淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-2408201116091000
中文論文名稱 光可調控溫度敏感型聚氮異丙基丙烯醯胺高分子的製 備及其細胞相容性
英文論文名稱 Preparation and cellular compatibility of optical-controlled thermo-responsive poly(N-isopropyl acrylamide)
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 99
學期 2
出版年 100
研究生中文姓名 張耿銘
研究生英文姓名 Geng-Ming Zhang
學號 698400347
學位類別 碩士
語文別 中文
口試日期 2011-07-20
論文頁數 90頁
口試委員 指導教授-董崇民
委員-邱文英
委員-鄭廖平
委員-陳信龍
中文關鍵字 聚氮異丙基丙烯醯胺  奈米金桿 
英文關鍵字 PNIPAAM  Gold nanorod 
學科別分類
中文摘要 本研究主要是利用帶酸基之偶氮型起始劑4,4'-偶氮双(4-氰基戊酸)(4,4′-azobis(4-cyanovaleric acid), ACPA)起始聚合氮異丙基丙烯醯胺單體(N-isopropyl acrylamide, NIPAAm),以形成末端具有酸基之聚氮異丙基丙烯醯胺(PNIPAAm-COOH);經過70 oC反應12小時後,可得到分子量為6180的PNIPAAm-COOH。接著利用1-(3-二甲氨基丙基)-3-乙基碳二亞胺鹽酸鹽((N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride)與2-巰基乙胺鹽酸鹽(cysteamine hydrochloride)進行修飾,成為一硫醇封端聚氮-異丙基丙烯醯胺(PNIPAAm-SH),硫醇封端基含量為28.32 μmole/g polymer,取代度為11.4%。另外利用種晶生成法合成出長37.23(±0.91) nm和寬11.15(±0.29) nm,長寬比值(aspect ratio, AR)為3.34,且形狀均一之奈米金桿(GNR)。最後將不同莫耳數的PNIPAAm-SH加入奈米金桿溶液中進行接枝反應以形成PNIPAAm接枝奈米金桿(PNIPAAm-GNR)。實驗結果發現以2.5 μmol之PNIPAAm-SH與4.64 nM的奈米金桿在30 oC進行接枝反應所形成之PNIPAAm接枝奈米金桿會有較佳之穩定性,經過5日後,最大吸收波長依然可維持在811 nm,吸光度一樣維持不變。並藉由STEM證實硫元素確實鍵結在奈米金桿表面,而在TEM影像顯示奈米金桿受到高分子鏈層層之保護。將此PNIPAAm-GNR溶液進行紅外光雷射引導(808 nm)及細胞培養等測試。測試結果顯示,LSCT在各階段(PNIPAAm-COOH、PNIPAAm-SH、PNIPAAm-GNR)皆無太大之改變,都在35 oC左右。PNIPAAm-AuR溶液經過近紅外光(808 nm, 500 mW)照射15分鐘後,由於奈米金桿的表面電漿共振效應(surface plasmon effect),溫度可從27 oC上昇至45 oC,此溫度上昇進而引發PNIPAAm的相變化;同時此溫度敏感性行為在經過5次循環,仍具有可逆變化。PNIPAAm-GNR複合材料此複合材料不但具有光熱轉換之效應,且具可逆性,並且明顯改善原奈米金桿之生物毒性,細胞存活率從原先之1.07 %提升至89.0 %。
英文摘要 In this study, 4,4'-azobis(4-cyanovaleric acid) (ACPA) was used to initiate polymerization of N-isopropyl acrylamide (NIPAAm) monomer in ethanol at 70oC to form carboxyl-terminated poly(N-isopropyl acrylamide) telechelic polymer (PNIPAAm-COOH). Subsequently, N-(3-dimethylaminopropyl)-N'-ethylcarbo- diimide hydrochloride and 2-mercapto-ethylamine hydrochloride (cysteamine hydrochloride) were chosen to modify the PNIPAAm-COOH to prepare thiol-end-capped poly(N-isopropyl acrylamide) (PNIPAAm-SH) , SH-functionalized content of 28.32 μmole/g polymer, instead of 11.4 %. In addition, nano-sized gold rod (GNR) was synthesized via the well-known seed-mediated method. The synthesized GNR was very uniform and had a dimension of 37.23(±0.91) nm in length and 11.15(±0.29) nm in width, thus having an aspect ratio (AR) of 3.34. Finally, PNIPAAm-SH with different amounts was added to the GNR solution to produce PNIPAAm-g-GNR composite. It was found the PNIPAAm-g-GNR solution prepared by grafting 2.5 μmol PNIPAAm-SH onto 4.64 nM of GNR solution at 30 oC had a superior stability. STEM results confirmed that the thiol group bonded onto the surface of gold nanorod, and the TEM image showed that the gold nanorod was protected by multi-layers of PNIPAAm chains. The PNIPAAm-g-GNR solution was tested for the near-IR irradiation-induced thermo-responsibility and cell compatibility. The results showed that all PNIPAAm-COOH, PNIPAAm-SH and PNIPAAm-g-GNR had the same LSCT at about 35 oC. Because of the surface plasmon effect of gold nanorod, the irradiation of near-IR at 808 nm for 15 minutes could induce the temperature rise from 27 oC to 45 oC. The thermo-responsibility was also reversible during five test cycles. Moreover, the PNIPAAm protection layer could decrease the cytotoxicity of the gold nanorod. The Cell Viability of 1.07 % from the previous increase to 89.0 %.
