淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


系統識別號 U0002-2408200613055600
中文論文名稱 無線通信系統之通道特性與模型研究
英文論文名稱 Channel Characteristics and Modeling for Wireless Communication System
校院名稱 淡江大學
系所名稱(中) 電機工程學系博士班
系所名稱(英) Department of Electrical Engineering
學年度 94
學期 2
出版年 95
研究生中文姓名 陳建宏
研究生英文姓名 Chien-Hung Chen
學號 888350039
學位類別 博士
語文別 英文
口試日期 2006-06-02
論文頁數 124頁
口試委員 指導教授-丘建青
委員-林丁丙
委員-蘇英俊
委員-鄭明哲
委員-李揚漢
中文關鍵字 位元錯誤率  多重路徑  路徑損失  超寬頻  彈跳式射線追蹤法 
英文關鍵字 BER  multipath  path loss  UWB  SBR/Image 
學科別分類
中文摘要 本論文最主要的目的在於無線通信通道的研究並提出高速個人通訊服務在多重路徑環境下的位元錯誤率分析。本論文內容分為三部份。第一部份,提出一種新的室內路徑損失的預測模型。第二部份,為高速個人通訊服務在各種不同類型之多重路徑環境下的位元錯誤率分析。第三部份,為室內超寬頻通信環境之通道脈衝響應的計算。
在辦公室的環境下,對於有金屬傢俱的小房間環境提出一種新的預測模型。該模型同時考慮空間傳播損失與物體繞射損失的現象。只要根據環境的佈局方式就可以預測出接收功率的大小。該模型的優點在於使用較少的運算量就可以得到精確的結果。不像射線追蹤法那樣追蹤每一個路徑需要大的運算量。
然而,所有的無線通信系統都必需考慮在有多重電波反射、繞射與散射現象環境下的多重路徑傳播通道的影響。為了瞭解各種不同類型的無線電波傳播與通道特性的影響,例如辦公室、不同形狀的建築物以及隧道等等,本論文提出高速個人通訊服務在這些環境下的位元錯誤率分析。數值結果顯示,多重路徑效應的影響是造成環境通訊不良的主要因素。並且使用扇形天線、分集技術以及決策回授等化器等技術能夠有效地抑制室內環境的多重路徑效應,改善通訊品質以及增進位元傳輸速率。
最後,本論文提出以彈跳性射線追蹤法與反傅立葉轉換的方法來計算室內超寬頻通信環境的通道脈衝響應。通道脈衝響應的計算有考慮到物體材質在不同頻率下的影響。根據這些超寬頻通道脈衝響應的計算,可以得知在室內環境下金屬櫃對於多重路徑傳播的影響。
英文摘要 The main purpose of this thesis is to research on channel characteristics for wireless communications and present the bit error rate (BER) performance analysis for high-speed personal communication service in multipath environment. This thesis has three parts. The first part, a new indoor path loss prediction model is proposed. The second part, the BER performance analysis for high-speed personal communication service in different multipath environments is investigated. The third part is the impulse responses calculation for ultra-wide band (UWB) indoor communication.
In office environment, a novel prediction model for small rooms with metallic furniture is proposed. Both the propagation loss and the diffraction loss have been considered in this model. The receiver power prediction from the transmitter to the receiver antenna is predicted based on the layout of the environment. The advantages of this model are less computational load and high accuracy. It is not necessary to trace every path compared with the ray-tracing technique.
However, all wireless systems must be able to deal with the challenges of operating over a multipath propagation channel, where objects in the environment can cause multiple reflections, diffraction, and scattering to arrive at the receiver. To understand the radio propagation and channel characteristics for different multipath environments, such as office, buildings, and tunnels, the BER performance analysis for high-speed personal communication service are investigated. Numerical results have shown that the multipath effect is an important factor in an adverse communication environment and using sectored antenna, diversity techniques and decision feedback equalizer can efficiently reduce multipath effect, improve the quality of communication and increase the bit transmission rate in indoor environments.
Finally, a method for calculating the channel of UWB indoor communication systems has been presented by SBR/Image techniques and inverse Fourier transform. The frequency dependence of materials utilized in the structure on the indoor channel is accounted for in the channel simulations. By using the impulse responses of the multi-path channels, the impact of metallic cabinet to indoor multi-path is presented.
論文目次 TABLE OF CONTENTS

