§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2408201118431900
DOI 10.6846/TKU.2011.00886
論文名稱(中文) 葡萄糖製程添加物對製得氧化鋅粉體之特性分析
論文名稱(英文) Characterization of ZnO powder prepared with or without process additive of glucose
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 99
學期 2
出版年 100
研究生(中文) 周宏宇
研究生(英文) Hung-Yu Chou
學號 697401106
學位類別 碩士
語言別 英文
第二語言別
口試日期 2011-07-20
論文頁數 97頁
口試委員 指導教授 - 余宣賦
委員 - 余宣賦
委員 - 張裕祺
委員 - 尹庚鳴
關鍵字(中) 氧化鋅
光觸媒
光催化活性
沉澱法
燃燒法
關鍵字(英) zinc oxide
glucose
photocatalsdt
photocatalytic activity
precipitation
combustion
第三語言關鍵字
學科別分類
中文摘要
本實驗結合沉澱法和燃燒法製備C/ZnO 光觸媒粉體。並以X-ray 繞射分析儀,遠紅外線光譜分析,熱重分析儀和熱差式熱分析儀,紫外光-可見光光譜分析儀,微量元素分析儀,電子掃描式顯微鏡及電子穿透式顯微鏡及比表面積測定儀 和 螢光光譜儀等儀器來分析其製備之C/ZnO光觸媒粉體特性。實驗結果顯示C/ZnO最佳製備條件為沉澱物:葡萄糖=1:0.9,煆燒溫度900℃,其物種(0.9-900℃)有最佳的光催化活性。我們也將所獲得C/ZnO奈米粉體之光催化能力以動力學探討並量化。C/ZnO物種 (0.9-900℃)之觸媒特性常數kA,m為0.86 L/g.min,比一般市售二氧化鈦粉體P25的觸媒特性常數kA,m=0.38 L/g.min高出非常多。
英文摘要
C/ZnO photocatalysts were prepared by a method combining precipitation and combustion techniques. The prepared C/ZnO photocatalysts were characterized by X-ray diffraction, inferred spectroscopic analysis, thermogravimetric analysis and differential scanning calorimetry, UV-Vis absorption spectroscopy, energy dispersive X-ray analysis mapping, scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller sorptometer, and photoluminescence spectra analysis. The results show that the optimum preparation condition for C/ZnO is precipitate : glucose=1 : 0.9, at 900℃, which this specimen (0.9-900℃) shows the best photocatalytic activity. The photocatalytic abilities of the obtained C/ZnO nanoparticles were kinetically studied. The kA,m of C/ZnO (0.9-900℃), was 0.86 L/g.min, which was much higher than that of P25 (kA,m=0.38 L/g.min).
第三語言摘要
論文目次
中文摘要 …………………………………………………………..I
ENGLISH ABSTRACT…………………………………………………II
CONTENTS……………………………………………………………III
CONTENTS OF FIGURE……………………………………………V
CONTENS OF TABLES………………………………………IX
CHAPTER  1  INTRODUCTION.......................................................1
CHAPTER  2  LITERATURE REVIEW……………..…………….3
2-1 Zinc Oxide………………………………………………………...3
2-2 Preparation of Zinc Oxide……………..….………………………7
2-2-1 Precipitation Method………………………………………….7
2-2-2 Hydrothermal Method………………………………………...9
2-2-3 Spray Pyrolysis……………………...………………………11
2-3 Improvements of Photoreactivity………….……………………15
2-3-1 Doping…………………………………………………….15
2-3-2 Coupled Photocatalysts……………………………………19
2-3-3 Enhance Surface Area……………………………………20
2-4 Quantum Size Effect…………………………………………….21
2-5 Summaries………………………………………………………22
CHAPTER  3  EXPERIMENTAL TECHNIQUES……..…...……23
3-1 Experimental…………………………………………………….23
3-1-1 Reagents and Characterizations……………………………23
3-1-2 Sample Preparation………………………………………..24
3-2 Analytic Instrument……………………………………………...28
3-2-1 X-ray Diffraction…………………………………………….28
3-2-2 Field Emission Scanning Electron Microscopy……………29
3-2-3 Transmission Electron Microscopy………………………….30
3-2-4 Infrared Spectroscopy……………………………………….31
3-2-5 Thermal Analyses…………………………...……………….32
3-2-6 BET Analysis………………………………………………...32
3-2-7 Fluorescence Spectrometer………………………………….34
