淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2506200519014000
中文論文名稱 需求率與存貨水準有關且部份欠撥的非瞬間退化物品存貨模式
英文論文名稱 Some inventory models for non-instantaneous deteriorating items with demand rate dependent inventory level and partial backlogging
校院名稱 淡江大學
系所名稱(中) 管理科學研究所碩士班
系所名稱(英) Graduate Institute of Management Science
學年度 93
學期 2
出版年 94
研究生中文姓名 余鴻慶
研究生英文姓名 Hung-Ching Yu
學號 692560633
學位類別 碩士
語文別 中文
口試日期 2005-06-03
論文頁數 52頁
口試委員 指導教授-歐陽良裕
委員-吳坤山
委員-廖瑞容
中文關鍵字 非瞬間退化  欠撥率  數量折扣 
英文關鍵字 Inventory  deteriorating items  demand rate dependent inventory level  non-instantaneous  partial backlogging 
學科別分類 學科別社會科學管理學
中文摘要 在日常生活中,存貨問題為各行各業中最基本,也是最重要的問題之一,因此,許多企業都希望透過有效的方法,擬定一個最適的存貨策略。近年來,產品退化的現象常被提出討論,在傳統的存貨問題中,都假設產品的品質不會隨著時間的流逝而有所變化,但在實際情況中並非如此,存貨物品的退化是很正常的現象。此外,當產品的供應不能滿足顧客的需求時,便會發生缺貨;當缺貨發生時,只有部份的消費者願意等候欠撥,而另一部份的消費者因不願等候而轉向其他競爭廠商購買。因此在考量最大的經濟利益下,擬定一個適當的訂購策略,是很重要的。
本論文係研究具非瞬間退化性的單一產品,需求率與存貨水準有關且允許缺貨的存貨模式,全文包含兩個存貨模式,首先,第二章討論固定欠撥率的存貨模式,其目的在找出沒有短缺的存貨期間及訂購週期長度,以使單位時間有最小的總相關成本。對所建立的模式,我們以傳統的最佳化原理證明最適解存在,接著,由於模式的複雜性,透過電腦數學軟體Mathematica4.1協助搜尋最適解。第三章則延續第二章的討論,假設欠撥率服從一隨機分配,並在文中加入數量折扣的考量,其目的在找出最適的訂購策略。
英文摘要 In real life, inventory is one of the most important and basic problem in every walk of life. Therefore, many enterprises want to make the optimal inventory strategy through effective methods. In recent years, the situation of .products deterioration has also been proposed and discussed. In traditional inventory problems, quality is not change with wait time. But in realistic circumstances, products deterioration is normal situation. Besides, if products can not satisfy customers, the shortages would occur. when the shortages occur, some customers are willing to wait for backorder and others would turn to buy from other sellers. Hence, it is very important to make the optimal strategy in order to consider the best economic benefits.
This study consider some inventory models for non-instantaneous deteriorating items with demand rate dependent inventory level and partial backlogging. This article involves two models. First, we discuss the model with fixed backlogging rate. The objective is to find the length of time in which the inventory is no shortage and the length of order cycle such that the minimum total relevant inventory cost per unit time of inventory system. In this model, we can prove that the optimal solution is existence and uniqueness. Because the model is complex, we use software Mathematica4.1 to find the optimal solution. At last we discuss the model with backlogging rate of random distribution and consider quantity discount in this model. The objective is to find the optimal order strategy.
論文目次 目錄

表目錄 III
圖目錄 IV
使用符號一覽表 V
基本假設 VI
第一章 緒 論 1
1.1 研究動機與目的 1
1.2 文獻探討 3
1.3 研究方法 7
1.4 研究架構 7
第二章 需求率與存貨水準有關且固定欠撥率之非瞬間退化性產品的存貨模式 9
2.1 前言 9
2.2 符號 10
2.3 模型的建立 10
2.4 相關成本之計算 13
2.5 模型求解 14
2.6 一些特殊的情況 19
2.7 數值範例 22
2.8 敏感度分析 23
第三章 需求率與存貨水準有關且涵括隨機欠撥率和數量折扣之非瞬間退化性產品的存貨模式 27
3.1 前言 27
3.2 符號與假設 28
3.3 模型的建立 29
3.4 相關成本之計算 31
3.5 模式的求解 33
3.6 數值範例 40
3.7 敏感度分析 42
第四章 結論及後續研究方向 45
4.1 結論 45
4.2 後續研究方向 46
參考文獻 48


表目錄

表2.1 參數值的變動對最適解的影響 24
表3.1 不同訂購量下的單位購買價格表 29
表3.2 單位購買價格的相關資料 41
表3.3 不同單位價格下之最適解 41
表3.4 參數值的變動對最適解的影響 42