CHINESE ABSTRACT …………………………………………………..…. I
ENGLISH ABSTRACT …………………………………………………..… II
ACKNOWLEDGMENT …………………………………………………… V
TABLE OF CONTENTS ………………...………………………………... VI
LIST OF FIGURES ………………...…………………………………….... X
LIST OF TABLES ………………...……………………………………... XIV

CHAPTER 1 INTRODUCTION ……………………………………………. 1

CHAPTER 2 FUNDAMENTS OF RADIO PROPAGATION AND CHANNEL CHARACTERISTICS FOR WIRELESS COMMUNICATIONS …………………..…………………. 6
2.1 Introduction ……………………………………………………….... 6
2.2 Basic Concepts in Radio Wave Propagation ……………………..… 6
2.3 Propagation Power Attenuation and Coverage Prediction for indoor environments ……………………………………………………….. 9
2.4 Channel Impulse Response by SBR/Image Techniques and
Channel Parameters Calculation …………………………………... 11
2.4.1 Channel Impulse Response ………………………………………. 11
2.4.2 Channel Parameters Calculation ………………………………….. 13
2.4.2.1 Time Dispersion Parameters ………………………………. 14
2.4.2.2 Coherence Bandwidth …………………………………….. 14
2.4.2.3 Coherence time …………………………………………... 15
2.5 Mitigation of Multipath Effects …………………………………… 15
2.5.1 Equalization ……………………………………………………. 16
2.5.2 Diversity ……………………………………………………….. 17
2.5.3 Antenna Array ………………………………………………….. 18
2.6 Summary …………………………………………………………... 19

CHAPTER 3 A NOVEL PROPAGATION PREDICATION MODEL FOR SMALL ROOMS WITH METALLIC FURNITURE ……. 21
3.1 Introduction ……………………………………………………….. 21
3.2 The Novel Propagation Prediction Model ………………………… 22
3.2.1 Receiver in Line of Sight (LOS) ………………………………….. 22
3.2.2 Receiver in non-LOS ……………………………………………. 23
3.2.3 Diffraction ……………………………………………………... 23
3.3 Propagation Prediction and Measurement Results ………………... 25
3.4 Summary …………………………………………………………... 26

CHAPTER 4 SYNTHESIZING SECTORED ANTENNAS BY THE GENETIC ALGORITHM TO MITIGATE THE MULTIPATH OF INDOOR MILLIMETER WAVE CHANNEL ……….. 34
4.1 Introduction ……………………………………………………….. 34
4.2 Pattern Synthesis of Arc Array by the Genetic Algorithm ………… 35
4.3 Channel Modeling and System Description ………………………. 38
4.3.1 Calculation of the channel characteristics ………………………….. 38
4.3.2 System block diagram …………………………………………… 39
4.4 Numerical Results …………………………………………………. 41
4.5 Summary …………………………………………………………... 43

CHAPTER 5 DUAL DIVERSITY COMBINING AND DECISION FEEDBACK EQUALIZER IN INDOOR MILLIMETER–WAVE CHANNEL ……………………… 56
5.1 Introduction ……………………………………………………….. 56
5.2 Channel Impulse Response by SBR/Image Techniques and
Channel Parameters Calculation …………………………………... 57
5.2.1 Calculation of the channel characteristics ………………………….. 57
5.2.2 System block diagram …………………………………………… 58
5.2.3 Space Diversity techniques ………………………………………. 61
5.3 Numerical Results …………………………………………………. 62
5.4 Summary …………………………………………………………... 64

CHAPTER 6 BER PERFORMANCE OF WIRELESS BPSK COMMUNICATION SYSTEM IN TUNNELS WITH AND WITHOUT TRAFFIC ……………………………………. 76
6.1 Introduction ……………………………………………………….. 76
6.2 Channel Modeling and System Description ………………………. 77
6.2.1 Calculation of the channel characteristics ………………………….. 77
6.2.2 System block diagram …………………………………………… 78
6.3 Numerical Results …………………………………………………. 80
6.4 Summary …………………………………………………………... 83

