傳演算法找到每個波形的參數後,將這些波形相加就可以得到最佳波形,吾人提出的方法是可以加以實現,而非僅於數值模擬上進行。
英文摘要
This paper proposes a new pulse design method to improve spectrum utilization rate and reduce the outage probability in Ultra Wide Band (UWB) system. Several third derivative Gaussian waveforms are employed to generate the pulse based on the bandwidth constraint set by the US Federal Communications Commission (FCC) mask. The genetic algorithm (GA) is used to find the optimal pulse parameter. This method is an easy way to achieve in practical circuit implementation, since COMS circuit is hard to produce one pulse with short duration and complex pulse shape. Comparisons with the traditional Gaussian pulse, the synthesis pulse by GA not only satisfies the FCC emission mask but also has high spectrum utilization rate. Simulation results show that the performances in indoor UWB system using the synthesis pulse by GA is better than that using traditional Gaussian pulse. Numerical results show that the synthesis pulse by GA is 30 percent higher in spectrum utilization rate and 65 percent lower in outage probability for the same transmission power, as well as 21 percent lower in outage probability for fixed Signal-to-noise ratio (SNR)at the receiver comparing with traditional Gaussian pulse. This proposed method not only uses in indoor UWB system but also can be extended to different communication systems by changing the system object function.
第三語言摘要
論文目次
目錄
第一章 概論.............................................P.01
1.1 超寬頻通訊系統簡介..................................P.01
1.2 研究動機............................................P.05
1.3 研究內容簡介........................................P.07
第二章 波形參數最佳化...................................P.09
2.1遺傳演算法簡介.......................................P.09
2.1.1遺傳演算法的歷史...................................P.09
2.1.2遺傳演算法的優點...................................P.09
2.1.3遺傳演算法的流程...................................P.10
2.2利用遺傳演算法對波形最佳化...........................P.13
第三章 傳輸通道與系統描述...............................P.18
3.1無線電波通道分析.....................................P.18
3.2系統模擬與架構概述...................................P.19
3.3射線彈跳追蹤法簡介與分析.............................P.22
3.4位元錯誤率分析與計算.................................P.23
第四章 數值模擬與分析...................................P.27
4.1模擬實驗環境.........................................P.27
4.2模擬結果分析與比較...................................P.29
第五章 結論與未來展望...................................P.42
參考文獻................................................P.44
附錄....................................................P.48

