§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2501200814480300
DOI 10.6846/TKU.2008.00869
論文名稱(中文) 具干擾防制的超寬頻單極天線元件之設計
論文名稱(英文) Design of UWB antennas with band-notched characteristics
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 電機工程學系碩士班
系所名稱(英文) Department of Electrical and Computer Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 96
學期 1
出版年 97
研究生(中文) 徐欣懋
研究生(英文) Hsin-Mao Hsu
學號 694351015
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2008-01-15
論文頁數 55頁
口試委員 指導教授 - 李慶烈(li@ee.tku.edu.tw)
委員 - 丘建青(chiu@ee.tku.edu.tw)
委員 - 陳一鋒(ex0206@just.edu.tw)
關鍵字(中) 超寬頻
槽孔
關鍵字(英) UWB
notch antenna
第三語言關鍵字
學科別分類
中文摘要
本研究致力於探討縮小型超寬頻(UWB)單極天線的頻帶凹陷設計,採用厚0.75mm 的FR4 基板,以相對介電係數為4.4,並運用IE3D 電磁模擬軟體進行模擬並和實驗相驗證。而UWB 具備高頻寬、低耗電及高速傳輸等特性,因此未來幾年裡,UWB技術將在電子產業裡扮演重要角色。
本論文針對Miniature 型天線加以設計同時考慮寬頻、干擾防制、縮小化及整合的探討,由於UWB技術頻帶為3.1G~10.6GHz,其中5G~6GHz 的頻帶內包含了其他的無線通訊用頻。為了避免UWB 手機實際與PC 之間進行傳輸時會干擾現有的無線區域網路(WLAN),例如: IEEE 802.11a 以及HiperLAN/2。故本研究將Miniature 型天線的金屬單極貼片中設計ㄧ小槽孔,使其S11 在WLAN 的頻帶內產生凹陷的特性,以減少UWB 天線在5G~6GHz 頻帶所輸出的訊號,進而降低對於WLAN 的電磁干擾。然而在天線與手機整合的部份,吾人將Miniature 型天線及Band-Notched Miniature 型天線改變其接地面的尺寸,以模擬當天線實際與各尺寸的手機整合後所產生的效應。其天線單極面的寬度為11mm、長度為19.7mm,在電路的整合中佔很大優勢。
最後本研究探討改變天線接地面的尺寸來模擬當天線實際與各尺寸的手機整合後所產生的效應。模擬結果顯示對於各種尺寸的接地面,本研究所提出的天線可維持原先設計的特性,驗證了天線的可用性。其H-plane輻射場型在4~7 GHz中為全方向性,在3GHz及8GHz也趨近於全向性,因此相當具有實用性。在未來的研究可增加對於天線饋入方式的探討,使本研究在探討整合的部份更加完善。
英文摘要
In this thesis, the characteristics of the band-notched ultra wide band (UWB)monopole antennas are investigated. The antennas are designed and fabricated on the FR4 board, while the IE3D commercial software is utilized for the EM simulation. Due to the fact that UWB technology has the properties of wider bandwidth, low energy consumption and high transferring rate, it will play an important role in the electronic industry in the near future years. Thus, the objectives of this thesis focus on the design of a band-notched miniature UWB monopole antenna.
   The considerations of design the proposed monopole antenna include wide bandwidth, counter-interference, size minimizing and integrationwith the circuit on the PCB board. Because the bandwidth of UWB is from 3.1GHz to 10.6GHz which also includes other wireless communication(WLAN) bands from 5GHz to 6GHz, we have implanted a thin slot into the monopole antenna structure to prevent the interference between mobile phone and wireless communication such as WLAN of IEEE802.11a and HiperLAN/2. The band-notch will produce a notch effect in S11 of WLAN to decrease the interference between UWB and bandwidth from 5GHz to 6GHz in S11 parameter.
   The size of the band-notch antenna is just only 11mm x 19.7mm, and it is easy to integrate to the circuit of the mobile phone. In the thesis, the integration of the antenna and the mobile phone is also studied, for which the effects ofchanging the size of the ground upon the band-notch miniature antenna are investigated. The outcome of the simulation shows that the band-notchantenna maintains the original properties and characteristics even when the size of the ground plane is largely changed.
