淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2408201115422000
中文論文名稱 含擴展裂紋之功能性梯度壓電材料破壞分析
英文論文名稱 Fracture Analysis of a Propagating Crack in a Functionally Graded Piezoelectric Material
校院名稱 淡江大學
系所名稱(中) 航空太空工程學系碩士班
系所名稱(英) Department of Aerospace Engineering
學年度 99
學期 2
出版年 100
研究生中文姓名 陳冠宏
研究生英文姓名 Guan-Hong Chen
學號 698430500
學位類別 碩士
語文別 中文
口試日期 2011-07-20
論文頁數 69頁
口試委員 指導教授-應宜雄
委員-馬劍清
委員-劉昭華
中文關鍵字 功能性梯度壓電材料  擴展裂紋  動力破壞  應力強度因子 
英文關鍵字 Functionally Graded Piezoelectric Material  propagating crack  dynamic fracture  stress intensity factor 
學科別分類 學科別應用科學航空太空
中文摘要 本文研究功能性梯度壓電材料之裂紋擴展問題,解析無窮域含可滲透擴展裂紋之功能性梯度壓電材料受反平面剪應力的破壞問題。文中利用Yoffe模型與指數型梯度變化之假設,將滿足邊界條件的控制方程式轉為對偶積分方程式,並使用含複指數對偶積分方程法將其化為含餘弦函數的對偶積分方程,進一步轉化為第二類的Fredholm積分方程。最後求得含有限長擴展裂紋之功能性梯度壓電材料承受mode-III均佈載荷的應力強度因子解析解。數值結果計算了不同材料、不同材料梯度與裂紋擴展速度對於應力強度因子之影響,並做詳細的討論。
英文摘要 In this study, the steady-state response of a moving crack in the functional graded piezoelectric materials (FGPM) is investigated. The material parameters are assumed to vary exponentially and Yoffe's model is adopted. The governing equations for FGPM are solved by use of Fourier consine transform. The formulation for the boundary conditions is derived as a system of dual integral equations, which in turn are reduced to Fredholm integral equation of the second kind. The obtained solutions can be reduced to existing solutions in the literature. Numerical results for stress intensity factors are evaluated and discussed in detail.
論文目次 目錄 ………………………………………………………………… I
圖目錄 ……………………………………………………………  IV
表目錄 ……………………………………………………………VI
第一章 緒論 …………………………………………………………1
1.1 研究動機 ………………………………………………1
1.2 文獻回顧 ………………………………………………4
1.3 內容簡介 ……………………………………………8
第二章 理論基礎………………………………………9
2.1 功能性梯度壓電材料控制方程與本構方程
………………………………………………………9
2.2 傅立葉餘弦轉換及逆轉換………………………………12
第三章 壓電材料動力破壞之應用…………………………13
3.1 問題描述…………………………………………13
3.2 理論解析…………………………………………14
第四章 數值結果與討論………………………………………30
4.1 高斯積分法………………………………………30
4.2 求解弗萊德積分方程式之數值法……………30
4.3 數值結果比較…………………………………32
第五章 結論與展望…………………………………………37
5.1本文結論…………………………………………37
5.2 本文成果……………………………………………37
5.3 尚待研究的方向………………………………38
參考文獻………………………………………………………………40
附錄一 論文簡要版……………………………………………………62

參考文獻 Atkinson, C., (1978) “Steady state crack propagation into media with spatially varying elastic properties, ” International Journal of Engineering Science, Vol. 16, pp. 717-730.

Andrei D.P. and Alexander V.M., (2007) HANDBOOK OF MATHEMATICS FOR ENGINEERS AND SCIENTIS, Chapman & Hall/CRC.

Copson E T., (1961) “On certain dual integral equation,” Glasgow Math, Association.

Choi, H. J., (1996) “Bonded dissimilar strips with a crack perpendicular to the functionally graded interface,” International Journal of Solid and Structures, Vol. 33, pp. 4101-4117.

Chen, Z.T., and Yu, S.W., (1997) “Antiplane Yoffe crack problem in piezoelectric materials,” International Journal of Fracture, Vol. 84, pp. 41-45.

Chen, J., Liu, Z. X. and Zou, Z. Z., (2004) “ Crack initiation behavior of functionally graded piezoelectric material: Prediction by the strain energy density criterion.,” Theoretical and Applied Fracture Mechanics , Vol. 41, pp. 63-82.

Delale, F., and Erdogan, F., (1983) “The crack problem for a non-homogeneous plane,” Journal of Applied Mechanics, Transactions ASME , Vol. 50, pp. 609-614.

Erdogan, F., (1985) “The crack problem for bonded non-homogeneous materials under anti-plane shear loading,” Journal of Applied Mechanics Vol. 52, pp. 823-828.

Erdogan, F., Kaya, A.C., Joseph, P. F., (1991) “The crack problem in bonded non-homogeneous materials,” Journal of Applied Mechanics, Vol. 58, pp. 410-418.