論文目次 目錄
中文摘要 I
Abstract III
目錄 V
圖目錄 VIII
表目錄 XI
第一章 序論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 文獻回顧與基礎理論 3
2.1 溫度敏感型高分子 3
2.1.1 簡介 3
2.1.2 溫度敏感型高分子PNIPAAm的應用 4
2.2 奈米金 8
2.2.1 簡介 8
2.2.2 奈米金桿的製備 12
2.2.3 奈米金的穩定性 14
2.2.4 奈米金的光熱性質 15
第三章 實驗方法與步驟 18
3.1 實驗藥品 18
3.2 實驗儀器 21
3.3 實驗步驟 23
3.3.1 合成PNIPAAm-COOH 鏈狀高分子 23
3.3.1.1 單體轉化率 23
3.3.1.2 結構分析(FTIR) 24
3.3.1.3 分子量測定(GPC) 24
3.3.2 合成PNIPAAm-SH 鏈狀高分子 26
3.3.2.1 SH數的測量(Ellman’s test) 27
3.3.2.2 結構分析(FTIR) 29
3.3.2.3 PNIPAAm-COOH與PNIPAAm-SH的相變化溫度(LCST) 29
3.3.3 奈米金桿(GNR)的製備 30
3.3.3.1 紫外光-可見光光譜分析(UV-Visible spectrophotometry) 30
3.3.3.2 穿透式電子顯微鏡分析(TEM) 31
3.3.4 GNR/PNIPAAm複合載體的製備 31
3.3.4.1 穿透式電子顯微鏡分析(TEM) 32
3.3.4.2 奈米金桿複合材料對激發光源之光熱效應 32
3.3.4.3 奈米金桿複合材料光熱效應之可逆性質 33
3.3.4.4 細胞相容性測試 33
3.3.4.4.1 L929細胞株培養 33
3.3.4.4.2 細胞接種 34
3.3.4.4.3 MTS測試 34
第四章 結果與討論 35
4.1 合成PNIPAAm-COOH 鏈狀高分子 35
4.1.1結構分析 36
4.2 PNIPAAm-SH 鏈狀高分子 38
4.2.1 反應時間 38
4.2.2 不同pH值的反應環境 39
4.2.3 EDC與cysteamine的含量 40
4.2.4 結構分析 42
4.2.5 PNIPAAm-COOH 與 PNIPAAm-SH 的相變化溫度(LCST) 43
4.3 奈米金桿的性質與型態 45
4.4 GNR/PNIPAAm複合材料 47
4.4.1 結構鑑定 50
4.4.2 穩定度測試 52
4.4.3 穿透式電子顯微鏡分析(TEM) 56
4.4.4 不同反應溫度對奈米金桿複合材料之穩定性影響 64
4.4.5 LCST的測量 66
4.4.6 奈米金桿複合材料對激發光源之光熱效應 69
4.4.7 奈米金桿複合材料光熱效應之可逆性質 70
4.4.8 細胞相容性測試 71
第五章 結論 73
第六章 參考文獻 75
第七章 建議事項 83
第八章 附錄 84
8.1 補充數據 84
8.1.1 不同pH值環境下合成奈米金桿複合材料之影響 84
8.1.2 元素分析EA 87
8.1.3 不同pH值環境下對LCST之影響 87
8.2 Q&A 90



圖目錄
圖 2. 1 Hoffman之抗體分離程序示意圖[15] 5
圖 2. 2 Cussler 之分離程序示意圖[16] 6
圖2.3 溫度敏感型膠體藥物釋放機制示意圖[17] 7
圖2.4 表面電漿共振示意圖[26] 10
圖2.5 Aspect ratio與SPL之關係圖[26] 11
圖2.6 奈米金桿成長機制示意圖[31] 13
圖2.7 Kawano之凝膠顆粒合成程序示意圖[59] 16
圖2.8 Kawano凝膠顆粒在不同能量之雷射光源照射下的光熱相變化圖[59] 16
圖3.1 合成PNIPAAm-COOH 鏈狀高分子流程圖 25
圖3.2 PNIPAAm-COOH反應結構式 25
圖3.3 PNIPAAm-COOH與cysteamine反應路徑以合成PNIPAAm-SH 27
圖3.4 Ellman’s reagent 28
圖3.5 Ellman’s reagent 反應流程圖 28
圖3.6 製備GNR/PNIPAAm複合載體的流程圖 31
圖3.7 奈米金桿複合材料之光熱轉換實驗裝置示意圖 32
圖4.1 (a) 利用AIBN起始劑所聚合的PNIPAAm的紅外線吸收光譜圖; (b) 純ACPA起始劑的紅外線光譜圖; (c) ACPA起始劑所聚合而成的PNIPAAm-COOH的紅外線吸收光譜圖 37
圖4.2 利用EDC/NHS/Cysteamine與PNIPAAm-COOH反應, 在不同反應時間下, PNIPAAm高分子鏈末端SH含量之關係(COOH/EDC/NHS/NH2=1:2:1.2:1, pH=5) 39
圖4.3 利用EDC/NHS/Cysteamine與PNIPAAm-COOH反應, 在不同pH值環境反應下, 所得到PNIPAAm高分子鏈末端SH含量(COOH/EDC/NHS/NH2=1:4:2.4:1) 40
