淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2408201118431900
中文論文名稱 葡萄糖製程添加物對製得氧化鋅粉體之特性分析
英文論文名稱 Characterization of ZnO powder prepared with or without process additive of glucose
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 99
學期 2
出版年 100
研究生中文姓名 周宏宇
研究生英文姓名 Hung-Yu Chou
學號 697401106
學位類別 碩士
語文別 英文
口試日期 2011-07-20
論文頁數 97頁
口試委員 指導教授-余宣賦
委員-余宣賦
委員-張裕祺
委員-尹庚鳴
中文關鍵字 氧化鋅  光觸媒  光催化活性  沉澱法  燃燒法 
英文關鍵字 zinc oxide  glucose  photocatalsdt  photocatalytic activity  precipitation  combustion 
學科別分類
中文摘要 本實驗結合沉澱法和燃燒法製備C/ZnO 光觸媒粉體。並以X-ray 繞射分析儀,遠紅外線光譜分析,熱重分析儀和熱差式熱分析儀,紫外光-可見光光譜分析儀,微量元素分析儀,電子掃描式顯微鏡及電子穿透式顯微鏡及比表面積測定儀 和 螢光光譜儀等儀器來分析其製備之C/ZnO光觸媒粉體特性。實驗結果顯示C/ZnO最佳製備條件為沉澱物:葡萄糖=1:0.9,煆燒溫度900℃,其物種(0.9-900℃)有最佳的光催化活性。我們也將所獲得C/ZnO奈米粉體之光催化能力以動力學探討並量化。C/ZnO物種 (0.9-900℃)之觸媒特性常數kA,m為0.86 L/g.min,比一般市售二氧化鈦粉體P25的觸媒特性常數kA,m=0.38 L/g.min高出非常多。
英文摘要 C/ZnO photocatalysts were prepared by a method combining precipitation and combustion techniques. The prepared C/ZnO photocatalysts were characterized by X-ray diffraction, inferred spectroscopic analysis, thermogravimetric analysis and differential scanning calorimetry, UV-Vis absorption spectroscopy, energy dispersive X-ray analysis mapping, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller sorptometer, and photoluminescence spectra analysis. The results show that the optimum preparation condition for C/ZnO is precipitate : glucose=1 : 0.9, at 900℃, which this specimen (0.9-900℃) shows the best photocatalytic activity. The photocatalytic abilities of the obtained C/ZnO nanoparticles were kinetically studied. The kA,m of C/ZnO (0.9-900℃), was 0.86 L/g.min, which was much higher than that of P25 (kA,m=0.38 L/g.min).
論文目次 中文摘要 …………………………………………………………..I
ENGLISH ABSTRACT…………………………………………………II
CONTENTS……………………………………………………………III
CONTENTS OF FIGURE……………………………………………V
CONTENS OF TABLES………………………………………IX
CHAPTER 1 INTRODUCTION.......................................................1
CHAPTER 2 LITERATURE REVIEW……………..…………….3
2-1 Zinc Oxide………………………………………………………...3
2-2 Preparation of Zinc Oxide……………..….………………………7
2-2-1 Precipitation Method………………………………………….7
2-2-2 Hydrothermal Method………………………………………...9
2-2-3 Spray Pyrolysis……………………...………………………11
2-3 Improvements of Photoreactivity………….……………………15
2-3-1 Doping…………………………………………………….15
2-3-2 Coupled Photocatalysts……………………………………19
2-3-3 Enhance Surface Area……………………………………20
2-4 Quantum Size Effect…………………………………………….21
2-5 Summaries………………………………………………………22
CHAPTER 3 EXPERIMENTAL TECHNIQUES……..…...……23
3-1 Experimental…………………………………………………….23
3-1-1 Reagents and Characterizations……………………………23
3-1-2 Sample Preparation………………………………………..24
3-2 Analytic Instrument……………………………………………...28
3-2-1 X-ray Diffraction…………………………………………….28
3-2-2 Field Emission Scanning Electron Microscopy……………29
3-2-3 Transmission Electron Microscopy………………………….30
3-2-4 Infrared Spectroscopy……………………………………….31
3-2-5 Thermal Analyses…………………………...……………….32
3-2-6 BET Analysis………………………………………………...32
3-2-7 Fluorescence Spectrometer………………………………….34
