淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-2502201919261900
中文論文名稱 無線感測網路中最大化網路生命期之行動收集器資料收集技術
英文論文名稱 A Data Collection Mechanism for Energy Conservation using Mobile Sink in Disconnected Wireless Sensor Networks
校院名稱 淡江大學
系所名稱(中) 資訊工程學系全英語碩士班
系所名稱(英) Master’s Program, Department of Computer Science and Information Engineering (English-taught program
學年度 107
學期 1
出版年 108
研究生中文姓名 狄 法
研究生英文姓名 Bojjinatham Deva
電子信箱 bdeva121@gmail.com
學號 604785039
學位類別 碩士
語文別 英文
口試日期 2018-01-11
論文頁數 44頁
口試委員 指導教授-張志勇
委員-廖文華
委員-游國忠
中文關鍵字 資料收集機制  斷開的無線感測器網路  有效的道路  分區段  工作量 
英文關鍵字 Data collection mechanism  Disconnected Wireless sensor network  Efficient path  Partitioned segments  work load 
學科別分類 學科別應用科學資訊工程
中文摘要 後來資料收集問題引起了很多關注。資料收集是涉及無線感測器網路壽命的最重要任務之一。已經提出了許多資料收集演算法用於收集連接的無線感測器網路的特定監視區域中的資料。然而,可以改進用於斷開的無線感測器網路(DWSN)的路徑建立以及用於這種資料收集的路徑的效率。本文提出了一種新的DWSN分區段資料獲取機制,構建了一個移動宿路徑,根據感測器節點的密度在每個段中選擇一組合適的資料獲取點,並從負載資料的點中收集資料。所提出的機制旨在實現DWSN中的每個感測器節點的完全連接,並且還均勻地分佈工作負載感測器節點以增加網路壽命。性能結果表明,所提演算法在網路生命週期,能耗,公平指數和效率指標方面優於現有方法。
英文摘要 Latterly Data collection issues have received much attention. Data collection is one of the foremost task that concerns lifetime of wireless sensor networks. Many data collection algorithms have been proposed for collecting data in particular monitoring regions of connected wireless sensor network. However, path establishment for Disconnected Wireless Sensor Network (DWSN) and the efficiency of the paths for such data collection can be improved. This paper proposes a novel Data collection mechanism for partitioned segments in DWSN, which constructs a mobile sink path, selects a set of opportune data collection points in each segment based on the density of sensor nodes and collects data from the points burdened with data. The proposed mechanism is intended to achieve full connectivity of each and every sensor node in the DWSN and also evenly distribute the workload sensor nodes to increase the network lifetime. The performance results demonstrated that the proposed algorithms outperform the existing approaches in terms of network lifetime, energy consumption, fairness index, and efficiency index.
論文目次 Table of Contents

List of Figures V
List of Tables VI
Chapter 1. Introduction - 1 -
Chapter 2. Related Works - 5 -
Chapter 3. Problem Statement - 12 -
3.1 Network Environment - 12 -
3.2 Problem Formulation - 15 -
Chapter 4. The Proposed Data Collection Path Algorithm - 20 -
4.1 External path construction for connecting Segments - 22 -
4.1.1Task I: Establishment of the semi trail for Quadrilateral segments…. - 23-
4.1.2 Task II: Extension of the trail for residual segments…………………-29-
4.2 Internal path construction for energy balancing - 32 -
4.2.1 Task I: Grain course of internal path construction..............................- 32 -
4.2.2 Task II: Fine course for internal path adjustment……………………- 34 -
Chapter 5. Performance Evaluation - 37 -
Chapter 6. Conclusions - 40 -
References - 41 -

List of Figures
Fig. 1. Network environment. - 21 -
Fig. 2. The example of External mobile sink path. - 23 -
Fig. 3. The example of Detection of Pivot grid in DWSN. - 25 -
Fig. 4. The example of Determination of Afferent grids. - 27 -
Fig. 5. The example of Quadrilateral path construction. - 28 -
Fig. 6. The example of joining a new segment to the Quadrilateral path. - 30 -
Fig. 7. Internal path construction of an isolated segment. . - 33 -
Fig. 8. Various scenarios of fine grid path In and Out. - 35 -
Fig. 9. Sensor node deployment in an isolated segment.. - 38 -