Hsu, W.H., and Chue, C.H., (2008) “Mode III fracture problem of an arbitrarily oriented crack in a FGPM strip bonded to a FGPM half plane,” International Journal of Solids and Structures, Vol. 45, pp. 6333–6346.

Jin, B. and Zhong, Z., (2002) “A moving mode-III crack in functionally graded piezoelectric material: permeable problem,” Mechanics Research Communications, Vol. 29, pp. 217-224.

Konda, N., and Erdogan, F., (1994) “Mixed mode crack problem in a non-homogeneous elastic medium,” Engineering Fracture Mechanics, Vol. 47, pp. 533-545.

Kwon, J. H., Lee, K.Y., and Kwom, S. M., (2000). “Moving crack in a piezoelectric ceramic strip under antiplane shear loading,” Mechanics Research Communication, Vol. 27, pp. 327-332.

Li, S., and Mataga, P.A., (1996b) “Dynamic crack propagation in piezoelectric materials-part-I. Electrode solution,” Journal of the Mechanics and Physics of Solids, Vol. 44, pp. 1799-1830.

Long, X. and Delale, F., (2005) “The mixed mode crack problem in an FGM layer bounded to a homogeneous half-plane,” International Journal of Solids and Structures, Vol. 42, pp. 3897-3917.

Milton Abramowitz and Irene A. Stegun, (1967) HANDBOOK OF MATHEMATICS FUNCTIONS WITH FORMULAS GRAPHS AND MATHEATICAL TANLES, 豪華書局.

Pak, Y.E., (1990) “Crack extension force in a piezoelectric material. Journal of Applied Mechanics ASME, ” Vol. 57, pp. 647–653.

Shen, S., Kuang, Z. B. and Hu, S., (2005) “Dynamic behavior of acrack in a functionally graded piezoelectric strip bonded to two dissimilar half piezoelectric material planes,” Acta Mechanica, Vol. 176, pp. 45-60.
Shin, J. W. and Lee, Y. S., (2010) “A moving interface crack between two dissimilar functionally graded piezoelectric layers under electromechanical loading,” International Journal of Solids and Structures, Vol. 47, pp. 2706-2713.

Ueda, S., (2003) “Diffraction of antiplane shear waves in a piezoelectric laminate with a vertical crack,” European Journal of Mechanics A/Solids, Vol. 22, pp. 413-422.

Ueda, S., (2005) “Impact response of a functionally graded piezoelectric plate with a vertical crack,” Theoretical and Applied Fracture Mechanics, Vol. 44, pp. 329-342.

Ueda, S.,(2006) “Transient response of a center crack in a functionally graded piezoelectric strip under electromechanical impact,” Engineering Fracture Mechanics, Vol. 73, pp. 1455–1471

Wang, B. L., (2003) “A mode III crack in functionally graded piezoelectric materials,” Mechanics Research Communications, Vol. 30, pp. 151-159.

Yoffe, E. H., (1951) “The moving Griffith crack,” Philosophical Magazine, Vol. 42, pp. 739-750.

Zhao, X., (2004) “An efficient approach for the numerical inversion of Laplace transform and its application in dynamic fracture analysis of a piezoelectric laminate,” International Journal of Solids and Structures, Vol. 41, pp. 3653-3674.

Zhou, Z. G., and Wang, B., (2006) “Investigation of behavior of mode-I interface crack in piezoelectric materials by using Schmidt method,” Applied Mathematics and Mechanics(English Edition), Vol. 27, pp. 871-882.

Zhao, L.and Chen,W.Q., (2009) “Symplectic analysis of plane problems of functionally graded piezoelectric materials,” Mechanics of Materials, Vol. 41, pp. 1330-1339.
王竹溪,郭敦仁(1979),特殊函數概論,北京市,科學出版社。

王茂榮 (2003),含擴展裂紋之壓電材料動力破壞解析,淡江大學航空太空工程學系碩士班碩士論文。

蔡宗翰 (2005),含界層裂纹之彈壓電複合材料之動力破壞分析,淡江大學航空太空工程學系碩士班碩士論文。

劉俊俏 (2005),含複指數函數對偶積分方程數值求解,山西運城學院應用數學系碩士論文。

黃俊元 (2006),含界面裂紋之雙異質壓電材料暫態解析,淡江大學航空太空工程學所碩士論文。

褚晴暉,歐怡良 (2006),功能梯度材料之破裂力學回顧,國立成功大學機械系,中華民國力學學會學術研討會第115期。

廖雪吩 (2007),應用數值拉普拉斯逆轉換法於壓電材料動力破壞之研究,淡江大學航空太空工程學系碩士班碩士論文。

陳冠志 (2008),含界層裂紋之雙異質壓電材料受反平面動力點載荷之暫態解析,淡江大學航空太空工程學系碩士班碩士論文。


許吉勝 (2008),含有限長裂紋之彈壓電複合層板動力破壞分析,淡江大學航空太空工程學系碩士班碩士論文。

余志偉 (2009),含有限長裂紋之雙異質壓電複合層板動力破壞分析,淡江大學航空太空工程學系碩士班碩士論文。
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-08-25公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-08-25起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信