3-3 Photocatalytic Analysis…………………………………………35
3-3-1 Methylene Blue……………………………………………...35
3-3-2 Design of Photocatalysis…………………………………….36
CHAPTER 4 RESULTS AND DISCUSSION……………………38
4-1 Thermal Behavior and Crystalline Phases………………………39
4-2 Photodegradation of ZnO and C/ZnO…………………………50
4-3 Kinetic Studies…………………………………………………60
4-4 Characteristic Analysis…………………………………………69
CHAPTER 5 CONCLUSIONS……………………..........91
REFERENCE……………………………………………………92

CONTENTS OF FIGURE

Figure 2-1-1 Hexagonal wurtzite structure………………….……………5
Figure 2-2-1 Chemical precipitation……………………………………...8
Figure 2-3-2 Proposed energy-band structure model for N-containing ZnO………………………………………………………17
Figure 2-3-3 diffuse reflectance spectra (DRS) of pure ZnO and Sn-doped ZnO………………………………………………………18
Figure 2-3-4 The mechanism of coupled semiconducting photocatalysts
…………………………………………………………...20
Figure 2-4-1 Quantum size effect on semiconductor band gap…..…..…22
Figure 3-1-1 Formation of ZnO powder………………..……..………...26
Figure 3-1-2 Formation of C/ZnO powder…………………..………….27
Figure 3-2-1 Scheme of X-ray incident into a crystal………..…………29
Figure 3-2-2 Scheme of FE-SEM……………………..………………...30
Figure 3-2-3 Scheme of TEM…………………………………………...31
Figure 3-2-4 Scheme of DSC…………………………………………...32
Figure 3-3-1 Scheme of photodegradation of methylene blue…………36
Figure 4-1 DSC/TG curves of 0-90℃ specimen………………………..41
Figure 4-2 XRD patterns of 0-Y specimen calcined at different temperatures (a) 90℃, (b) 135℃, (c) 170℃,(d) 230℃, (e) 300℃, (f) 1200℃...................................................................42
Figure 4-3 IR spectra of 0-Y specimen calcined at different temperatures (a) 0-90℃, (b) 0-135℃, (c) 0-170℃, (d) 0-230℃,
(e) 0-300℃………………………………………………….43
Figure 4-4 DSC/TG curves of 0.9-90℃ specimen……...………………44
Figure 4-5 XRD patterns of 0.9-Y specimen calcined at different temperatures (a) 90℃, (b) 180℃, (c) 210℃, (d) 230℃, (e) 310℃, (f) 1200℃………………………………………...…45
Figure 4-6 IR spectra of 0.9-Y specimen calcined at different
temperatures (a) 0.9-90℃, (b) 0.9-180℃, (c) 0.9-210℃, (d) 0.9-230℃, (e) 0.9-310℃ (f) 0.9-500℃….........................….47
Figure 4-7(a) XRD pattern of 0-Y calcined at different temperatures (a) 0-500℃, (b) 0-600℃, (c) 0-700℃, (d) 0-800℃, (e) 0-900℃, (f) 0-1000℃…………………………………………………48
Figure 4-7(b) XRD patterns of 1.2-Y calcined at different temperatures (a) 1.2-500℃, (b) 1.2-600℃, (c) 1.2-700℃, (d) 1.2-800℃, (e) 1.2-900℃, (f) 1.2-1000℃..…………………………………49
Figure 4-8 Removal percentages of the methylene blue (MB) by the specimens of (a) 0-Y (i.e., ZnO), (b) 0.1-Y, (c) 0.4-Y, (d) 0.6-Y, (e) 0.9-Y,(f) 1.0-Y, (g) 1.2-Y after 120min under 365-nm UV light irradiation……………………………………………...55
Figure 4-9 Decomposition efficiency of methylene blue (MB) under different calcination temperatures, (a) 500℃, (b) 600℃, (c) 700℃, (d) 800℃,(e) 900℃, (f) 1000℃……………………58

Figure 4-10 Comparison of the MB removed efficiency of the 0-Y, 0.9-Y, and P25 at different calcined temperatures………………….59
Figure 4-11
(a) Photodegradation of P25