List of Tables
TABLE I - 11 -
TABLE II - 14 -
TABLE III- 37 -
參考文獻 1. Suryadevara, N.-K. ; Mukhopadhyay, S.- C. Wireless sensor network based home monitoring system for Kolba, M. P. ; Scott, W. R. ; L. M. Collins, A framework for information-based sensor management for the detection of static targets, IEEE Trans. Syst., Man, Cybern. A, Syst. Humans, vol. 41, no. 1, Jan. 2011, pp. 105–120.
2. wellness determination of elderly. IEEE Sensors, vol. 12, no. 6, Jun. 2012. pp. 1965-1972.
3. Mainwaring, A.; Polastre, J. ; Szewczyk, R.; Culler, D.; Anderson, J.; Wireless sensor networks for habitat monitoring, in Proc. ACM Int. Workshop Wireless Sens. Netw. Appl., Atlanta, GA, Sep. 2002, pp. 88–97.
4. Zeng, Y.; Sreenan, C. J.; Sitanayah, L.; Xiong, N.; Park, J.; Zheng, J.H.; An emergency-adaptive routing scheme for wireless sensor networks for building fire hazard monitoring, Sensors, vol. 11, no. 3, , 2011, pp. 2899–2919.
5. Pan, M.-S. ; Yeh, L.-W. ; Chen, Y.-A.; Lin, Y.-H.; Tseng, Y.-C. ; A WSN-based intelligent light control system considering user activities and profiles, IEEE Sensors, vol. 8, no. 9-10, 2008, pp.1710–1721.
6. Keung, G.Y.; Li, B.; Zhang, Q.; The intrusion detection in mobile sensor network, IEEE/ACM Trans. Netw., 2012, vol. 20, no.4, pp.1152–1161.
7. Zhang, Y.; Sun X. ; Wang, B.; Efficient algorithm for k-barrier coverage based on integer linear programming, China Communications, vol. 13, no. 7, , 2016, pp. 16-23.
8. Gao,D.; Lin,H.; Liu,Y.; Jiang,A.; Minimizing end-to-end delay routing protocol for rechargeable wireless sensor networks, Ad Hoc and Sensor Wireless Networks, Vol. 34, , 2016, pp. 77-98.
9. D. Gong, and Y. Yang, “Low-latency SINR-based data gathering in wireless sensor networks,” IEEE Trans. Wirel. Commun., vol. 13, no. 6, pp. 3207-3221, 2014.
10. Z. Lu, W. Li, M. Pan, “Maximum lifetime scheduling for target coverage and data collection in wireless sensor networks,” IEEE Trans. Veh. Technol., vol. 64, no. 2, pp. 714-727, 2015.
11. M. Ma and Y. Yang, “Data gathering in wireless sensor networks with mobile collectors,” in Proc. IEEE Int. Symp. Parallel Distrib. Process. (IPDPS), Apr. 2008, pp. 1–9.

12. L. He, J. Pan, J. Xu, “A progressive approach to reducing data collection latency in wireless sensor networks with mobile elements,” IEEE Trans. Mobile Comput., vol. 12, no. 7, pp. 1308-1320, 2013.

13. R. Sugihara and R. K. Gupta, “Optimal speed control of mobile node for data collection in sensor networks,” IEEE Trans. Mobile Comput.,vol. 9, no. 1, pp. 127–139, Jan. 2010
14. M. Ma, Y. Yang, M. Zhao, “Tour planning for mobile data-gathering mechanisms in wireless sensor networks,” IEEE Trans. Veh. Technol., vol. 62, no. 4, pp. 1472-1483, 2013.
15. O. Tekdas, V. Isler, J.H. Lim, and A. Terzis, “Using mobile robots to harvest data from sensor fields,” IEEE Wireless Comm., vol. 16, no. 1, pp. 22-28, 2009.
16. Yang, Y.-H.; Lin, T.; Liu, B.-H.; Chu, S.-I.; Lien, C.-Y.; Pham, V.-T. An efficient mobile sink scheduling method for data collection in wireless sensor networks. In Proceedings of the 2017 International Conference on System Science and Engineering (ICSSE), Ho Chi Minh City, Vietnam, 21–23 July 2017; pp. 554–557.
17. Salarian, H.; Chin, K.-W.; Naghdy, F. An energy-effcient mobile-sink path selection strategy for wireless sensor networks. IEEE Trans. Veh. Technol. 2014, 63, 2407–2419.
18. Le, D.V.; Oh, H.; Yoon, S. HiCoDG: A hierarchical data-gathering scheme using cooperative multiple mobile elements. Sensors 2014, 14, 24278–24304. [PubMed]
19. G. Xing, T. Wang, Z. Xie, and W. Jia, “Rendezvous planning in wireless sensor networks with mobile elements,” IEEE Trans. Mobile Comput.,vol. 7, no. 12, pp. 1430–1443, Dec. 2008.
20. H. Salarian, K.-W. Chin, and F. Naghdy, “An energy-efficient mobilesink path selection strategy for wireless sensor networks,” IEEE Trans. Veh. Technol., vol. 63, no. 5, pp. 2407–2419, Jun. 2014.
21. W. Wen, S. Zhao, C. Shang and C. Chang, "EAPC: Energy-Aware Path Construction for Data Collection Using Mobile Sink in Wireless Sensor Networks," in IEEE Sensors Journal, vol. 18, no. 2, pp. 890-901, 15 Jan.15, 2018.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2024-02-26公開。
  • 同意授權瀏覽/列印電子全文服務,於2024-02-26起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2486 或 來信