CHAPTER 7 ULTRA-WIDE BAND CHANNEL CALCULATION BY SBR/IMAGE TECHNIQUES FOR INDOOR COMMUNICATION ……………………………………... 98
7.1 Introduction ……………………………………………………….. 98
7.2 UWB Channel Calculation ………………………………………... 99
7.2.1 Frequency responses for sinusoid waves by SBR/Image techniques …. 100
7.2.2 Inverse Fast Fourier Transform (IFFT) and Hermitian Processing …... 101
7.3 Numerical Results ………………………………………………... 101
7.4 Summary …………………………………………………………. 102

CHAPTER 8 CONCLUSIONS …………………………………………... 112

REFERENCE …………………………………………………………..… 114








LIST OF FIGURES

Figure 3.1 The chart of the path loss, the receivers are in direct line of sight and non-line of sight. ………………………………………..…. 27
Figure 3.2 Knife-edge diffraction geometry. An knife-edge obstruction blocking the line of sight path. ………………………………… 28
Figure 3.3(a) Top view of Microwave Laboratory with two different access points (AP1 and AP2). ……………..…………………….…. 29
Figure 3.3(b) Comparison between measurements and simulations of access point 1 (AP1). ………………………...…………………….. 30
Figure 3.3(c) Comparison between measurements and simulations of access point 2 (AP2). ………………………………………………. 31
Figure 3.4(a) Top view of programmable logic control laboratory. ……….. 32
Figure 3.4(b) Comparison between measurements and simulations. ……… 33
Figure 4.1 Geometry of circular arc array shaded circles indicate “on” elements. ……………………………………………………... 45
Figure 4.2 The flow chart for genetic algorithms. …………………………. 46
Figure 4.3 Model of a typical room with four metal bookcases. The dark rectangles represent metal bookcases. …………………………. 47
Figure 4.4 Block diagram of equivalent baseband communication system. . 48
Figure 4.5 Radiation pattern of circular arc array synthesized by the genetic algorithm. ………………………………………………………... 49
Figure 4.6(a) Impulse response for line of sight case with and without sector antenna for receiver at Rx (0.75m, 6.25m, 1.5m) without sector antenna. …………………………………………………….. 50
Figure 4.6(b) Impulse response for line of sight case with and without sector antenna for receiver at Rx (0.75m, 6.25m, 1.5m) with sector antenna. …………………………………………………….. 51
Figure 4.7(a) Impulse response for non line of sight case with and without sector antenna for receiver at Rx (0.75m, 10m, 1.5m) without sector antenna. ……………………………………………… 52
Figure 4.8 Cumulative distribution of rms delay spreads. ………………… 53
Figure 4.9 Outage probabilities versus transmission rate for three different receiver structures. ……………………………………………... 54
Figure 5.1(a) An arched building modeled by triangular facets. …………... 65
Figure 5.1(b) A rectangular building modeled by triangular facets. ……….. 66
Figure 5.2(a) Block diagrams of equivalent baseband communication system without diversity system. …………………………………… 67
Figure 5.2(b) Block diagrams of equivalent baseband communication system with dual space antenna diversity system. …………………. 68
Figure 5.3 The structure of a decision feedback equalizer. ………………... 69