3-3 Photocatalytic Analysis…………………………………………35
3-3-1 Methylene Blue……………………………………………...35
3-3-2 Design of Photocatalysis…………………………………….36
CHAPTER  4  RESULTS AND DISCUSSION……………………38
4-1 Thermal Behavior and Crystalline Phases………………………39
4-2 Photodegradation of ZnO and C/ZnO…………………………50
4-3 Kinetic Studies…………………………………………………60
4-4 Characteristic Analysis…………………………………………69
CHAPTER  5  CONCLUSIONS……………………..........91
REFERENCE……………………………………………………92

CONTENTS OF FIGURE

Figure 2-1-1 Hexagonal wurtzite structure………………….……………5
Figure 2-2-1 Chemical precipitation……………………………………...8
Figure 2-3-2 Proposed energy-band structure model for N-containing ZnO………………………………………………………17
Figure 2-3-3 diffuse reflectance spectra (DRS) of pure ZnO and Sn-doped ZnO………………………………………………………18
Figure 2-3-4 The mechanism of coupled semiconducting photocatalysts
…………………………………………………………...20
Figure 2-4-1 Quantum size effect on semiconductor band gap…..…..…22
Figure 3-1-1 Formation of ZnO powder………………..……..………...26
Figure 3-1-2 Formation of C/ZnO powder…………………..………….27
Figure 3-2-1 Scheme of X-ray incident into a crystal………..…………29
Figure 3-2-2 Scheme of FE-SEM……………………..………………...30
Figure 3-2-3 Scheme of TEM…………………………………………...31
Figure 3-2-4 Scheme of DSC…………………………………………...32
Figure 3-3-1 Scheme of photodegradation of methylene blue…………36
Figure 4-1 DSC/TG curves of 0-90℃ specimen………………………..41
Figure 4-2 XRD patterns of 0-Y specimen calcined at different temperatures (a) 90℃, (b) 135℃, (c) 170℃,(d) 230℃, (e) 300℃, (f) 1200℃...................................................................42
Figure 4-3 IR spectra of 0-Y specimen calcined at different temperatures (a) 0-90℃, (b) 0-135℃, (c) 0-170℃, (d) 0-230℃,
(e) 0-300℃………………………………………………….43
Figure 4-4 DSC/TG curves of 0.9-90℃ specimen……...………………44
Figure 4-5 XRD patterns of 0.9-Y specimen calcined at different temperatures (a) 90℃, (b) 180℃, (c) 210℃, (d) 230℃, (e) 310℃, (f) 1200℃………………………………………...…45
Figure 4-6 IR spectra of 0.9-Y specimen calcined at different
temperatures (a) 0.9-90℃, (b) 0.9-180℃, (c) 0.9-210℃, (d) 0.9-230℃, (e) 0.9-310℃ (f) 0.9-500℃….........................….47
Figure 4-7(a) XRD pattern of 0-Y calcined at different temperatures (a) 0-500℃, (b) 0-600℃, (c) 0-700℃, (d) 0-800℃, (e) 0-900℃, (f) 0-1000℃…………………………………………………48
Figure 4-7(b) XRD patterns of 1.2-Y calcined at different temperatures (a) 1.2-500℃, (b) 1.2-600℃, (c) 1.2-700℃, (d) 1.2-800℃, (e) 1.2-900℃, (f) 1.2-1000℃..…………………………………49
Figure 4-8 Removal percentages of the methylene blue (MB) by the specimens of (a) 0-Y (i.e., ZnO), (b) 0.1-Y, (c) 0.4-Y, (d) 0.6-Y, (e) 0.9-Y,(f) 1.0-Y, (g) 1.2-Y after 120min under 365-nm UV light irradiation……………………………………………...55
Figure 4-9 Decomposition efficiency of methylene blue (MB) under different calcination temperatures, (a) 500℃, (b) 600℃, (c) 700℃, (d) 800℃,(e) 900℃, (f) 1000℃……………………58

Figure 4-10 Comparison of the MB removed efficiency of the 0-Y, 0.9-Y, and P25 at different calcined temperatures………………….59
Figure 4-11                                              
