淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


  查詢圖書館館藏目錄
系統識別號 U0002-2408201112263300
中文論文名稱 薄膜性質對蛋白質/多醣體混合液之掃流微過濾性能的影響
英文論文名稱 Effects of membrane properties on the performance of cross-flow microfiltration of protein/polysaccharide mixtures
校院名稱 淡江大學
系所名稱(中) 化學工程與材料工程學系碩士班
系所名稱(英) Department of Chemical and Materials Engineering
學年度 99
學期 2
出版年 100
研究生中文姓名 江元君
研究生英文姓名 Yuan-Chun Chiang
學號 698400438
學位類別 碩士
語文別 中文
口試日期 2011-07-07
論文頁數 129頁
口試委員 指導教授-黃國楨
委員-李篤中
委員-鄭東文
委員-莊清榮
委員-童國倫
中文關鍵字 微過濾  掃流過濾  薄膜結垢  蛋白質  多醣體 
英文關鍵字 Microfiltration  Cross-flow filtration  BSA  Dextran Membrane fouling  Membrane separation 
學科別分類
中文摘要 本論文旨在探討膜材結構對多醣體與蛋白質混合液之掃流微過濾的影響。分別使用孔徑為0.1μm之聚二氟乙烯膜(PVDF)、醋酸纖維膜(MCE)及聚碳酸酯膜(PC)作為濾材,對分子量為67 kDa之牛血清蛋白(BSA)與分子量為200 kDa之葡聚醣進行掃流微過濾,探討不同進料成分、掃流速度、過濾壓差以及膜材性質對濾速變化、擬穩態濾速、過濾阻力、各物質之分離效能以及薄膜結垢之影響。
由研究結果得知,過濾牛血清蛋白或葡聚醣之單成分時,使用PC膜皆能獲得最高濾速。過濾牛血清蛋白/葡聚醣之混合液時,使用MCE膜與PC膜時,濾速會隨著壓力與掃流速度之增加而上升,使用PVDF膜時,濾速會隨掃流速度之增加而上升,但會隨壓力之增加先上升而後下降。利用掃描式電子顯微鏡(SEM)觀察各種薄膜之結垢和阻塞情形,發現MCE膜與PVDF膜主要的過濾阻力來源為孔道內阻塞、膜孔縮小以及膜面上結垢層的形成;而PC膜主要以膜面上結垢層的形成和膜孔縮小為主要因素。另以共軛焦電子顯微鏡(CLSM)觀察牛血清蛋白與葡聚醣在濾膜中之結垢分佈,發現在PVDF膜以及MCE膜表面之結垢以牛血清蛋白為主;而在孔道內之吸附方面,MCE膜以葡聚醣居多,PVDF膜則以牛血清蛋白較多。利用液相層析儀(HPLC)分析濾液中牛血清蛋白及葡聚醣之含量以了解各薄膜之分離效能,發現三種膜之葡聚醣穿透率皆隨著壓力之增加而增加,牛血清蛋白則反而下降。而掃流速度增加,葡聚醣與牛血清蛋白之穿透率都隨之下降。若欲將BSA及Dextran分開,則可使用PC薄膜,操作在掃流速度0.3 m/s、過濾壓差 100 kPa下,兩者穿透率差異達約50%。而若是欲在濾液中同時獲得較多的BSA及Dextran,則可使用PVDF薄膜,操作在掃流速度0.1 m/s、壓力20 kPa,兩者之穿透率皆在70%以上。量測實驗後之薄膜孔徑,理論值與實驗值皆隨著壓力增加而下降。利用理論值計算膜結垢層之深度與厚度,發現壓力增加時,前者隨之減少;後者隨之增加。
英文摘要 The effects of membrane structures on the separation of polysaccharide/protein mixtures using cross-flow microfiltration are studied. The suspensions are prepared using bovine serum albumin (BSA) and dextran. Their molecular weights are 67 kDa and 2000 kDa, respectively. Three 0.01 μm membranes made of mixed cellulose ester (MCE), polyvinylidene fluoride (PVDF) and polycarbonate (PC) are used as the filter media. The effects of cross-flow velocity, filtration pressure, components of feed and structure of membrane on the filtration flux, filtration resistance, separation efficacy and membrane fouling are discussed.