Figure 5.4(a) Impulse responses of arched buildings for the receiver at Rx( 5m, 2.5m, 1.5m ). …………………………………….... 70
Figure 5.4(b) Impulse responses of rectangular buildings for the receiver at Rx( 5m, 2.5m, 1.5m ). ……………………………………… 71
Figure 5.5 Cumulative distributions of rms delay spreads for the arched and rectangular buildings. ………………………………………….. 72
Figure 5.6(a) Outage probabilities versus transmission rate for the arched buildings and three different receiver structures. …………... 73
Figure 5.6(b) Outage probabilities versus transmission rate for the rectangular buildings and three different receiver structures. …………... 74
Figure 6.1(a) A tunnel structure modeled by triangular facets. …….……… 85
Figure 6.1(b) Top view of the tunnel structure. ……………………………. 86
Figure 6.1(c) The cross section of the tunnel. ……………………………... 87
Figure 6.2(a) Block diagrams of equivalent baseband communication system without diversity system. …………………………………… 88
Figure 6.2(b) Block diagrams of equivalent baseband communication system with dual space antenna diversity system. …………………. 89
Figure 6.3(a) Impulse response for receiver at Rx1(59m, 108m, 1.5m) of the empty tunnel. ………………………………………………. 90
Figure 6.3(b) Impulse response for receiver at Rx2(107m, 50m, 1.5m) of the empty tunnel. ……………………………………………….. 91
Figure 6.4(a) Impulse responses for receiver at Rx1(59m, 108m, 1.5m) of the tunnel with traffic. ………………………………………….. 92
Figure 6.4(b) Impulse responses for receiver at Rx2(107m, 50m, 1.5m) of the tunnel with traffic. ………………………………………….. 93
Figure 6.5 Cumulative distributions of rms delay spreads for tunnels withand without traffic. …………………………………………………. 94
Figure 6.6(a) Outage probabilities versus transmission rate for the empty tunnel with three different receiver structures. ……………... 95
Figure 6.6(b) Outage probabilities versus transmission rate for the trafficked tunnel with three different receiver structures. …………….. 96
Figure 7.1 Top view of the Microwave Laboratory. Tx denotes the transmitter and Rx denotes the Receiver. The transmitter is located at Tx(560cm, 250cm, 120cm). ……………………………….......104
Figure 7.2(a) UWB impulse responses of the Microwave Laboratory at Rx1(520cm, 720cm, 85cm) with L shape metal cabinet. …. 105
Figure 7.2(b) UWB impulse responses of the Microwave Laboratory at Rx1(520cm, 720cm, 85cm) without L shape metal cabinet. ……………………………………………………. 106
Figure 7.3(a) UWB impulse responses of the Microwave Laboratory at Rx2(490cm, 320cm, 85cm) with L shape metal cabinet. …. 107
Figure 7.3(b) UWB impulse responses of the Microwave Laboratory at Rx2(490cm, 320cm, 85cm) without L shape metal cabinet. ……………………………………………………. 108
Figure 7.4(a) UWB impulse responses of the Microwave Laboratory at Rx3(800cm, 280cm, 85cm) with L shape metal cabinet. …. 109
Figure 7.4(b) UWB impulse responses of the Microwave Laboratory at Rx3(800cm, 280cm, 85cm) without L shape metal cabinet. …………………………………………………….. 110