(a) Photodegradation of P25
(b) Photodegradation of 0-Y calcined at different temperatures,
(c) Photodegradation of 0.1-Y calcined at different temperatures
(d) Photodegradation of 0.4-Y calcined at different temperatures
(e) Photodegradation of 0.9-Y calcined at different temperatures
(f) Photodegradation of 1.0-Y calcined at different temperatures
(g) Photodegradation of 1.2-Y calcined at different temperatures
………………………………………………………………63
Figure 4-12 kA,m value of P25 and the x-Y particles…………………….68
Figure 4-14 SEM microphotographs C/ZnO (x=0.4) calcined at (a)500℃ (b)700℃ (c) 900℃ (d) 1000℃…………………………..74
Figure 4-15 SEM microphotographs of C/ZnO (x=0.9) calcined at 500℃ (b)700℃ (c) 900℃ (d) 1000℃………………………….76
Figure 4-16 SEM microphotographs of C/ZnO (x=1.2) calcined at (a)
 500℃ (b)700℃ (c) 900℃ (d) 1000℃…….……..…….78
Figure 4-17 Average particle size of the x-Y particles………………….80
Figure 4-18 kA,BET vs. calcination temperatures for x=0 and x=0.9
 particles……………………………………………………82
Figure 4-19 TEM microphotography of (a)0-900℃ (b) 0.4- 900℃ (c) 0.9- 900℃………...…………………………………………….85
Figure 4-20 (a) (b) EDM of 0.9-900℃………………………………….87
Figure 4-21 PL emission spectra of different amount glucose calcined at 
(a)	500℃, (b) 700℃, (c) 900℃……………..…………….90

CONTENTS OF TABLES

Table 2-1-1 Physics properties of ZnO…………………………………...4
Table 2-2-2 Comparison of above three procedures……………………13
Table 2-2-3 advantages and drawbacks of the above three procedures…14
Table 3-1-1 Chemical reagents used in this study………………………25
Table 4-1 Definition of “x”……………………………………………...38
Table 4-2 Crystalline phase existing in the specimens obtained using
 different amount glucose and calcination temperatures………50
Table 4-3 Nomenclatures………………………………………………..60
Table 4-4 kA,m value of P25 and the x-Y particles………………………67
Table 4-5 Average particle size of the x-Y particles……………………79
Table 4-6 Surface area of x=0 and x=0.9 particles……………………...82
參考文獻
[1] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature. 238 (1972) 37-38.
[2] H. Yu, Photocatalytic abilities of gel-derived P-doped TiO2, J. Phys. Chem. Solids. 68 (2007) 600–607.
[3] D. Li, H. Haneda, Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition, J. Photochem. Photobiol., A. 155 (2003) 171–178.
[4] J. Xu, Y. Chang, Y. Zhang, S. Ma, Y. Qu, C. Xu, Effect of silver ions on the structure of ZnO and photocatalytic performance of Ag/ZnO composites, App. Surf. Sci. 255 (2008) 1996–1999.
[5] S. Chen, W. Zhao, S. Zhang, W. Liu, Preparation, characterization and photocatalytic activity of N-containing ZnO powder, Chem. Eng. J. 148 (2009) 263–269.
[6] J. Sun, S. Dong, J. Feng, X. Yin, X. Zhao, Enhanced sunlight photocatalytic performance of Sn-doped ZnO for Methylene Blue degradation, J. Mol. Catal. A: Chem. (2011) 145–150.
[7] N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors, J. Photochem. Photobiol., A. 85 (1995) 247-255.
[8] H. Ma, J. Han, Y. Fu, Y. Song, C. Yu, X. Dong, Synthesis of visible light responsive ZnO–ZnS/C photocatalyst by simple carbothermal reduction, Appl. Catal., B. 102 (2011) 417-423.