When sole BSA or dextran is filtered, the use of PC membrane always results in the highest flux compared to those of the other membranes. When BSA/dextran mixtures are filtered, the filtration flux increases with increasing cross-flow velocity for all membranes due to less membrane fouling. An increase in filtration pressure leads to higher flux for all membranes because of higher filtration driving force. However, a contrary effect is found under high pressures when PVDF is used due to the unexpected increase in fouling resistance. The results of SEM analyses indicate that the fouling types of MCE and PVDF membranes include pore blocking, fouling layer on the membrane surface and pore size reduction, but no pore blocking can be observed for PC membrane. The results of CLSM reveal that the fouling on the membrane surface is mainly caused by the deposition of BSA for MCE and PVDF membranes. The fouling occurred in membrane pores is mostly due to dextran adsorption for MCE membrane while due to BSA adsorption for PVDF membrane. The concentrations of BSA and dextran in the filtrate are measured using HPLC. Both BSA and dextran transmissions decrease with increasing cross-flow velocity because of the sweeping effect on the membrane surface. An increase in filtration pressure leads to lower BSA transmission but higher dextran transmission for using all membranes. Using PC membrane and selecting u = 0.3 m/s and ΔP = 100 kPa is the optimum condition for the separation of BSA and dextran since their transmission difference is as high as 50%. If both BSA and dextran are desired products, the transmissions of BSA and dextran are higher than 70% by using PVDF membrane and operating at u = 0.1 m/s. The Experimental and theoretical values of the mean pore size of fouled membranes decrease with increasing filtration pressure. The calculated fouled layer depth decreases but the fouled thickness in the membrane pores increases with increasing filtration pressure.
論文目次 目錄
頁次
中文摘要 I
英文摘要 II
目錄 IV
圖目錄................................................ VIII
表目錄 XII
第一章 緒論..............................................................................................1
1-1 前言.........................................................................................1
1-2 研究目的.................................................................................3
第二章 文獻回顧......................................................................................5
2-1 膜過濾介紹..............................................................................5
2-1-1 膜過濾程序....................................................................5
2-1-2 膜過濾操作....................................................................7
2-1-3 薄膜結垢之影響............................................................9
2-2 膜材性質之影響....................................................................11
2-3 蛋白質、多醣體之過濾.........................................................14
2-3-1 蛋白質之過濾..............................................................14
2-3-2 多醣體混合過濾..........................................................15
2-3-3 蛋白質/多醣體混合過濾............................................17
2-4 操作條件對濾速之影響........................................................19
第三章 理論............................................................................................22
3-1 阻力串聯模式........................................................................22
3-2 薄膜結構分析理論................................................................23
3-3 穿透率(transmission)............................................................ 25
第四章 實驗裝置與步驟......................................................................26
4-1 掃流過濾實驗裝置................................................................26
4-2 實驗物料................................................................................28
4-2-1 實驗進料......................................................................28
4-2-2 緩衝溶液......................................................................28
4-2-3 螢光染色劑..................................................................29
4-2-4 實驗用藥......................................................................30
4-2-5 實驗用濾膜..................................................................31
4-3 實驗儀器與方法....................................................................34
4-3-1 實驗儀器......................................................................34
4-3-2 分析儀器......................................................................34
4-4 實驗方法與步驟....................................................................39
4-4-1 緩衝溶液與懸浮液之配置..........................................39
4-4-2 掃流過濾之步驟.........................................................39
4-5 實驗數據分析........................................................................42
4-5-1 濃度測定步驟.............................................................42
4-5-2 薄膜結垢之觀察.........................................................45
第五章 結果與討論................................................................................46
5-1 薄膜結構特性之分析............................................................46
5-1-1 膜材結構....................................................................46
5-1-2 膜材特性....................................................................48
5-2 懸浮液成分之影響................................................................49
5-3 BSA/Dextran 雙成分操作條件之影響................................57
5-3-1 過濾壓差之影響.........................................................57
5-3-2 掃流速度之影響.........................................................91
5-4 分離效能................................................................................105
5-4-1 液相層析儀(HPLC)之分析.......................................105
5-5 薄膜結垢分析......................................................................111
第六章 結論....................................................................................118
符號說明..........................................................................................121
參考文獻..........................................................................................123
附錄..................................................................................................127
附錄A實驗藥品詳細資料.................................................127
附錄B濾膜之基本性質....................................................129

第二章
Fig.2- 1 The filtration spectrum.................................................................. 7
Fig.2- 2 Schematics of dead-end filtration and cross-flow filtration. ........9
第四章
Fig.4- 1A schematic diagram of cross-flow filtration system ..................27
Fig.4- 2 The calibration curve of BSA concentration of 0~0.1 wt% in
HPLC.................................................................................................44
Fig.4-3 The calibration curve of Dextran concentration of 0~0.05wt% in
HPLC.................................................................................................44
第五章
Fig.5- 1 SEM images of virgin membrane surface and section for (a)
top-view of MCE membrane (b) cross-section of MCE membrane
(c)top-view of PVDF membrane (d) cross-section of PVDF
membrane (e)top-view of PC membrane (f) cross-section of PC
membrane.................................................................................. 47
Fig.5- 2 Time courses of filtration flux during cross-flow microfiltrateion
with MCE membrane under different various feed. .....................50
Fig.5- 3Time courses of filtration flux during cross-flowmicrofiltrateion
with PVDF membrane under different various feed. ...................50
Fig.5- 4 Time courses of filtration flux during cross-flow
microfiltrateion with PC membrane under different various feed.