圖4.4 (a) 利用EDC/NHS/Cysteamine與PNIPAAm-COOH反應, 在不同Cysteamine含量反應下, 所得到PNIPAAm高分子鏈末端SH含量(COOH/EDC/NHS=1:2:1.2, pH=5), (b) 利用EDC/NHS/Cysteamine與PNIPAAm-COOH反應,在不同EDC含量反應下, 所得到PNIPAAm高分子鏈末端SH含量(COOH/NH2=1:2, EDC/NHS=1:0.6, pH=5) 41
圖4.5 (a) 利用ACPA起始劑所聚合的PNIPAAm-COOH的紅外線吸收光譜圖 (b) PNIPAAm-SH的紅外線光譜圖([COOH]/[EDC]/[NHS]/[NH2]=1:4:2.4:2, pH=5) 42
圖4.6 (a) PNIPAAm-COOH 與 PNIPAAm-SH 溶液在450 nm光線下的穿透率與溫度的關係圖 (b) PNIPAAm-COOH 與 PNIPAAm-SH 溶液的穿透率對溫度的一次微分圖 44
圖4.7 經透析袋純化過後之奈米金桿與濃縮透析液的UV-Vis光譜圖 46
圖4.8 種子溶液與濃縮透析液的UV-Vis光譜圖 46
圖4.9 奈米金桿的TEM圖,左右的scale bar分別為50 nm及20 nm 47
圖4.10 PNIPAAm-SH 在室溫下的氧化曲線圖 49
圖4.11 PNIPAAm-SH 在50°C下的氧化曲線圖 49
圖4.12 CTAB雙層微膠示意圖[71] 51
圖4.13 (a) PNIPAAm-SH與(b)PNSGNR2之FIIR比較圖 52
圖4.14 GNR 儲存於室溫下經過不同時間的UV-Vis 光譜圖 54
圖4.15 PNCGNR 儲存於室溫下經過不同時間的UV-Vis 光譜圖 54
圖4.16 PNSGNR1 儲存於室溫下經過不同時間的UV-Vis 光譜圖 55
圖4.17 PNSGNR2 儲存於室溫下經過不同時間的UV-Vis 光譜圖 55
圖4.18 PNSGNR3 儲存於室溫下經過不同時間的UV-Vis 光譜圖 56
圖4.19 (a) GNR ,經兩次離心前處理,室溫攪拌24hr及兩次離心後處理 (b) 奈米金桿溶液含少量CTAB之型態示意圖[71] (c) 對照組PNCGNR於常溫狀態的TEM圖 58
圖4.20 (a) PNSGNR1、(b) PNSGNR2、(c) PNSGNR3 於常溫狀態下的TEM圖 59
圖4.21 PNSGNR2 於40°C環境下的TEM圖 60
圖4.22 對照組PNCGNR 於40°C環境下的TEM圖 61
圖4.23 (a) STEM之奈米金桿複合材料影像 (b) 奈米金桿複合材料之元素分布示意圖 63
圖4.24 (a) PNIPAAm-COOH與PNIPAAm-SH溶液在450 nm光線下及PNSGNR溶液在650 nm光線下的穿透率與溫度的關係圖 (b) PNIPAAm-COOH、PNIPAAm-SH與PNSGNR穿透率對溫度的一次微分圖 67
圖4.25 (a) PNSGNR原溶液與經過5次升降溫動作之UV-Vis光譜比較圖 (b) PNSGNR在不同溫度的相轉移可逆圖 68
圖4.26 純水與PNSGNR在(a) 300 mW及(b) 500 mW的近紅外光雷射照射時間與溫度之關係圖 69
圖4.27 PNSGNR在不同功率雷射照射下(五分鐘)之溫度關係圖 70
圖4.28 PNSGNR 於500 mW之雷射功率下,多次開關雷射與穿透率之關係圖 71
圖4.29 L-929細胞濃度檢量線 72
圖4.30 CTAB-GNR及PNSGNR的MTS圖 72



表目錄
表4.1 合成PNIPAAm-COOH 的反應條件及其轉化率 36
表4.2 奈米金種晶溶液的配方 45
表4.3 成長溶液以合成奈米金桿的配方 45
表4.4 GNR/PNIPAAm之配方 50
表4.5 GNR/PNIPAAm之表面電位(zata potential) 52
表4.6 不同配方製備出的奈米金桿複合材料在室溫儲存下,奈米金桿SPL, max及吸光度變化情形 53
表4.7 不同反應溫度之奈米金桿複合材料配方表 64
表4.8 不同反應溫度之奈米金桿複合材料於室溫儲存下,奈米金桿SPL, max及吸光度變化情形 65

參考文獻 1. T. Okano, N. Yui, M. Yokoyama, R. Yoshida ,Advances in polymeric systems for drog delivery ,Gordon and Breach, Yverdon, Switzerland, (1994)
2. R.Yoshida , K. Uchida, Y.Kaneko, K. Sakai, A. Kikuchi, Y. Sakurai, T.Okano, Comb-type grafted hydrogels with rapid de-swelling response to temperature changes ,Nature 347 (1995 ) 240-242
3. T. Okano, Y. H. Bas, S. W. Kim , Pulsed and self –regulated drug delivery, CRC Press, Boca Raton, Florida (1990)