LIST OF TABLES

Table 5.1 Mean and standard deviation of the rms delay spreads for the arched and rectangular buildings. ……………………………………….. 75
Table 6.1 Mean and standard deviation of the rms delay spreads for tunnels with and without traffic. …………………………………………. 97
Table 7.1 The dielectric constant and loss tangent of concrete walls for different frequency. …………………………………………….. 111
參考文獻 REFERENCE

[1] N. Morinaga, R. Kohno and S. Sampei, Wireless Communication Technologies, New Multimedia Systems. Kluwer Academic, 2000.
[2] S. G. Glisic, Advanced Wireless Communications, 4G Technologies, John Wiley & Sons Ltd, 2004.
[3] T. S. Rappaport, Wireless Communications, New Jersey: Prentice Hall PTR, 1996.
[4] B. Sklar, Digitial Communications, Fundamentals and Applications, 2nd ed., New Jersey: Prentice Hall PTR, 2001.
[5] J. D. Parsons, The Mobile Radio Propagation Channel, 2nd ed., John Wiley & Sons Ltd, 1992
[6] S. Haykin and M. Moher, Modern Wireless Communications, New Jersey: Prentice Hall PTR, 2005.
[7] C. M. Chen, C. C. Chiu, Chien-Hung Chen, and Y. C. Chen, “A Novel Propagation Prediction Model for Small Room with Metallic Furniture,” Microwave and Optical Technology Letters, Vol.44, No.3, pp. 281-284, Feb. 2005.
[8] Chien-Hung Chen and C. C. Chiu, "Synthesizing Sectored Antennas by the Genetic Algorithm to Mitigate the Multipath of Indoor Millimeter Wave Channel," IEICE Transactions on Fundamentals to Electronics, Communication and Computer Science, vol. E83-A, No.2, pp. 350-356, Feb. 2000.
[9] C. C. Chiu, S. C. Hung and Chien-Hung Chen, " Dual Diversity Combining and Decision Feedback Equalizer in Indoor Millimeter-Wave Channel," International Journal of communication systems, vol. 15, issue 8, pp. 701-711, Oct. 2002.
[10] Chien-Hung Chen, C. C. Chiu, S. C. Hung and C. H. Lin, “BER Performance of Wireless BPSK Communication System in Tunnels with and without Traffic,” Wireless Personal Communication, Vol.30, No.1, pp. 1-12, July 2004.
[11] Chien-Hung Chen, C. L. Liu, C. C. Chiu and T. M. Hu, “Ultra-Wide Band Channel Calculation by SBR/Image Techniques for Indoor Communication,” Journal of Electromagnetic Waves and Applications Vol. 20, No. 1, pp. 2169-2179, 2006.
[12] W. C. Y. Lee, Mobile Communications Engineering, New York: McGraw-Hill, 1993.
[13] Kwok-Wai Cheung, Jonathan H.-M. Sau, and R. D. Murch, ‘‘A New Empirical Model for Indoor Propagation Prediction’’ IEEE Transactions on Vehicular Technology, Vol. 47, NO. 3, August 1998.
[14] David J.Y.Lee and William C.Y.Lee, “Propagation Prediction in and Through Buildings,” IEEE Transactions on Veh. Technol., Vol. 49 No. 5, pp.1529-1533, Sept. 2000.
[15] Mudhafar Hassan-Ali and Kaveh Pahlavan, ‘‘A New Statistical Model for Site-Specific Indoor Radio Propagation Prediction Based on Geometric Optics and Geometric Probability’’ IEEE Transactions on Wireless Communications, Vol. 1,NO. 1, January 2002.
[16] Hristov H.D., Feick R., Grote W. and Fernandez P., “Indoor signal focusing by means of Fresnel zone plate lens attached to building wall,” IEEE Transactions on Antennas and Propagation, vol 52, issue 4, pp.933-940, April 2004.
[17] de Jong Y.L.C., Koelen M.H.J.L., Herben and M.H.A.J., “A building-transmission model for improved propagation prediction in urban microcells,” IEEE Transaction on Vehicular Technology, vol 53, issue 2, pp.490-502, March 2004.
[18] S. H. Chen and S. K. Jeng, "SBR/Image approach for radio wave propagation in tunnels with and without traffic," IEEE Trans. Veh. Technol., vol. 45, pp. 570-578, Aug. 1996.