.......................................................................................................51
Fig.5- 5 Filtration resistances of cross-flow microfiltrateion with MCE,
PVDF and membranes under various solutions. ..........................53
Fig.5- 6 Pseudo steady state filtration rates in cross-flow microfiltrateion
with MCE, PVDF and membranes under various solutions. .......54
Fig.5- 7 The cross-section SEM image of membrane with cake.(a)
virginal membrane of MCE (b)after experiment at TMP=60 kPa,
us=0.3 m/s of MCE (c) virginal membrane of PVDF (d) after
experiment at TMP=60 kPa, us=0.3 m/s of PVDF........................56
Fig.5- 8 Time courses of filtration flux during cross-flow microfiltrateion
use MCE membrane under different flitration pressure...............59
Fig.5- 9 Time courses of filtration flux during cross-flow microfiltrateion
with PVDF membrane under various TMPs................................60
Fig.5- 10 Time courses of filtration flux during cross-flowmicrofiltrateion
with PC membrane under various TMPs.....................................60
Fig.5- 11Transmembrane pressure courses of pseudo steady state
filtration rates in cross-flow microfiltrateion with various
membranes. ...................................................................................62
Fig.5- 12 Filtration resistances of cross-flow microfiltrateion with MCE
membrane under various filtration pressures................................65
Fig.5- 13 Filtration resistances of cross-flow microfiltrateion with PVDF
membrane under various filtration pressures................................66
Fig.5- 14Filtration resistances of cross-flow microfiltrateion with PC
membrane under various filtration pressures................................67
Fig.5- 15 Filtration resistance of concentration polarization in
cross-flow microfiltrateion under different membrane. ...............69
Fig.5- 16 Filtration resistance of irreversible fouled layer in cross-flow
microfiltrateion under different membrane. ................................. 70
Fig.5- 17 Filtration resistance of reversible fouled layer in cross-flow
microfiltrateion under different cross-flow velocity. ...................71
Fig.5- 18 SEM images of MCE membrane after filtration experiment
with cross-flow velocity of 0.3 m/s for(a) top-view at 20 kPa(b)
cross-section at 20 kPa (c) top-view at 60 kPa (d) cross-section at
60kPa(e) top-view at 100 kPa(f) cross-section at 100 kPa.......... 74
Fig.5- 19 SEM images of 30k zoom to enlarge for (b)、(d)、(e) in Fig.5- (a)
top-view at 20 kPa、(b) top-view at 60 kPa、(c) top-view at 100
kPa.................................................................................................75
Fig.5- 20 SEM images of PVDF membrane after filtration experiment in
cross-flow velocity 0.3 m/s change TMP for (a) 20 kPa (b) 60 kPa
(c) 100 kPa ....................................................................................77
Fig.5- 21 SEM images of PC membrane after filtration experiment in
cross-flow velocity 0.3 m/s change TMP for (a) 20 kPa (b) 60
kPa (c) 100 kPa...............................................................................79
Fig.5- 22 CLSM (a) 2D images、(b) Z series section images of MCE
membrane after filtration experiment of BSA/Dextran mixture in
cross-flow velocity 0.3m/s、transmembrane pressure 60kPa. ....83
Fig.5- 23 CLSM 2D images on experiment time (a) 20mins (b) 40mins
and (c) 200mins of PVDF membrane after filtration experiment
of BSA/Dextran mixture in cross-flow velocity 0.3m/s and
transmembrane pressure 100kPa. .................................................85
Fig.5- 24CLSM (a) 2D images、(b) Z series section images of PVDF
membrane after filtration experiment of BSA/Dextran mixture in
cross-flow velocity 0.3m/s、transmembrane pressure 20kPa. ....88
Fig.5- 25 CLSM (a) 2D images、(b) Z series section images of PVDF