4. A. S. Hoffman, Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics, J. Control. Release, 6(1987) 297-305
5. K. Dusek, Responsive gels: volume transitions, Advances in polymer science , Springer; 1 edition (1993)
6. Y. Osada, H. Okuzaki, H. Hori, A polymer gel with electrically driven motility, Nature 355 (1992) 242-244
7. G. Chen, A. S. Hoffman, Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH, Nature 375 (1995)49-52
8. J. Kiler, A. B. Scranton, N. A. Peppas, Self-associating networks of poly(methacrylic acid-g-ethylene glycol), Macromolecules, 23 (1990) 4944-4949
9. J. A. Walker, C. A. Vause, Ising-like quality of the Potts model, Sci. Am. 253 (1987) 253-258
10. C. Tanford, The hydrophobic effect,Wiley,New York (1973)
11. A. Ben-naim, Hydrophobic interactions, Plenum Press, NY (1980)
12. X. -Z. Zhang, X. -D. Xu, S.-X. Cheng, R. -X. Zhuo, Strategies to improve the response rate of thermosensitive PNIPAAm hydrogels, Soft Matter 4 (2008) 385-391
13. H. Wei, S. -X. Cheng, X. -Z. Zhang,R. -X. Zhuo, Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers, Progress in Polymer Science 34 (2009) 893-910
14. I. Galaev Yu., B. Mattiasson, Effect of synthetic polymers, poly(N-vinyl pyrrolidone) and poly(N-vinyl caprolactam), on elution of lactate dehydrogenase bound to Blue Sepharose, Journal of Chromatography. 2 (1993) 367-371
15. A. S. Hoffman, Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics, J. Control. Release, 6(1987) 297-305
16. F. S. Roberto, Freitas, E. L. Cussler, Temperature Sensitive Gels As Size Selective Absorbants. Separation Science and Technology 22 (1985) 911-919
17. S. Cammas, K. Suzuki, C. Sone, Y.Sakurai, K. Kataoka, T. Okano, Preparation and characterization of thermally responsive block copolymer micelles comprising poly(N-isopropylacrylamide-b-DL-lactide), J. Controlled Release 55 (1998) 87-98
18. F. Kohori, K. Skai, T. Okano, Inner core segment design for drug delivery control of thermo-responsive polymeric micelles, J.Controlled Release 65 (2000) 93-103
19. J. E. Chung, M. Yokoyama, T. Okano, Doxorubicin-loaded poly(ethylene glycol)-poly(β-benzyl-L-aspartate) copolymer micelles: Their pharmaceutical characteristics and biological significance, J.Controlled Release 64 (2000) 143-153