[19] S. H. Chen and S. K. Jeng, "An SBR/Image approach for radio wave propagation in indoor environments with metallic furniture," IEEE Trans. Antennas and Propagat., vol. 45, pp. 98-106, Jan 1997.
[20] M. Yoshikawa, A. Akeyama, Y. Amano, Y. Shoji, K. Hamaguchiand H. Ogawa, " Development of millimeter-wave video transmission system – propagation characteristics in 60GHz -," Proceedings of Asia-Pacific Microwave Conference 2001, Taipei, pp. 504-508, Dec., 2001
[21] T. Manabe, Y. Miura and T. Ihara, "Effects of antenna directivity and polarization on indoor multipath propagation characteristics at 60 GHz," IEEE J. Select. Areas Commun., vol. 14, pp. 441-448, April 1996.
[22] A. M. Hammoudeh and G. Allen, "Millimetric wavelengths radiowave propagation for line-of-sight indoor microcellular mobile communications," IEEE Trans. Veh. Technol., vol. 44, pp. 449-460, Aug. 1995.
[23] G. Yang, K. Pahlavan and T. J. Holt, "Sector antenna and DFE modems for high speed indoor radio communication, " IEEE Trans. Veh. Technol., vol. 43, pp. 925-933, Nov. 1994 .
[24] M. R. Williamson, G. E. Athansasiadon and A. R. Nix, "Investigating the effects of antenna directivity on wireless indoor communication at 60 GHz," PIMRC '97., The 8th IEEE International Symposium vol. 2, pp. 635-639, Sept. 1997.
[25] D. E. Goldgerg, Genetic Algorithm in Search, Optimization and Machine Learning, Addision-Wesley, 1989.
[26] F. Ares, S. R. Rengarajan, J. A. F. Lence, A. Trastoy and E. Moreno, “Synthesis of antenna patterns of circular arc arrays,” Electronics Letters, vol. 32, pp. 1845-1846, Sept. 1996.
[27] Y. C. Jiao., W. Y. Wei, L. W. Huang, and H. S. Wu, ”A new low-side-lobe pattern synthesis technique for conformal arrays,” IEEE Trans. Antenna Propag., Vol. 41, pp. 824-831, June 1993.
[28] J. C. Chuang, "The effects of multipath delay spread on timing recovery," IEEE Tran. Veh. Technol., vol. 35, pp. 135-140, Aug. 1987.
[29] L. J. Greenstein and B. A. Czekaj-Augmn, "Performance comparisons among digital radio technologies subjected to multipath fading," IEEE Trans. Commun., vol. 30, pp. 1184-1197, May 1982.
[30] K. Sato, T. Manabe, T. Ihara, H. Saito, S. Ito, T. Tanaka, K. Sugai, N. Ohmi, Y. Murakami, M. Shibayama, Y. Konishi and T. Kimura, "Measurements of reflection and transmission characteristics of interior structure of office building in the 60GHz band," Proc. IEEE International Symposium on Personal, Indoor and Mobile Radio Communication, vol. 1, pp. 14-18, Oct. 1996.
[31] P. F. M. Smulders and H. T. Muskens, "Bit rate performance of millimeter-wave indoor radio systems," Electron. Lett., vol. 28, pp. 2152-2154, Nov. 1992.
[32] T. Manabe, K. Sato, H. Masuzawa, K. Taira, T. Ihara, Y. kasashima and K. Yamaki, "Polarization dependence of multipath propagation and high-speed transmission characteristics of indoor millimeter-wave channel at 60 GHz," IEEE Trans. Veh. Technol., Vol. 44, pp. 268-274, May 1995.
[33] R. J. C. Bultitude, R. F. Hahn, and R. J. Davies, "Propagation considerations for the design of an indoor broad-band communications system at EHF," IEEE Trans. Veh. Technol., vol. 47, pp. 235-245, Feb. 1998.
[34] Y. Roy, J. Y. Chouinard and S. A. Mahmoud, "Selection diversity combining with multiple antennas for MM-wave indoor wireless channels," IEEE J. on Select. Areas Commun., vol. 14, pp.674-682, May 1996.
[35] T. S. Rappaport, W. Huang and M. J. Feuerstein , "Performance of decision feedback equalizers in simulated urban and indoor radio channels, " IEICE Trans. commun., vol. E76-B, pp.78-89, Feb 1993.