(b) Photodegradation of 0-Y calcined at different temperatures,
(c) Photodegradation of 0.1-Y calcined at different temperatures
(d) Photodegradation of 0.4-Y calcined at different temperatures
(e) Photodegradation of 0.9-Y calcined at different temperatures
(f) Photodegradation of 1.0-Y calcined at different temperatures
(g) Photodegradation of 1.2-Y calcined at different temperatures
………………………………………………………………63
Figure 4-12 kA,m value of P25 and the x-Y particles…………………….68
Figure 4-14 SEM microphotographs C/ZnO (x=0.4) calcined at (a)500℃ (b)700℃ (c) 900℃ (d) 1000℃…………………………..74
Figure 4-15 SEM microphotographs of C/ZnO (x=0.9) calcined at 500℃ (b)700℃ (c) 900℃ (d) 1000℃………………………….76
Figure 4-16 SEM microphotographs of C/ZnO (x=1.2) calcined at (a)
500℃ (b)700℃ (c) 900℃ (d) 1000℃…….……..…….78
Figure 4-17 Average particle size of the x-Y particles………………….80
Figure 4-18 kA,BET vs. calcination temperatures for x=0 and x=0.9
particles……………………………………………………82
Figure 4-19 TEM microphotography of (a)0-900℃ (b) 0.4- 900℃ (c) 0.9- 900℃………...…………………………………………….85
Figure 4-20 (a) (b) EDM of 0.9-900℃………………………………….87
Figure 4-21 PL emission spectra of different amount glucose calcined at
(a) 500℃, (b) 700℃, (c) 900℃……………..…………….90

CONTENTS OF TABLES

Table 2-1-1 Physics properties of ZnO…………………………………...4
Table 2-2-2 Comparison of above three procedures……………………13
Table 2-2-3 advantages and drawbacks of the above three procedures…14
Table 3-1-1 Chemical reagents used in this study………………………25
Table 4-1 Definition of “x”……………………………………………...38
Table 4-2 Crystalline phase existing in the specimens obtained using
different amount glucose and calcination temperatures………50
Table 4-3 Nomenclatures………………………………………………..60
Table 4-4 kA,m value of P25 and the x-Y particles………………………67
Table 4-5 Average particle size of the x-Y particles……………………79
Table 4-6 Surface area of x=0 and x=0.9 particles……………………...82
參考文獻 [1] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature. 238 (1972) 37-38.
[2] H. Yu, Photocatalytic abilities of gel-derived P-doped TiO2, J. Phys. Chem. Solids. 68 (2007) 600–607.
[3] D. Li, H. Haneda, Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition, J. Photochem. Photobiol., A. 155 (2003) 171–178.
[4] J. Xu, Y. Chang, Y. Zhang, S. Ma, Y. Qu, C. Xu, Effect of silver ions on the structure of ZnO and photocatalytic performance of Ag/ZnO composites, App. Surf. Sci. 255 (2008) 1996–1999.
[5] S. Chen, W. Zhao, S. Zhang, W. Liu, Preparation, characterization and photocatalytic activity of N-containing ZnO powder, Chem. Eng. J. 148 (2009) 263–269.
[6] J. Sun, S. Dong, J. Feng, X. Yin, X. Zhao, Enhanced sunlight photocatalytic performance of Sn-doped ZnO for Methylene Blue degradation, J. Mol. Catal. A: Chem. (2011) 145–150.
[7] N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors, J. Photochem. Photobiol., A. 85 (1995) 247-255.
[8] H. Ma, J. Han, Y. Fu, Y. Song, C. Yu, X. Dong, Synthesis of visible light responsive ZnO–ZnS/C photocatalyst by simple carbothermal reduction, Appl. Catal., B. 102 (2011) 417-423.