membrane after filtration experiment of BSA/Dextran mixture in Fig.5- 18 SEM images of MCE membrane after filtration experiment
with cross-flow velocity of 0.3 m/s for(a) top-view at 20 kPa(b)
cross-section at 20 kPa (c) top-view at 60 kPa (d) cross-section at
60kPa(e) top-view at 100 kPa(f) cross-section at 100 kPa.......... 74
Fig.5- 19 SEM images of 30k zoom to enlarge for (b)、(d)、(e) in Fig.5- (a)
top-view at 20 kPa、(b) top-view at 60 kPa、(c) top-view at 100
kPa.................................................................................................75
Fig.5- 20 SEM images of PVDF membrane after filtration experiment in
cross-flow velocity 0.3 m/s change TMP for (a) 20 kPa (b) 60 kPa
(c) 100 kPa ....................................................................................77
Fig.5- 21 SEM images of PC membrane after filtration experiment in
cross-flow velocity 0.3 m/s change TMP for (a) 20 kPa (b) 60
kPa (c) 100 kPa...............................................................................79
Fig.5- 22 CLSM (a) 2D images、(b) Z series section images of MCE
membrane after filtration experiment of BSA/Dextran mixture in
cross-flow velocity 0.3m/s、transmembrane pressure 60kPa. ....83
Fig.5- 23 CLSM 2D images on experiment time (a) 20mins (b) 40mins
and (c) 200mins of PVDF membrane after filtration experiment
of BSA/Dextran mixture in cross-flow velocity 0.3m/s and
transmembrane pressure 100kPa. .................................................85
Fig.5- 24CLSM (a) 2D images、(b) Z series section images of PVDF
membrane after filtration experiment of BSA/Dextran mixture in
cross-flow velocity 0.3m/s、transmembrane pressure 20kPa. ....88
Fig.5- 25 CLSM (a) 2D images、(b) Z series section images of PVDF
membrane after filtration experiment of BSA/Dextran mixture in Fig.5- 18 SEM images of MCE membrane after filtration experiment
with cross-flow velocity of 0.3 m/s for(a) top-view at 20 kPa(b)
cross-section at 20 kPa (c) top-view at 60 kPa (d) cross-section at
60kPa(e) top-view at 100 kPa(f) cross-section at 100 kPa.......... 74
Fig.5- 19 SEM images of 30k zoom to enlarge for (b)、(d)、(e) in Fig.5- (a)
top-view at 20 kPa、(b) top-view at 60 kPa、(c) top-view at 100
kPa.................................................................................................75
Fig.5- 20 SEM images of PVDF membrane after filtration experiment in
cross-flow velocity 0.3 m/s change TMP for (a) 20 kPa (b) 60 kPa
(c) 100 kPa ....................................................................................77
Fig.5- 21 SEM images of PC membrane after filtration experiment in
cross-flow velocity 0.3 m/s change TMP for (a) 20 kPa (b) 60
kPa (c) 100 kPa...............................................................................79
Fig.5- 22 CLSM (a) 2D images、(b) Z series section images of MCE
membrane after filtration experiment of BSA/Dextran mixture in
cross-flow velocity 0.3m/s、transmembrane pressure 60kPa. ....83
Fig.5- 23 CLSM 2D images on experiment time (a) 20mins (b) 40mins
and (c) 200mins of PVDF membrane after filtration experiment
of BSA/Dextran mixture in cross-flow velocity 0.3m/s and
transmembrane pressure 100kPa. .................................................85
Fig.5- 24CLSM (a) 2D images、(b) Z series section images of PVDF
membrane after filtration experiment of BSA/Dextran mixture in
cross-flow velocity 0.3m/s、transmembrane pressure 20kPa. ....88
Fig.5- 25 CLSM (a) 2D images、(b) Z series section images of PVDF
membrane after filtration experiment of BSA/Dextran mixture in cross-flow velocity 0.3m/s、transmembrane pressure 100kPa....89
Fig.5- 26 Cross-flow velocity courses of pseudo steady state filtration
rates in cross-flow microfiltrateion with various membranes. .....92
Fig.5- 27 Filtration resistances of cross-flow microfiltrateion with MCE
membrane under various cross-flow velocities. ...........................94