20. H. Raether, Surface Plasmons, Springer, New York, (1988).
21. A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin, Nano-optics of surface plasmon polaritons, Phys. Reports 408 (2005) 131-314
22. D. A. Schultz, Plasmon resonant particles for biological detection, Current Opinion in Biotechnology 14 (2003) 13-22
23. 王崇人,神奇的奈米科學,科學發展,354期,第48頁,2002年六月。
24. N. R. Jana, L. Gearheart, C. J. Murphy ,Seeding growth for size control of 5-40 nm diameter gold nanoparticles, Adv. Mater., 13 (2001) 1389-1393
25. T. K. Sau, C. J. Murphy, Seeded high yield synthesis of short Au nanorods in aqueous solution, Langmuir, 20 (2004) 6414-6420.
26. X. Huang, M. A. El-Sayed, Gold nanorods: From synthesis and properties to biological and biomedical applications, Adv. Mater,21 (2009) 4880-4910
27. S. Link, M. B. Mohamed, M. A. El-Sayed, Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant, J. Phys. Chem. B , 103 (1999) 3073-3077.
28. S. Link, M. A. El-Sayed, Erratum: Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant, J. Phys. Chem. B , 109 (2005) 10531-10532.
29. A. Brioude, X. C. Jiang, M. P. Pileni, Optical properties of gold nanorods: DDA simulations supported by experiments, J. Phys. Chem. B , 109 (2005) 13138-13142.
30. B. Yan, Y. Yang, Y. Wang, Comment on "simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant", J. Phys. Chem. B , 107 (2003) 9159.
31. M. Liu and P. Guyot-Sionnest, Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids, J. Phys. Chem. B, 109 (2005) 22192-22200.
32. L. M. Liz-Marzán, Nanometals: Formation and color, Materials Today 7 (2004) 26-31.
33. J. Turkevich, P. C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday Soc. 11 (1951) 55-75.
34. G. Fens, Nature: Phys. Sci. 241 (1973) 20-22.
35. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, R. Whyman, Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system, J. Chem. Soc.,Chem. Commun. (1994) 801-802.
36. A. C. Templeton, W. P. Wuelfing, R. W. Murray, Monolayer-protected cluster molecules, Acc. Chem. Res. 33 (2000) 27-36
37. S. Mössmer, J. P. Spatz, M. Möller, T. Aberle, J. Schmidt, W. Burchard, Solution Behavior of Poly(styrene)-&Zoc&-poly(2-vinylpyridine) Micelles Containing Gold Nanoparticles, Macromolecules 33 (2000) 4791-4798.