[36] R. Framjee and V. K. Prabhu, "Zero-forcing equalization for space diversity combining in microwave digital radio, " IEE Proc-commun., vol. 144, pp.107-113, April 1997.
[37] N. Amitay and L. J. Greenstein, "Multipath outage performance of digital radio receivers using finite-tap adaptive equalizers," IEEE Trans. Commun., vol. 32, pp. 597-608, May 1984.
[38] K. Pahlavan, "Comparison between the performance of QPSK, SQPSK, QPR, and SQPR systems over microwave LOS channels," IEEE Trans. Commun., vol. 33, pp. 291-296, Mar. 1985.
[39] J. Lahteenmaki and T. Karttaavi, "Measurement of dielectric parameters of wall materials at 60 GHz band," Electron. Lett., vol. 32, pp. 1442-1444, Aug. 1996.
[40] P. Delogne, “EM propagation in tunnels,” IEEE Trans. Antennas Propagat., vol. 39, pp. 401-406, March 1991.
[41] H. Hashemi, “The indoor radio propagation channel,” Proc. IEEE, vol. 81, pp. 943-968, July 1993.
[42] K. Pahlavan and A. H. Levesque, Wireless Information Networks, Wiley, 1995.
[43] P. Delogne, “Basic mechanisms of tunnel propagation,” Radio Science, vol. 11, no. 4, pp. 295-303, April 1976.
[44] P. Degauque, B. Demoulin, J. Fontaine, and R. Gabillard, “Theory and experiment of a mobile radio communication in tunnels by means of a leaky braided coaxial cable,” Radio Science, vol. 11, no. 4, pp. 305-314, April 1976.
[45] D. A. Hill and J. R. Wait, “Calculated transmission loss for a leaky feeder communication system in a circular tunnel,” Radio Science, vol. 11, no. 4, pp. 315-321, April 1976.
[46] P. Delogne, Leaky Feeders and Subsurface Radio Communications, Stevage, U.K.,1982.
[47] S. F. Mahmoud and J. R. Wait, “Guided electromagnetic waves in a curved rectangular mine tunnel,” Radio Science, vol. 9, no. 5 pp. 567-572, May 1974.
[48] A. G. Emslie, R. L. Lagace and P. F. Strong, “Theory of the propagation of UHF radio waves in coal mine tunnels,” IEEE Trans. Antennas Propagat., vol. 23, no. 2, pp. 192-205, Mar. 1975.
[49] J. Chiba, T. Inaba, Y. Kuwamoto, O. Banno and R. Sato, “Radio communication in tunnels,” IEEE Trans. Microwave Theory Tech., vol.26, no. 6, pp. 439-443, June 1978.
[50] S. F. Mahmoud and J. R. Wait, “Geometrical optical approach for electromagnetic wave propagation in rectangular mine tunnels,” Radio Science, vol. 9, no. 12, pp. 1147-1158, Dec. 1974.
[51] P. Mariage, M. Lienard, and P. Degauque, “Theoretical and experimental approach of the propagation of high frequency waves in road tunnels,” IEEE Trans. Antennas Propagat., vol. 42, pp. 75-81, Jun. 1994
[52] J. S. Lamminmaki and J. A. Lempiainen, “Radio propagation characteristics in curved tunnels,” IEE Proc.-Microw. Antenna Propagat., vol. 145, pp. 327-331, Aug. 1998.
[53] T. Klemenschits and E. Bonek, “A radio coverage of road tunnels at 900 and 1800 MHz by discrete antenna,” 5th IEEE Symposium on Personal, Indoor and Mobile Radio Communications, pp. 411-415, Sept. 1994.
[54] Y. Yamaguchi, T. Abe and T. Sekiguchi, “Radio wave propagation loss in the VHF to microwave region due to vehicles in tunnels,” IEEE Trans. Electromagn. Compat., vol. 31, no. 1, pp. 87-91, Feb. 1989.
[55] Y. P. Zhang and Y. Hwang, “Theory of the radio-wave propagation in railway tunnels,” IEEE Trans. Veh. Technol., vol. 47, pp. 1027-1036, Aug. 1998.
[56] Y. Hwang, Y. P. Zhang and R. G. Kouyoumjian, “Ray-optical prediction of radio-wave propagation characteristics in tunnl environments – Part 1: Theory,” IEEE Trans. Antennas Propagat., vol. 46, pp. 1328-1336, Sept. 1998.