第三語言摘要
論文目次
目錄
第一章 序論................................................1
1.1簡介.................................................1
1.2研究目的.............................................1
1.3論文架構.............................................5
第二章 平面寬頻單極天線設計原理............................7
2.1傳統寬頻天線的的演化.................................7
2.2全平面正方形單極天線初始結構的計算....................9
2.3天線接地面和金屬貼片的結構參數原理分析..............10
第三章 天線的設計及量測...................................26
3.1槽孔結構的影響......................................26
3.2與行動電話的整合....................................27
3.3傳輸線饋入損耗之探討................................29
3.4天線輻射場型之量測及討論............................30
3.5天線於產業上之實用性或可商業化程度..................31
第四章 結論...............................................51
參考文獻..................................................52

圖目錄

圖1.1無線通訊技術之(a)頻寬、(b)空間訊息量比較………………6
圖2.1 (a)  單極天線(b)圓錐形天線(c)火山煙狀天線之二維結構圖………………………………………………………………………14
圖2.2 水滴狀天線之二維結構圖………………………………………14
圖2.3 水滴狀天線的演化順序…………………………………………15
圖2.4 水滴狀天線的VSWR之頻率響應…………………………16
圖2.5 水滴狀天線在(a)3GHz(b)6GHz(c)9GHz(d)12GHz 之輻射場型....................................................16
圖2.6 平面寬頻天線的演化圖………………………………………17
圖2.7圓柱體之立體結構,半徑為r、高度為L……………………18
圖2.8 矩形單極微帶天線的二維結構.........................18
圖2.9初始正方形單極天線的結構...........................19
圖2.10接地面(ground)微小變動對 參數之影響……………20
圖2.11 金屬貼片微小變動對 參數之影響.....................21
圖2.12 初始正方形單極天線在間隙處由饋入線往金屬貼片端看入之阻抗圖……………………………………………………………..……..22
圖2.13初始正方形單極天線(1)由Feed端看入之|S11|的模擬圖(2)在間隙處由饋入線往金屬貼片端看入之|S11|的模擬圖…………………23
圖2.14 方形單極天線(g=0.7mm)由饋入線看入之Smith chart變化圖………………………………………………………………………24
圖2.15方形單極天線(g=0.7mm)之等效電路模型.................25
圖3.1、Miniature 型天線結構…………………………………………32
圖3.2、Miniature 型天線|S11|的模擬及實測比較圖………………33
圖3.3、Band-Notched Miniature 型天線結構及實體圖………………34
圖3.4 Miniature 型| S11|模擬值及Band-Notched Miniature型天線模擬改變Sf 參數大小的|S11|比較圖………………………………35
圖3.5、Band-Notched Miniature型天線電流分佈 (a)3GHz (b)5.5GHz (c)7GHz (d)10GHz……………………………………………………36
圖3.6、Miniature型天線接地面尺寸為(10cm* 6cm)的結構及實體圖
……………………………………………………………………………37
圖3.7、Miniature型天線接地面尺寸為(10cm* 6cm)的|S11|模擬及實測比較圖………………………………………………………38
圖3.8、Band-Notched Miniature型天線接地面尺寸為(10cm* 6cm)的結構及實體圖………………………………………………………39
圖3.9、Band-Notched Miniature型天線接地面尺寸為(10cm* 6cm)的|S11|模擬及實測比較圖………………………………………………40
圖3.10、Band-Notched Miniature型天線接地面尺寸為(10cm* 6cm)、
(5cm*6cm)及(10cm* 3cm)的|S11|模擬比較圖…………………………41
圖3.11、由傳輸線最底端所看入的輸入阻抗的實部與虛部.........42
圖3.12、由 端所看入的輸入阻抗的實部與虛部................42
圖3.13、FR4電路板之介電係數………………………………………43
圖3.14、FR4電路板之正切損耗..............................43
圖3.15 Band-Notched Miniature型Sf值為3.5mm接地面尺寸為(10cm* 6cm) 天線相位移動前與相位移動後S11模擬比較圖…………………44
圖3.16、Band-Notched Miniature型天線改變接地面尺寸為(10cm*6cm)、
(8cm*5cm)及(6cm*4cm)的 模擬比較圖………………………………45
圖3.17 Band-Notched Miniature型接地面尺寸為(10cm* 6cm) 天線之E-plane輻射場型實測(at f=3、4、5、6GHz)…………………………46
圖3.18、Band-Notched Miniature型接地面尺寸為(10cm* 6cm) 天線之E-plane輻射場型實測(at f=7、8、9、10GHz)………………………47
圖3.19、Band-Notched Miniature型接地面尺寸為(10cm* 6cm) 天線之H-plane輻射場型實測(at f=3、4、5、6GHz)………………………48
圖3.20、Band-Notched Miniature型接地面尺寸為(10cm* 6cm) 天線之H-plane輻射場型實測(at f=7、8、9、10GHz)………………………49
圖3.21為Band-Notched Miniature型接地面尺寸為(10cm* 6cm) 天線的H-plane實測增益隨頻率變化圖………………………………50
參考文獻
參考文獻
[1]賴辰銜,超寬頻平面單極天線的縮小化設計,碩士論文,淡江大學電機工程學系,2005年6月
[2] David G. Leeper,Wireless Data Blaster", Scientific American, 2002 May.