[9] C. Wang, J. Zhou. X. Wang, B. Mai, G. Sheng, P. Peng, J. Hu, Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts, Appl. Catal., B. 39 (2002) 269–279.
[10] 黃淑琦,以反應式濺鍍製備氧化鋅薄膜及其摻雜之研究,國立中山大學, 2006
[11] M.R. Hoffmann, S.T. Martin, W. Choi, D. W. Bahnemannt, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69-96.
[12] M.A. Behnajady, N. Modirshahla, N. Daneshvar, M. Rabbani, Photocatalytic degradation of C.I. Acid Red 27 by immobilized ZnO on glass plates in continuous-mode, J. Hazard. Mater. 140 (2007) 257–263.
[13] M.A. Behnajady, N. Modirshahla, R. Hamzavi, Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst, J. Hazard. Mater. B133 (2006) 226–232.
[14] H. Lin, S. Liao, S. Hung, The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst, J. Photochem. Photobiol., A. 174 (2005) 82–87.
[15] S. Zhang, X. Li, Preparation of ZnO particles by precipitation transformation method and its inherent formation mechanisms, Colloids Surf., A, 226 (2003) 35–44.
[16] Y. Wang, C. Zhang, S. Bi, G. Luo, Preparation of ZnO nanoparticles using the direct precipitation method in a membrane dispersion micro-structured reactor, Powder Technol. 202 (2010) 130–136.
[17] M. Castellanot, E. Matijevic, Uniform colloidal Zinc compounds of various morphologies, Chem. Mater. 1 (1989) 78-82.
[18] K. Fujita, K. Matsuda, S. Mitsuzawa, Formation of zinc oxide by homogeneous precipitation method, Bull. Chem. Soc. Jpn 65 (1992) 2270-2271.
[19] C. Lu, C. Yeh, Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder, Ceramics Int. 26 (2000) 351-357.
[20] S. Musić, D. Dragčević, S. Popović, M. Ivanda, Precipitation of ZnO particles and their properties, Mater. Lett. 59 (2005) 2388-2393.
[21] C. Lu, Y. Lai, R.B. Kale, Influence of alkaline sources on the structural and morphological properties of hydrothermally derived zinc oxide powders, J. Alloys Compd. 477 (2009) 523–528.
[22] G. Colón, M.C. Hidalgo, J.A. Navío, E. Pulido Melián, O. González Díaz , J.M. Dońa Rodríguez, Highly photoactive ZnO by amine capping-assisted hydrothermal treatment, Appl. Catal., B. 83 (2008) 30–38.
[23] 郭啟良, 利用水熱法製備氧化鋅、硫化金和硫化銅的奈微米結構與其性質分析, 國立清華大學, 2008
[24] Y. Lai, M. Meng, Y. Yu, X. Wang, T. Ding, Photoluminescence and photocatalysis of the flower-like nano-ZnO photocatalysts prepared by a facile hydrothermal method with or without ultrasonic assistance, Appl. Catal., B. 105 (2011) 335-345.
[25] L.H. Quang, S.J. Chua, K.P. Loh, E.Fitzgerald, The effect of post-annealing treatment on photoluminescence of ZnO nanorods prepared by hydrothermal synthesis, J. Cryst. Growth. 287 (2006) 157–161.
[26]http://www.sintef.no/upload/Materialer_kjemi/Energikonvertering%20og%20materialer/dokumenter/spraypyrolyse_web.pdf
[27] N. Tamaekong, C. Liewhiran, A. Wisitsoraat, S. Phanichphant, Acetylene sensor based on Pt/ZnO thick films as prepared by flame spray pyrolysis, Sens. Actuators, B. 152 (2011) 155-161.
[28] A. El Hichou, M. Addou, J. Ebothé, M. Troyon, Influence of deposition temperature (Ts), air flow rate (f) and precursors on cathodoluminescence properties of ZnO thin films prepared by spray pyrolysis, J. Lumin. 113 (2005) 183–190.
[29] O. Milošević, D. Uskoković, Synthesis of BaTiO3 and ZnO varistor precursor powders by reaction spray pyrolysis, Mater. Sci. Eng., A 168 (1993) 249-252.