[57] Y. Hwang, Y. P. Zhang and R. G. Kouyoumjian, “Ray-optical prediction of radio-wave propagation characteristics in tunnl environments – Part 2: Analysis and measurements,” IEEE Trans. Antennas Propagat., vol. 46, pp. 1337-1345, Sept. 1998.
[58] D. Didascalou, J. gen Maurer and W. Wiesbeck, “Subway tunnel guided electromagnetic wave propagation at mobile communications frequencies,” IEEE Trans. Antennas Propagat., vol. 49, pp. 1590-1596, Nov. 2001.
[59] A. H. Muquaible, “Characterization of ultra-wideband communication channels,” Ph.D. dissertation, Virginia Polytechnic Institute and State University, March 2003.
[60] R. Cramer, R. Scholtz, and M. Win, “Evaluation of an ultra-wide-band propagation channel,” IEEE Trans Antennas Propagat Vol. AP-50, pp. 561–570, May 2002.
[61] J. Keignart and N. Daniele, “Subnanosecond UWB channel sounding in frequency and temporal domain,” IEEE Conference on Ultra-Wideband System Technol, pp. 25–29, 2002.
[62] R. A. Scholtz, R.J.-M. Cramer, and M.Z. Win, “Evaluation of the propagation characteristics of ultra-wideband communication channels ,” IEEE Antennas Propagat Soc Int Symp, pp. 626–630, 1998.
[63] R. C. Qiu, “A study of ultra-wideband wireless propagation channel and optimum UWB receiver design,” IEEE J Sel Areas Commun, Vol. 20, pp. 1628–1637, 2002.
[64] B. Uguen, E. Plouhinee, Y. Lostanlen, and G. Chassay, “A deterministic ultra-wideband channel modeling,” IEEE Conference on Ultra-Wideband System Technol, pp. 1–5, May 2002.
[65] Y. Zhang, “Ultra-Wide Bandwidth Channel Analysis In Time Domain Using 3-D Ray Tracing,” High Frequency Postgraduate Student Colloquium of IEEE, pp. 6-7, Sep. 2004.
[66] S. Woo, H. Yang, M. Park, and B. Kang, “Phase-Included Simulation of UWB Channel,” IEICE Trans. Commun., Vol. E88-B, No. 3, pp.1294-1297, March 2005.
[67] A. M. Attiya and A. Saffaai-Jazi, ”Simulation of Ultra-Wideband Indoor Propagation,” Microwave and Optical Technology Letters, Vol. 42, No. 2, pp. 103-108, July 2004.
[68] H. Ling, R. Chou, and S. Lee, “Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity,” IEEE Trans. Antennas Propagat., Vol. 37, pp. 194–205, Feb. 1989.
[69] S. Y. Seidel and T. S. Rappaport, “Site-specific propagation prediction for wireless in-building personal communication system design,” IEEE Transactions on Vehicular Technol, Vol. 43, pp. 879–891, Nov. 1994.
[70] G. Liang and H. L. Bertoni, “A new approach to 3-D ray tracing for propagation prediction in cities,” IEEE Trans. Antennas Propagat., Vol. 46, pp. 853–863, June 1998.
[71] M. F. Iskander, and Z. Yun, “Propagation prediction models for wireless communication systems,” IEEE Trans. on Microwave Theory and Techniques, Vol. 50, No. 3, pp. 662-673, March 2002.
[72] S. H. Chen and S. K. Jeng, “An SBR/Image approach for indoor radio propagation in a corridor,” IEICE Trans. Electron., Vol. E78-C, pp. 1058-1062, Aug. 1995.
[73] A. M. Saleh and R. A. Valenzuela, “A statistical model for indoor multipath propagation,” IEEE J. Select. Areas Commun., Vol. 5, pp. 128-137, Feb. 1987.
[74] I. Oppermann, M. Hamalainen and J. Iinatti, UWB Theory and Applications, John Wiley & Sons, 2004.
[75] E. W. Kamen and B. S. Heck, Fundamentals of Signals and Systems Using the Web and Matlab, Prentice-Hall, 2000.
[76] A. S. Jazi, S. M. Riad, A. Muqaibel, and A. Bayram, “Through-the-Wall Propagation and Material Characterization,” DARPA NETEX Program Report, Nov. 2002.
論文使用權限
  • 不同意紙本論文無償授權給館內讀者為學術之目的重製使用。
  • 不同意授權瀏覽/列印電子全文服務。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信