38. N. N. Kariuki, L. Han, N. K. Ly, M. J. Patterson, M. M. Maye, G. Liu, C.-J. Zhong, Preparation and characterization of gold nanoparticles dispersed in poly(2-hydroxyethyl methacrylate) Langmuir 18 (2002) 8255-8259.
39. M. Filali, M. A. R. Meier, U. Schubert, J.-F. Gohy, Star-block copolymers as templates for the preparation of stable gold nanoparticles, Langmuir 21 (2005) 7995- 8000.
40. H. Chen, Y. Wang, S. Dong, E. Wang, One-step preparation and characterization of PDDA-protected gold nanoparticles, Polymer 47( 2006) 763-766.
41. S. Nu, H. Böttcher, H. Wurm, M. L. Hallensleben, Gold nanoparticles with covalently attached polymer chains, Angrew. Chem., Int. Ed. 40 (2001) 4016-4018.
42. R. Jordan, N. West, A. Ulman, Y.-M. Chou, O. Nuyken, Nanocomposites by surface-initiated living cationic polymerization of 2-oxazolines on functionalized gold nanoparticles, Macromolecules 34 (2001) 1606-1611.
43. K. Ohno, K. Koh, Y. Tsujii, T. Fukuda, Synthesis of gold nanoparticles coated with well-defined, high-density polymer brushes by surface-initiated living radical polymerization, Macromolecules 35 (2002) 8989-8993.
44. T. K. Mandal, M. S. Fleming, D. R. Walt, Preparation of Polymer Coated Gold Nanoparticles by Surface-Confined Living Radical Polymerization at Ambient Temperature, Nano Letters 2 (2002) 3-7.
45. H. Zhao, X. Kang, L. Liu, Comb-coil polymer brushes on the surface of silica nanoparticles, Macromolecules 38 (2005) 10619-10622.
46. W. P. Wuelfing, S. M. Gross, D. T.Miles, R. W. Murray, Nanometer gold clusters protected by surface-bound monolayers of thiolated poly(ethylene glycol) polymer electrolyte, J. Am. Chem. Soc. 120 (1998) 12696-12697.
47. M. K. Corbierre, N. S. Cameron, M. Sutton, S. G. J. Mochrie, L. B. Lurio, A. Ruhm, R.B. Lennox, Polymer-stabilized gold nanoparticles and their incorporation into polymer matrices, J. Am. Chem. Soc. 123 (2001) 10411-10412.
48. C. Mangeney, F. Ferrage, I. Aujard, V. Marchi-Artzner, L. Jullien, O. Ouari, E. D. Rékaï, A. Laschewsky, I. Vikholm, J. W. Sadowski, Synthesis and properties of water-soluble gold colloids covalently derivatized with neutral polymer monolayers, J. Am. Chem. Soc. 124 (2002) 5811-5821.
49. A. B. Lowe, B. S. Sumerlin, M. S. Donovan, C. L. McCormick, Facile preparation of transition metal nanoparticles stabilized by well-defined (co)polymers synthesized via aqueous reversible addition-fragmentation chain transfer polymerization, J. Am. Chem.Soc. 124 (2002) 11562-11563.
50. M. B. Mohamed, T. S. Ahmadi, S. Link, M Braun and M. A.El-Sayed, Hot electron and phonon dynamics of gold nanoparticles embedded in a gel matrix, Chem. Phys. Lett., 343, (2001) 55.
51. M. K.Corbierre, N. S.Cameron, R. B. Lennox, Polymer-stabilized gold nanoparticles with high grafting densities ,Langmuir 20 (2004) 2867-2873.
52. W. Shi, Y. Sahoo, M. T. Swihart, P. N. Prasad, Gold nanoshells on polystyrene cores for control of surface plasmon resonance, Langmuir 21 (2005) 1610-1617.
53. F. Seker, P. R. L. Malenfant, M. Larsen, A. Alizadeh, K. Conway, A. M. Kulkarni, G. Goddard, R. Garaas, On-demand control of optoelectronic coupling in gold nanoparticle arrays, Adv. Mater. 17 (2005) 1941-1945.