圖目錄

圖1.1 研究流程圖 8
圖2.1 固定欠撥率之存貨系統 11
圖3.1 隨機欠撥率之存貨系統 30

參考文獻 參考文獻
[1] Abad, P. L. (1988). “Determining optimal selling price and lot size when the supplier offers all-unit quantity discounts”. Decision Sciences, 19(3), 622-634.
[2] Baker, R. C. and Urban, T. L. (1988). “A deterministic inventory system with an inventory-level-dependent demand rate”. Journal of the Operational Research Society, 39, 823-831.
[3] Benton, W. C. and Park, S. (1996). “A classification of literature on determining the lot size under quantity discounts”. European Journal of Operational Research, 92, 219-238.
[4] Bhunia, A. K. and Maiti, M. (1997). “Deterministic inventory models for variable production”. Journal of the Operational Research Society, 48, 221-224.
[5] Bose, S., Goswami, A. and Chaudhuri, K. S. (1995). “An EOQ model for deteriorating items with linear time-dependent demand rate and shortage under inflation and time discounting”. Journal of the Operational Research Society, 46, 771-782.
[6] Burwell, T. H., Dave, D. S., Fitzpatrick, K. E. and Roy, M. R. (1991). “An inventory model with planned shortages and price dependent demand”. Decision Sciences, 22, 1187-1191.
[7] Chang, H. J. and Dye, C. Y. (1999). “An EOQ model for deteriorating items with exponential time-varying demand and partial backlogging”. International Journal of Information and Management Sciences, 10, 1-11.
[8] Covert, R. P. and Philip, G. C. (1973). “An EOQ model for items with Weibull distribution deterioration”. AIIE Transactions, 5, 323-326.
[9] Datta, T. K. and Pal, A. K. (1990). “A note on an inventory model with inventory-level-dependent demand rate”. Journal of the Operational Research Society, 41, 971-975.
[10] Ghare, P. M. and Schrader, G. E. (1963). “A model for exponential decaying inventory”. The Journal of Industrial Engineering, 14, 238-243.
[11] Goswami, A. and Chaudhuri, K. S. (1991). “EOQ model for an inventory with a linear trend in demand and finite rate of replenishment considering shortages”. International Journal of Systems Science, 22, 181-187.
[12] Goswami, A. and Chaudhuri, K. S. (1992). “Variations of order-level inventory models for deteriorating items”. International Journal of Production Economics, 28, 111-117.
[13] Gupta, R. and Vrat, P. (1986). “Inventory model with multi-items under constraint systems for stock dependent consumption rate”. Operational Research, 24, 41-42.
[14] Hollier, R. H. and Mak, L. (1983). “Inventory replenishment polices for deteriorating items in a declining market”. International Journal of Production Research, 21, 813-826.
[15] Mandal, B. N. and Phaujdar, S. (1989). “An inventory model for deteriorating items and stock-dependent consumption rate”. Journal of the Operational Research Society, 40, 483-488.
[16] Ouyang, L. Y. and Dye, C. Y. (2003). “An EOQ model for perishable items under stock-dependent selling rate and time-dependent partial backlogging”. European Journal of Operational Research, 163(3), 776-783.
[17] Wu, K. S., Ouyang, L. Y. and Yang, C. T. (2005). “An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and partial backlogging”. International Journal of Production Economics, In Press.
[18] Padmanabhan, G. and Vrat, P. (1995). “EOQ models for perishable items under stock dependent selling rate”. European Journal of Operational Research, 86, 281-292.
[19] Papachristos, S. and Skouri, K. (2000). “An optimal replenishment policy for deteriorating items with time-varying demand and partial-exponential type- backlogging”. Operations Research Letters, 27, 175-184.
[20] Papachristos, S. and Skouri, K. (2003). “An inventory model with deteriorating items, quantity discount, pricing and time-dependent partial backlogging”. International Journal of Production Economics, 83, 247-256.
[21] Park, K. S. (1982). “Inventory models with partial backorders”. International Journal of Systems Science, 3, 1313-1317.
[22] Philip, G. C. (1974). “A generalized EOQ model for items with Weibull distribution”. AIIE Transactions, 6, 159-162.
[23] Raafat, F. (1991). “Survey of literature on continuously deteriorating inventory models”. Journal of the Operational Research Society, 42(1), 27-37.
[24] Shah, Y. K. (1977). “An order-level lot size inventory model for deteriorating items”. AIIE Transactions, 9, 108-112.
[25] Su, C. T., Tong, L. I. and Liao, H. C. (1996). “An inventory model under inflation for stock dependent consumption rate and exponential decay”. Opsearch, 33, 71-82.
[26] Su, C. T., Lin, C. W. and Tsai, C. H. (1999). “A deterministic production inventory model for deteriorating items with an exponential declining demand”. Opsearch, 36(2), 95-106.
[27] Tersine, R. J. and Toelle, R. A. (1985). “Lot size determination with quantity discounts”. Production and Management, 26(3), 1-23.
[28] Wee, H. M. (1992). “Perishable commodities inventory policy with partial backordering”. The Chung Yuan Journal, 12, 191-198.
[29] Wee, H. M. (1995). “Joint pricing and replenishment policy for deteriorating inventory with declining market”. International Journal of Production Economics, 40, 163-171.
[30] Wee, H. M. (1999). “Deteriorating inventory model with quantity discount, pricing and partial backordering”. International Journal of Production Economics, 59, 511-518.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2005-06-29公開。
  • 同意授權瀏覽/列印電子全文服務,於2005-06-29起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信