[3] H. Kawakami and G.Sato, “Broadband Characteristics Of Rotationally Symmetric Antennas And Thin Wire Constructs," IEEE Trans. Antennas Propagat.,vol.AP-35, pp.26-32, Jan.1987.
[4]H. Nakano, N. Ikeda, Y.Wu, R.Suzuki, H.Mimaki,and J. Yamauchi,"Realization Of Dual-Frequency And Wide-Band VSWR Performances Using Normal Helical And Inverted-Fantennas, “IEEE Trans. Antennas Propagat.,vol.46,pp.788-793,June1998.
[5] S. D. Rogers and C. M. Butler, "Cage Antennas Optimized For Band-Width," Electron. Lett., vol. 36, no. 11, pp. 932-933,2000.
[6] W. Cho. M. Kanda, H. Hwang, and M. W. Howard," A Disk-Loaded Thick Cylindrical Dipole Antenna For Validation Of An EMC Test Site From 30 to 300MHz,"IEEE Trans. Electromagn. Compat., VOl. 42, pp. 172-180, May2000.
[7] Zhi Ning Chen, “Novel Bi-Arm Rolled Monopole For UWB Applications" IEEE Transactions on antennas and propagation, vol.53 , no.2 February2005
[8] Zhi Ning Chen, “Broadband Roll Monopole" IEEE Transactions on antennas and propagation, vol.51 , no.11, Novermber 2003
[9] David G. Leeper, “Wireless Data Blaster", Scientific American, 2002 May
[10] M.J. Ammann, “The Pentagonal Planar Monopole For Digital Mobile Terminal; Bandwidth Considerations And Modeling", Antennas and Propagation, 2001, 11th International Conference on(IEE Conf. Publ. No. 480), Volume: 1, 17-20 April 2001 Page(s): 82-85. vol.1
[11] J.A. Evans, M.J. Ammann, “Planar Trapezoidal And Pentagonal Monopoles With Impedance Bandwidths In Excess Of 10:1", Antennas and Propagation Society, 1999. IEEE
`
International Symposium 1999, Volume: 3, 11-16 July 1999 Page(s): 1558-1561
[12] Z.N. Chen, “Impedance Characteristics Of Trapezoidal Planar Monopole Antennas", Microwave and Optical Technology Letters, 2000, 27, (2), 120-122
[13] M.J. Ammann, Zhi Ning Chen, “Wideband Monopole Antennas For Multi-Band Wireless Systems", Antennas and Propagation Magazine, IEEE, Volume: 45 Issue: 2, April 2003 Page(s): 146-150
[14] G. Kumar, K. P. Ray, Broadband Microstrip Antennas, Artech House, Boston, 2003
[15] M. Hammoud, P. Poey, F. Colombel, “Matching The Input Impedance Of a Broadband Disc Monopole“, Electronics Letters, Volume: 29 Issue: 4, 18 Feb. 1993 Page(s): 406-407.