[9] C. Wang, J. Zhou. X. Wang, B. Mai, G. Sheng, P. Peng, J. Hu, Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts, Appl. Catal., B. 39 (2002) 269–279.
[10] 黃淑琦,以反應式濺鍍製備氧化鋅薄膜及其摻雜之研究,國立中山大學, 2006
[11] M.R. Hoffmann, S.T. Martin, W. Choi, D. W. Bahnemannt, Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69-96.
[12] M.A. Behnajady, N. Modirshahla, N. Daneshvar, M. Rabbani, Photocatalytic degradation of C.I. Acid Red 27 by immobilized ZnO on glass plates in continuous-mode, J. Hazard. Mater. 140 (2007) 257–263.
[13] M.A. Behnajady, N. Modirshahla, R. Hamzavi, Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst, J. Hazard. Mater. B133 (2006) 226–232.
[14] H. Lin, S. Liao, S. Hung, The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst, J. Photochem. Photobiol., A. 174 (2005) 82–87.
[15] S. Zhang, X. Li, Preparation of ZnO particles by precipitation transformation method and its inherent formation mechanisms, Colloids Surf., A, 226 (2003) 35–44.
[16] Y. Wang, C. Zhang, S. Bi, G. Luo, Preparation of ZnO nanoparticles using the direct precipitation method in a membrane dispersion micro-structured reactor, Powder Technol. 202 (2010) 130–136.
[17] M. Castellanot, E. Matijevic, Uniform colloidal Zinc compounds of various morphologies, Chem. Mater. 1 (1989) 78-82.
[18] K. Fujita, K. Matsuda, S. Mitsuzawa, Formation of zinc oxide by homogeneous precipitation method, Bull. Chem. Soc. Jpn 65 (1992) 2270-2271.
[19] C. Lu, C. Yeh, Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder, Ceramics Int. 26 (2000) 351-357.
[20] S. Musić, D. Dragčević, S. Popović, M. Ivanda, Precipitation of ZnO particles and their properties, Mater. Lett. 59 (2005) 2388-2393.
[21] C. Lu, Y. Lai, R.B. Kale, Influence of alkaline sources on the structural and morphological properties of hydrothermally derived zinc oxide powders, J. Alloys Compd. 477 (2009) 523–528.
[22] G. Colón, M.C. Hidalgo, J.A. Navío, E. Pulido Melián, O. González Díaz , J.M. Dońa Rodríguez, Highly photoactive ZnO by amine capping-assisted hydrothermal treatment, Appl. Catal., B. 83 (2008) 30–38.
[23] 郭啟良, 利用水熱法製備氧化鋅、硫化金和硫化銅的奈微米結構與其性質分析, 國立清華大學, 2008
[24] Y. Lai, M. Meng, Y. Yu, X. Wang, T. Ding, Photoluminescence and photocatalysis of the flower-like nano-ZnO photocatalysts prepared by a facile hydrothermal method with or without ultrasonic assistance, Appl. Catal., B. 105 (2011) 335-345.
[25] L.H. Quang, S.J. Chua, K.P. Loh, E.Fitzgerald, The effect of post-annealing treatment on photoluminescence of ZnO nanorods prepared by hydrothermal synthesis, J. Cryst. Growth. 287 (2006) 157–161.
[26]http://www.sintef.no/upload/Materialer_kjemi/Energikonvertering%20og%20materialer/dokumenter/spraypyrolyse_web.pdf
[27] N. Tamaekong, C. Liewhiran, A. Wisitsoraat, S. Phanichphant, Acetylene sensor based on Pt/ZnO thick films as prepared by flame spray pyrolysis, Sens. Actuators, B. 152 (2011) 155-161.
[28] A. El Hichou, M. Addou, J. Ebothé, M. Troyon, Influence of deposition temperature (Ts), air flow rate (f) and precursors on cathodoluminescence properties of ZnO thin films prepared by spray pyrolysis, J. Lumin. 113 (2005) 183–190.
[29] O. Milošević, D. Uskoković, Synthesis of BaTiO3 and ZnO varistor precursor powders by reaction spray pyrolysis, Mater. Sci. Eng., A 168 (1993) 249-252.