Fig.5- 28 SEM images of MCE membrane after filtration experiment with
filtration pressure of 60 kPa and cross-flow velocities of (a) 0.1
m/s (b) 0.3 m/s. .............................................................................96
Fig.5- 29 Filtration resistances of cross-flow microfiltrateion with PVDF
membrane under various cross-flow velocities. ...........................98
Fig.5- 30 SEM images of PVDF membrane after filtration experiment
with filtration pressure 60 kPa and cross-flow velocities of (a) 0.1
m/s (b) 0.3 m/s ............................................................................100
Fig.5- 31 Filtration resistances of cross-flow microfiltrateion with PC
membrane under various cross-flow velocities. .........................102
Fig.5- 32 SEM images of PC membrane after filtration experiment in
Filtration pressure 60 kPa change cross-flow velocity for (a) 0.1
m/s (b) 0.3 m/s ............................................................................104
Fig.5- 33 The response signal curve of binary suspension by HPLC ....106
Fig.5- 34Effect of filtration pressure on transmission of BSA and Dextran
for cross-flow microfiltration with various membranes.............108
Fig.5- 35Effect of cross-flow velocity on transmission of BSA and
Dextran for cross-flow microfiltration with various
membranes................................................................................110
Fig.5- 36ompare experiment with theory’s average dm,b on cross flow
velocity 0.3 m/s of MCE、PVDF and PC membrane under
different filtration pressure.........................................................112
Fig.5- 37 plot of 2
qs /ε ⋅ dm,b to ΔPm,b at cross fllow velocity 0.3 m/s
incross flow filtration under various membranes.......................114
Fig.5- 38 A plot of m b L , to ΔPm,b at cross fllow velocity 0.3 m/s in cross
flow filtration under various membranes................................................115
Fig.5- 39 A plot of δ to filtration pressure at cross fllow velocity 0.3 m/s
in cross flow filtration under various membranes. ........................117
Fig.A- 1 Size distribution of BSA..........................................................127
Fig.A- 2 Size distribution of Dextran.................................................... 128

表目錄
第四章
Table.4- 1 Operating conditions...............................................................27
第五章
Table 5-1 properties of PVDF、PC、MCE membrane...........................48
Table.5-2 The flux decay percents of the kinds of membrane at
pseudo-steady state & after back flash under various
TMP..........................................................................................81
Table.B-1 properties of PVDF、PC、MCE membrane from Millipore Co.
..............................................................................................129
參考文獻 參考文獻
Anna Persson, and Ann-Sofi Jönsson, " Transmission of BSA during
cross-flow microfiltration: influence of pH and salt concentration ",
223, 11–21,(2003)
Bird, R. B., W.E. Stewart, E.N. Lightfoot, Transport phenomena, 2nd edition, Chap.2, Wiley & Sons, NY, USA (2002).
R. Chan, V. Chen “The Effects of Electrolyte Concentration and pH on Protein Aggregation and Deposition”, J. Membrane Sci.,185, 177-192 (2001).
Chuang Ching-Jung, and Chen-Yi Wu, "Combination of crossflow and electric field for microfiltration of protein/microbial cell suspensions", Desalination, 233, 295–302 (2008)
De Bruijn, J.P.F. , Salazar, F.N. , and Bórquez, R ," Membrane blocking in ultrafiltration: A new approach to fouling",Trans.I. Chem. E. 83, 211-219(2005)
Tracey Eve M, and Robert H. Davis, "Protein Fouling of Track Etched Polycarbonate Microfiltration Membranes",J. Colloid Interface. Sci, 167, 104-116(1994)
Huisman,I. H. , P. Pradanos and A. Hernandez, “The Effect of Protein-Protein and Protein-Membrane Interactionon Membrane Fouling in Ultrafiltration”, J. Membrane Sci.,179,79-90 (2000).