圖目錄

圖1.1:UWB發射功率限制示意圖••••••••••••••••••••••••P.02
圖2.1:遺傳演算法流程圖••••••••••••••••••••••••••••P.11
圖2.2:單點交配過程示意圖•••••••••••••••••••••••••••P.14
圖2.3:單點突變過程示意圖•••••••••••••••••••••••••••P.15
圖3.1:超寬頻系統二位元脈衝振幅調變系統架構圖•••••••••P.21
圖4.1:無線網路家庭示意圖•••••••••••••••••••••••••••P.28
圖4.2:無線家庭網路傳送與接收天線擺放位置圖•••••••••••P.29
圖4.3:傳統三次高斯微分波形•••••••••••••••••••••••••P.30
圖4.4:六個高斯基本波合成波形•••••••••••••••••••••••P.30
圖4.5:第一個高斯基本波••••••••••••••••••••••••••••P.31
圖4.6:第兩個高斯基本波••••••••••••••••••••••••••••P.31圖4.7:第三個高斯基本波••••••••••••••••••••••••••••P.32圖4.8:第四個高斯基本波••••••••••••••••••••••••••••P.32圖4.9:第五個高斯基本波••••••••••••••••••••••••••••P.33圖4.10:第六個高斯基本波••••••••••••••••••••••••••••P.33圖4.11:傳統三次高斯微分波形頻譜圖•••••••••••••••••••P.34
圖4.12:兩個高斯基本波合成之頻譜圖••••••••••••••••••P.35
圖4.13:三個高斯基本波合成之頻譜圖•••••••••••••••••••P.35
圖4.14:四個高斯基本波合成之頻譜圖•••••••••••••••••••P.36
圖4.15:五個高斯基本波合成之頻譜圖•••••••••••••••••••P.36
圖4.16:六個高斯基本波合成之頻譜圖•••••••••••••••••••P.37
圖4.17:適應值變化趨勢圖••••••••••••••••••••••••••••P.37
圖4.18:固定發射功率之失效率圖••••••••••••••••••••••P.39
圖4.19:固定接收訊號雜訊比之失效率圖•••••••••••••••••P.40
參考文獻
[1]	F. Elbahhar, A. Rivenq, M. Heddebaut and J.M. Rouvaen, ‘‘Using UWB Gaussian pulses for inter-vehicle communications,’’ IEE Proceedings-Communication, Vol. 152, no.2 , pp. 229 – 234 , April 2005
[2]	Federal Communications commission, ‘‘Revision of Part 15 of the commission`s rules regarding ultra-wideband transmission system, FIRST PEPORT AND ORDER,’’ ET Docket 98-153, FCC 02-48, pp. 1-118, February 14, 2002.
[3]	Y. Rumin, Y. Chengbo and Z. Zheng, ‘‘A Novel Algorithm for Designing Adaptive DS-UWB Pulses Using Hermite-Gaussian Orthonormal Expansion,’’  2006. WiCOM 2006.International Conference pp. 1-4 Sept. 2006 
[4]	Z. Dongsong, Jr.A. Annamalai and A.I. Zaghloul, ‘‘Pulse shaping filter design in UWB system,’’ Ultra Wideband Systems and Technologies, 2003 IEEE Conference,pp. 66-70 Nov. 2003 
[5]	B. Parr, L.C. Byung, K. Wallace and D. Zhi, ‘‘A novel ultra-wideband pulse design algorithm,’’ Communications Letters, IEEE, Vol 7, no. 5, pp. 219 - 221 May 2003 
[6]	A.B. Parr, B.L. Cho and Z. Ding, ‘‘A new UWB pulse generator for FCC spectral masks,’’ Vehicular Technology Conference, 2003. VTC 2003-Spring. The 57th IEEE Semiannual, Vol 3, pp. 1664 - 1666 April 2003 
[7]	M. D. Pozar, “Waveform Optimizations for Ultrawideband Radio Systems,” IEEE Transactions on Antennas and Propagation, Vol. 51, No. 9, Sep., 2003
[8]	X. Chen and S. Kiaei, “Monocycle shapes for ultra wideband system”, IEEE ISCAS 2002., Vol.1 , 26-29 May 2002
[9]	C. A. Corral, S. Sibecas, S. Emami and G. Stratis, “Pulse spectrum optimization for ultra-wideband communication,” IEEE Conference on UWBST 2002, Digest of Papers, pp.31-35, 21-23 May 2002
[10]	B. Parr, B. Cho, K. Wallace, and Z. Ding, “A Novel Ultra-Wideband Pulse Design Algorithm”, IEEE Communication Letters, Vol.7, No.5, May,2003
[11]	R. S. Dilmaghani, M. Ghavami, B. Allen and H. Aghvami, “Novel UWB pulse shaping using prolate spheroidal wave functions”, IEEE Proceedings on PIMRC 2003, Vol.1, Sep. 2003
[12]	X. Haolu, X. Wang, A. Wang, B. Qin, H. Chen, Y. Zhou and B. Zhao ‘‘A Varying Pulse Width Third Order Derivative. Gaussian Pulse Generator for UWB Transceivers in COMS,’’ 2007 IEEE Conference pp. 2794-2797 2007
[13]	H. Ray, N. Udar and R. Viswanathan, ‘‘A weighted sum of Gaussian-derived pulse design for UWB,’’ IEEE Radio and Wireless Symposium, pp.383 – 386, Jan. 2006 
[14]	D. Zeng, A.I. Zaghloul and A. Jr. Annamalai, ‘‘Pulse shaping optimizer in UWB receivers,’’ Antennas and Propagation Society International Symposium, 2005 IEEE, Vol. 2A, pp.635 - 638 July 2005 
[15]	S. Gezici, C. Mung, H.V. Poor and H. Kobayashi, ‘‘A genetic algorithm based finger selection scheme for UWB MMSE rake receivers,’’ Ultra-Wideband, 2005. ICU 2005. 2005 IEEE International Conference pp.164 - 169 Sept. 2005
[16]	S. Gezici, M. Chiang, H.V. Poor and H. Kobayashi, ‘‘Optimal and suboptimal finger selection algorithms for MMSE Rake receivers in impulse radio ultra-wideband systems,’’ Proc. IEEE Wireless Communications and Networking Conference (WCNC 2005 ), vol. 2, pp. 861-866, New Orleans, LA, March 13-17, 2005.
[17]	C.Y. Tsai and S.K. Jeng, ‘‘Design of an ultra-wideband waveform shaping network using an analog microwave differentiator array fed by a Gaussian pulse signal,’’ IEEE Antennas and Propagation Society International Symposium , pp. 1307 – 1310, July 2006
[18]	C. Sturm, W. Sorgel, T. Kayser and W. Wiesbeck, ‘‘Deterministic UWB Wave Propagation Modeling for Localization Applications based on 3D Ray Tracing,’’ 2006 IEEE MTT-S International Microwave Symposium Digest, pp. 2003 – 2006, June 2006
[19]	A. S. Jazi, S. M. Riad, A. Muqaibel, and A. Bayram, “Through-the-Wall Propagation and Material Characterization,” DARPA NETEX Program Report  Nov. 2002.
[20]	J. Michael Johnson, and R.S. Yahya, ”Genetic algorithms in engineering electromagnetics,” IEEE Antennas and Propagation Magazine, Vol. 39, No.4, pp.7-21, Aug. 1997.

[21]	J.A. Vasconcelos, J. A. Ramírez, R. H. C. Takahashi, and R. R. Saldanha, “Improvements in genetic algorithms,” IEEE Transactions on Magnetics, Vol. 37, No. 5, pp. 3414-3417, Sept. 2001.
[22]	J.T. Conroy, , J.L. LoCicero and D.R. Ucci, ‘‘Communication techniques using monopulse waveforms.’’ IEEE Military Communications Conference Proceedings, Vol. 2 (November 1999), 1181-1185.
[23]	J.G, Proakis, Digital Communications. Neywork: McGrawHill, 4thed. ,2001. 
[24]	E. A. Homier and R. A. Scholtz, ‘‘Rapid acquisition of ultra-wideband signals in the dense multi-path channel,’’ IEEE conference on Ultra Wideband systems and Technologies, pp. 105-109, 2002.
[25]	D. J. Gargin ‘‘A fast and reliable acquisition scheme for detecting ultra wide –band impulse radio signals in the presence of multi-path and multiple access interference’’ 2004 International Workshop on Ultra Wideband Systems, pp. 106-110, May 2004
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信