[30] O. Milošević, D. Uskoković, L. J. Karanović, M. Tomašević, M. Trontelj, Synthesis of ZnO-based varistor precursor powders by means of the reaction spray process, J. Mater. Sci. 28 (1993) 5211-5217.
[31] O. Milošević, B. Jordović, D. Uskoković, Preparation of fine spherical ZnO powders by an ultrasonic spray pyrolysis method, Mater. Lett. 19 (1994) 165-170.
[32] Y. Lin, Z. Tang, Z. Zhang, Preparation of Nanometer Zinc Oxide Powders by Plasma Pyrolysis Technology and Their Applications, J. Am. Ceram. Soc., 83 (2000) 2869–71.
[33] 陳秀連,以化學法製備均一粒徑氧化鋅粉體與發光特性之研究,國立台灣科技大學,2003
[34] 馬振基 主編,奈米材料科技原理與應用,全華科技圖書,(2005)
[35] E.P. Melián, O.G. Díaz , J.M. Doňa Rodríguez, G. Colón , J. Araňa, J. H. Melián, J.A. Navío, J.P. Peňa, ZnO activation by using activated carbon as a support: Characterisation and photoreactivity, Appl. Catal., A. 364 (2009) 174–181.
[36] M. Wang, X. Cao, L. Wang, L. Zhang, Template-free fabrication of porous zinc oxide hollow spheres and their enhanced photocatalytic performance, J. Porous. Mater. 17 (2009) 79-84.
[37] S. Yang, J. Im, T. Kim, K. Lee, C.R. Park, MOF-derived ZnO and ZnO@C composites with high photocatalytic activity and adsorption capacity, J. Hazard. Mater. 186 (2011) 376-382.
[38] L. Yang, S. Dong, J. Sun, J. Feng, Q. Wu, S. Sun, Microwave-assisted preparation, characterization and photocatalytic properties of a dumbbell-shaped ZnO photocatalyst, J. Hazard. Mater. 179 (2010) 438–443.
[39] J. Sun, S. Dong, Y. Wang, S. Sun, Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst, J. Hazard. Mater. 172 (2009) 1520–1526.
[40] L. Brus, Electronic wave functions in semiconductor clusters: experiment and theory, J. Phys. Chem. 90 (1986) 2555-2560.
[41] M. Anpo, T. Shima, S. Kodama, Y. Kubokawa, Photocatalytic hydrogenation of CH3CCH with H2O on small-particle TiO2,: size quantization effects and reaction intermediates, J. Phys. Chem. 91 (1987) 4305-4310.
[42] A.L. Linsebigler, G.Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, Chem. Rev. 95 (1995) 735-758.
[43]http://www.hkbu.edu.hk/~csar/fesem.html 
[44]http://nobelprize.org/educational/physics/microscopes/tem/index.html
[45] www.sklc.dicp.ac.cn/yiqi/Seminar%20JSD%20-%20II.ppt
[46] A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard, J. M. Herrmann, Photocatalytic degradation pathway of methylene blue in water, Appl. Catal., B. 31 (2001) 145–157.
[47] C. Ren, B. Yang, M. Wu, J.Xu, Z. Fu, Y. lv, Ti. Guo, Y. Zhao, C. Zhu, Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance, J. Hazard. Mater. 182 (2010) 123-129
[48] 郭益男,反應性射頻磁控濺鍍氧化鋅薄膜之光激發光特性之研究,國立中山大學,2004
[49] S. Chen, W. Zhao, W. Liu, H. Zhang, X. Yu, Preparation, characterization and activity evaluation of p–n junction photocatalyst p-CaFe2O4/n-ZnO, Chem. Eng. J. 155 (2009) 466–473.
[50] G. Xiong, U. Pal, J.G. Serrano, K.B. Ucer, R.T. Williams, Photoluminescence and FTIR study of ZnO nanoparticles: the impurity and defect perspective, phys. stat. sol. (c) 3. 10 (2006) 3577–3581.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後2年公開
校外
同意授權
校外電子論文於授權書繳交後2年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信