[30] O. Milošević, D. Uskoković, L. J. Karanović, M. Tomašević, M. Trontelj, Synthesis of ZnO-based varistor precursor powders by means of the reaction spray process, J. Mater. Sci. 28 (1993) 5211-5217.
[31] O. Milošević, B. Jordović, D. Uskoković, Preparation of fine spherical ZnO powders by an ultrasonic spray pyrolysis method, Mater. Lett. 19 (1994) 165-170.
[32] Y. Lin, Z. Tang, Z. Zhang, Preparation of Nanometer Zinc Oxide Powders by Plasma Pyrolysis Technology and Their Applications, J. Am. Ceram. Soc., 83 (2000) 2869–71.
[33] 陳秀連,以化學法製備均一粒徑氧化鋅粉體與發光特性之研究,國立台灣科技大學,2003
[34] 馬振基 主編,奈米材料科技原理與應用,全華科技圖書,(2005)
[35] E.P. Melián, O.G. Díaz , J.M. Doňa Rodríguez, G. Colón , J. Araňa, J. H. Melián, J.A. Navío, J.P. Peňa, ZnO activation by using activated carbon as a support: Characterisation and photoreactivity, Appl. Catal., A. 364 (2009) 174–181.
[36] M. Wang, X. Cao, L. Wang, L. Zhang, Template-free fabrication of porous zinc oxide hollow spheres and their enhanced photocatalytic performance, J. Porous. Mater. 17 (2009) 79-84.
[37] S. Yang, J. Im, T. Kim, K. Lee, C.R. Park, MOF-derived ZnO and ZnO@C composites with high photocatalytic activity and adsorption capacity, J. Hazard. Mater. 186 (2011) 376-382.
[38] L. Yang, S. Dong, J. Sun, J. Feng, Q. Wu, S. Sun, Microwave-assisted preparation, characterization and photocatalytic properties of a dumbbell-shaped ZnO photocatalyst, J. Hazard. Mater. 179 (2010) 438–443.
[39] J. Sun, S. Dong, Y. Wang, S. Sun, Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst, J. Hazard. Mater. 172 (2009) 1520–1526.
[40] L. Brus, Electronic wave functions in semiconductor clusters: experiment and theory, J. Phys. Chem. 90 (1986) 2555-2560.
[41] M. Anpo, T. Shima, S. Kodama, Y. Kubokawa, Photocatalytic hydrogenation of CH3CCH with H2O on small-particle TiO2,: size quantization effects and reaction intermediates, J. Phys. Chem. 91 (1987) 4305-4310.
[42] A.L. Linsebigler, G.Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev. 95 (1995) 735-758.
[43]http://www.hkbu.edu.hk/~csar/fesem.html
[44]http://nobelprize.org/educational/physics/microscopes/tem/index.html
[45] www.sklc.dicp.ac.cn/yiqi/Seminar%20JSD%20-%20II.ppt
[46] A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J. M. Herrmann, Photocatalytic degradation pathway of methylene blue in water, Appl. Catal., B. 31 (2001) 145–157.
[47] C. Ren, B. Yang, M. Wu, J.Xu, Z. Fu, Y. lv, Ti. Guo, Y. Zhao, C. Zhu, Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance, J. Hazard. Mater. 182 (2010) 123-129
[48] 郭益男,反應性射頻磁控濺鍍氧化鋅薄膜之光激發光特性之研究,國立中山大學,2004
[49] S. Chen, W. Zhao, W. Liu, H. Zhang, X. Yu, Preparation, characterization and activity evaluation of p–n junction photocatalyst p-CaFe2O4/n-ZnO, Chem. Eng. J. 155 (2009) 466–473.
[50] G. Xiong, U. Pal, J.G. Serrano, K.B. Ucer, R.T. Williams, Photoluminescence and FTIR study of ZnO nanoparticles: the impurity and defect perspective, phys. stat. sol. (c) 3. 10 (2006) 3577–3581.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2011-08-29公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-08-29起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信