Hwang, K. J. and Cheng Y. H., "The role of dynamic membrane in cross-flow microfiltration of macromolecules", Sep. Sci. Technol., 38, (4), 779-795 (2003).
Hwang, K.J., Wang, Y.S., “Cross-flow Micorfiltration of Soft Porous Submicon Particles”, J. Chin. Inst. Chem. Engrs 34,161-169 (2003).
Hu, C.-C., and Wang, S.-Y., "Ion exchange adsorption and membrane filtration hybrid process for protein mixture separation", Journal of Chemical Engineering of Japan, 39, 1283-1290(2006)
Hwang, K. J. and H. C. Hwang, "The purification of protein in cross-flow microfiltration of microbe/protein mixtures", Sep. Purif. Technol., 51, (3), 416-423 (2006).
Heru Susanto, Malini Balakrishnan, and M. Ulbricht " Via
surface functionalization by photograft copolymerization to
low-fouling polyethersulfone-based ultrafiltration membranes", J.
Membr. Sci., 288, 157–167(2007)
Mo Huajuan " Fouling of reverse osmosis membrane by protein (BSA):
Effects of pH,calcium, magnesium, ionic strength and temperature ",
J.Membr.Sci., 315,28–35(2008)
Hwang Kuo-Jen, and Lin T.T , "Effect of morphology of
polymeric membrane on th performance of cross-flow microfiltration", 199, 41–52,(2002)
Hwang Kuo-Jen, and Sz Pan-Yu "Filtration characteristics and membrane
fouling in cross-flow microfiltration of BSA/dextran binary
suspension ", J.Membr.Sci., 347, 75–82(2010)
Hwang Kuo-Jen, and Sz Pan-Yu " Filtration characteristics and
membrane fouling in cross-flow microfiltration of BSA/dextran
binary suspension ", J. Membrane Sci , 347 , 75–82 (2010)
Hwang Kuo-Jen, and Sz Pan-Yu "Membrane fouling mechanism and concentration effect in cross-flow microfiltration of BSA/dextran mixtures ", Chemical Engineering Journal, 166, 669–677(2011)
Lu, W. M., K. L. Tung, and K. J. Hwang, "Effect of woven structure on transient characteristics of cake filtration", Chem. Eng. Sci., 52, (11), 1743-1756 (1997)
Hung M.T., and Liu J.C. " Microfiltration for separation of green algae
from water ",Colloids and Surfaces B: Biointerfaces 51,157–164
(2006)
Yao, M., Kaisong Zhang , and Li Cui, "Characterization of protein–polysaccharide ratios on membrane fouling", Desalination , 259, 11-16 (2010)
Nataraj, S., R. Schomäcker, M. Kraume, I. M. Mishra, and A. Drews, "Analyses of polysaccharide fouling mechanisms during crossflow membrane filtration", J. Membr. Sci., 308, (1-2), 152-161 (2008).
Nadir Dizge, Gulfem Soydemir, and Ahmet Karagunduz " Influence
of type and pore size of membranes on cross flow microfiltration of
biological suspension", J. Membr. Sci., 366, 278–285 (2011)
Palacio, L., Ho, C.-C. , and Prádanos, P. "Fouling with protein
mixtures in microfiltration: BSA-lysozyme and BSA-pepsin", 222,
41-51(2003)
Susanto, H., H. Arafat, E. M. L. Janssen, and M. Ulbricht, "Ultrafiltration of polysaccharide-protein mixtures: Elucidation of fouling mechanisms and fouling control by membrane surface modification", Sep. Purif. Technol., 63, (3), 558-565 (2008).
V. García-Molina, and , S. Esplugas, "Ultrafiltration of aqueous
solutions containing dextran ",Desalination , 188, 217–227 (2006)
李佳玲,"蛋白質混合溶液膜過濾之界面現象研究",碩士論文,中原大學化學工程學系(桃園,台灣,2004)
呂維明,"固液過濾技術",高立圖書有限公司(台北,台灣,2004)
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2016-08-25公開。
  • 同意授權瀏覽/列印電子全文服務,於2021-08-24起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信