[16] N. P. Agrawall, G. Kumar, K. P. Ray, “New Wideband Monopole Antennas", Antennas and Propagation Society International Symposium, 1997Digest, Volume: 1, 13-18July 1997 Page(s): 248-251 Vol.1
[17] N. P. Agrawall, G. Kumar, K. P. Ray, “Wide-Band Planar Monopole Antennas", Antennas and Propagation, IEEE Transactions on, Volume: 46 Issue: 2, Feb 1998 Page(s): 294-295
[18] L. Desclos, M. Madihian, J. M. Floch, T. Ohsawa, “1.6-6 GHz Optimized Antennas For Indoor Wireless LAN Applications", Wireless Applications Digest, 1997, IEEE MTT-S Symposium on Technologies for, 23-26 Feb. 1997 Page(s): 39-42
[19] E. Antonino-Daviu, M. Cabedo-Fabres, M. Ferrando-Bataller, A. Valero-Nogueira, “Wideband Double-Ded Planar Monopole Antennas", Electronics Letters, Volume: 39 Issue: 23, 13 Nov. 2003 Page(s): 1635-1636
[20] Zhi Ning Chen, “Broadband Roll Monopole" IEEE Transactions on antennas and propagation, vol.51 , no.11, Novermber 2003
[21] David G. Leeper, “Wireless Data Blaster", Scientific American, 2002 May
[22] M.J. Ammann, “The Pentagonal Planar Monopole For Digital Mobile Terminal; Bandwidth Considerations And Modeling",
`
Antennas and Propagation, 2001, 11th International Conference on(IEE Conf. Publ. No. 480), Volume: 1, 17-20 April 2001 Page(s): 82-85. vol.1
[23] J.A. Evans, M.J. Ammann, “Planar Trapezoidal And Pentagonal Monopoles With Impedance Bandwidths In Excess Of 10:1", Antennas and Propagation Society, 1999. IEEE International Symposium 1999, Volume: 3, 11-16 July 1999 Page(s): 1558-1561
[24] Z.N. Chen, “Impedance Characteristics Of Trapezoidal Planar Monopole Antennas", Microwave and Optical Technology Letters, 2000, 27, (2), 120-122
[25] M.J. Ammann, Zhi Ning Chen, “Wideband Monopole Antennas For Multi-Band Wireless Systems", Antennas and Propagation Magazine, IEEE, Volume: 45 Issue: 2, April 2003 Page(s): 146-150
[26] G. Kumar, K. P. Ray, Broadband Microstrip Antennas, Artech House, Boston, 2003
[27] M. Hammoud, P. Poey, F. Colombel, “Matching The Input Impedance Of a Broadband Disc Monopole“, Electronics Letters, Volume: 29 Issue: 4, 18 Feb. 1993 Page(s): 406-407.
[28] N. P. Agrawall, G. Kumar, K. P. Ray, “Wide-Band Planar Monopole Antennas", Antennas and Propagation, IEEE Transactions on, Volume: 46 Issue: 2, Feb 1998 Page(s): 294-295
[29] L. Desclos, M. Madihian, J. M. Floch, T. Ohsawa, “1.6-6 GHz Optimized Antennas For Indoor Wireless LAN Applications", Wireless Applications Digest, 1997, IEEE MTT-S Symposium on Technologies for, 23-26 Feb. 1997 Page(s): 39-42
[30] E. Antonino-Daviu, M. Cabedo-Fabres, M. Ferrando-Bataller, A. Valero-Nogueira, “Wideband Double-Ded Planar Monopole Antennas", Electronics Letters, Volume: 39 Issue: 23, 13 Nov. 2003 Page(s): 1635-1636
[31] P. V. Anob, K. P. Ray, G. Kumar, “Wideband Orthogonal Square Monopole Antennas With Semi-Circular Base", Antennas and Propagation Society International Symposium, 2001 IEEE, Volume: 3, 8-13 July 2001 Page(s): 294-297 vol.3
[32] Kin-Lu Wong, Yi-Fang Lin, “Stripline-fed printed
`
triangular monopole", Electronics Letters, Volume: 33 Issue: 17, 14 Aug. 1997 Page(s): 1428-1429
[33] J. M. Johnson, Y. Rahmat-Samii, “The tab monopole", Antennas and Propagation, IEEE Transactions on, Volume: 45 Issue: 1, Jan. 1997 Page(s): 187-188
[34] J. M. Johnson, Y. Rahmat-Samii, “Wideband tab monopole antenna array for wireless adaptive and mobile information systems application", Antennas and Propagation Society International Symposium, 1996. AP-S. Digest, Volume: 1, 21-26 July 1996 Page(s): 718-721 Vol. 1
[35] 林鼎富,印刷式超寬頻天線,碩士論文,國立交通大學電信工程學系,2003年6月
[36] 施廷諺,超寬頻單極微帶天線,專題報告,淡江大學電機工程學系,2003年11月
[37] D. K. Cheng, Field and Wave Electromagnetics, Second Edition, Addison Wesley,
1989.
[38] John D. Kraus and Ronald J. Marhefka, Antennas For All Applications, Third
Edition, McGraw-Hill, New York, 2002.
[39] T. Taniguchi and T. Kobayashi, “An Omnidirectional And Low-VSWR Antenna for
the FCC-Approved UWB Frequency Band", Antennas and Propagation Society
International Symposium, 2003. IEEE, Volume: 3,June 22-27, 2003, pp.460-463.
[40] G. Kumar, K. P. Ray, Broadband Microstrip Antennas, Artech House, Boston, 2003
[41] 黃中信,應用TRL校正概念於FR4印刷電路基板材料的寬頻電性量測,台灣電路板協會95年度「PCB優秀論文奬」參賽論文,淡江大學電機工程學系,2006年7月
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信