54. I. Hussain, S. Graham, Z. Wang, B. Tan, D. C. Sherrington, S. Rannard, A. I. Cooper, M. Brust, Size-controlled synthesis of near-monodisperse gold nanoparticles in the 1-4 nm range using polymeric stabilizers, J. Am. Chem. Soc. 127 (2005) 16398-16399.
55. I. Gorelikov, L. M. Field, E. Kumacheva, Hybrid microgels photoresponsive in the near-infrared spectral range, J. Am. Chem. Soc 126 (2004) 15938
56. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, J. L. West, Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles, Cancer Lett. 209 (2004) 171
57. S. R. Sershen, S. L. Westcott, N. J. Halas, J. L. West, Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery, J. Biomed. Mater. Res. 51 (2000) 293
58. N. Shah, A. Cerussi, C. Eker, J. Espionza, J. Butler, J. Fishkin, R. Hornung, B. Tromberg, Noninvasive functional optical spectroscopy of human breast tissue, Proc. Nat. Acad. Sci. U.S.A. 98, (2001) 4420-4425.
59. T. Kawano, Y. Niidome, T. Mori, Y. Katayama, T. Niidome, PNIPAM gel-coated gold nanorods for targeted delivery responding to a near-infrared laser, Bioconjugate Chem 20 (2009) 209
60. 岑翰儒,幾丁聚醣接枝聚氮-異丙基烯醯胺薄膜的合成及其性質的研究,淡江大學碩士論文,2004。
61. K. Y. Chang, 幾丁聚醣生醫材料於骨組織工程之應用,台灣大學碩士論文。
62. S. Y. Lu, W. J. Gao, H. Y. Gu, Effect of nano-sized gold colloid/chitosan scaffold on the adhesion and proliferation of keratinocytes, Burns. 34(5) (2008) 623
63. S. T. Wang, M. L. Tsai, R. H. Chen, 2008,幾丁聚醣與甘油磷酸鹽混合之溫敏型水膠做為傷口敷料之特性探討,國立臺灣海洋大學碩士論文。
64. G.L. Ellman, Tissue sulfhydryl groups, Arch. Biochem. Biophys. 82 (1959) 70-77
65. R.J. Verheul, S.Van Der Wal, W.E. Hennink, Tailorable thiolated trimethyl chitosans for covalently stabilized nanoparticles, Biomacromolecules 11 (2010) 1965-1971
66. C.L. Didychuk, P. Ephrat, M. Belton , J. J. L. Carson, Progress in Biomedical Optics and Imaging - Proceedings of SPIE 6856, art. no. 68560M (2008)
67. N. Bogliotti, B. Oberleitner, A. Di-Cicco, F. Schmidt, J.-C.Florent, V. Semetey, Optimizing the formation of biocompatible gold nanorods for cancer research: Functionalization, stabilization and purification, Journal of Colloid and Interface Science 357 (2011) 75-81
68. C. E. Kast, A. Bernkop-Schnurch, Thiolated polymers - thiomers: Development and in vitro evaluation of chitosan-thioglycolic acid conjugates, Biomaterials 22 (2001) 2345-2352
69. D. Sehgal, I. K. Vijay , A method for the high efficiency of water-soluble carbodiimide-mediated amidation ,Analytical Biochemistry 218 (1994) 87-91
70. J. S. Pieper, T. Hafmans, J. H. Veerkamp, T. H. van Kuppevelt, Development of tailor-made collagen-glycosaminoglycan matrices: EDC/NHS crosslinking, and ultrastructural aspects, Biomaterials 21 (2000) 581-593
71. C. J. Orendorff, C. J. Murphy, Quantitation of metal content in the silver-assisted growth of gold nanorods ,J. Phys. Chem. B 110 (2006) 3990-3994
72. R. Becker, B. Liedberg, P. -O. Kall, CTAB promoted synthesis of Au nanorods - Temperature effects and stability considerations, Journal of Colloid and Interface Science 343 (2010) 25
73. C. Wang, J. Irudayaraj, Gold nanorod probes for the detection of multiple pathogens, Small 4(12) (2008) 2204-2208
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2016-08-25公開。
  • 同意授權瀏覽/列印電子全文服務,於2021-08-24起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信