§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2407201917283900
DOI 10.6846/TKU.2019.00797
論文名稱(中文) 建立超重力旋轉床模型應用於單乙醇胺脫附CO2
論文名稱(英文) Modeling Rotating Packed Bed for Desorption of CO2 Using Monoethanolamine
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 化學工程與材料工程學系碩士班
系所名稱(英文) Department of Chemical and Materials Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 107
學期 2
出版年 108
研究生(中文) 江弈炘
研究生(英文) Yi-Sin Chiang
學號 606400439
學位類別 碩士
語言別 繁體中文
第二語言別 繁體中文
口試日期 2019-07-01
論文頁數 45頁
口試委員 指導教授 - 康嘉麟
委員 - 汪上曉
委員 - 張煖
委員 - 康嘉麟
關鍵字(中) 超重力旋轉床(RPB)
二氧化碳
轉子轉動
設備體積
關鍵字(英) Rotating Packed bed(RPB)
Carbon dioxide
Equipment volume
rotor rotation
第三語言關鍵字
學科別分類
中文摘要
已有研究提到超重力旋轉床可大幅縮小設備體積,但目前在能耗上面並沒有研究指出超重力旋轉床與填充塔的差異。此研究上使用30 wt%單乙醇胺脫附二氧化碳在超重力旋轉床及填充床並比較RPB與PB的體積與能耗差異。模型分別在Aspen Custom Modeler V9 及Aspen Plus V9上建模。這模型被設計用來脫附不同規模下二氧化碳排放量,包括每天0.1噸、1頓、10頓的以及工業上500 MW二氧化碳。RPB和PB的設備規格為找每個規模下的最低再生能量,再比較兩者的再生能量及體積。在0.1噸、1噸、10噸規模下,PB限制條件Flooding Factor為0.6決策變數為塔高,RPB限制條件為(1)塔高與內徑成0.52固定比值(2)Flooding Factor最高為 0.6 (3)離心不高於100 G,而其貧負荷量為0.35、富負荷量為0.48。在500 MW規模下RPB限制條件為(1)塔高與內徑成0.52固定比值(2)Flooding Factor為0.8 (3)離心力小於等於100 G,而其貧負荷量為0.25、富負荷量為0.48。而此研究發現超重力旋轉床可減少設備體積及在大規模下的情況下再生能量會比PB來的高。而其原因為RPB氣液接觸面積增加,改善熱傳的面積進而減少設備體積,因為RPB有轉子轉動,則需要額外的能量供應設備進行脫附。
英文摘要
It had been mentioned that the rotating packed bed (RPB) can greatly reduce the size of the equipment, but there was no research on the energy consumption to point out the difference between the RPB and the packed bed. This study used 30 wt% monoethanolamine to desorb carbon dioxide and compare the volume and energy consumption between the RPB bed and packed bed. The models were modeled on Aspen Custom Modeler V9 and Aspen Plus V9. This model is designed to desorb CO2 emissions at different scales, and scales were 0.1 tons, 1 ton, 10 tons per day and 500 MW of carbon dioxide in the industry. The equipment specifications for RPB and PB were to find the lowest regenerative energy at each scale, and then compare the regeneration energy and volume of the two. At 0.1 tons, 1 tons, and 10 tons scales, the PB constrains had Flooding Factor of 0.6, and the RPB constrains were (1) ratio of tower height to inner diameter is 0.52 (2) The Flooding Factor is 0.6 (3) Centrifugal force less than or equal to 100 G and 貧負荷量 and rich loading are 0.35 and 0.48 respectively. The RPB constrains at the 500 MW scale are (1) ratio of tower height to inner diameter is 0.52 (2) The Flooding Factor is 0.8 (3) centrifugal force less than or equal to 100 G and Lean loading and rich loading are 0.35 and 0.48 respectively. This study found that RPB can reduce the size of the equipment and the regeneration energy will be higher than that of PB at large-scale. The reason was that the gas-liquid contact area was increased, the heat transfer area was improved, and the equipment volume was reduced. Because the RPB had rotor rotation, an additional energy supply device was required for desorption.
第三語言摘要
論文目次
目錄
中文摘要	I
英文摘要	II
目錄	IV
圖目錄	VI
表目錄	VII
第一章 緒論	1
第二章 文獻回顧	3
2.1 捕獲二氧化碳方法	3
2.2 在傳統氣提塔上脫附二氧化碳	5
2.3在超重力旋轉床上吸收二氧化碳	5
2.4 在超重力旋轉床上脫附二氧化碳	6
第三章 模型建立與驗證	8
3.1 PB模型建立	8
3.1.1 PB研究方法	8
3.2 RPB模型建立	9
3.2.1 RPB研究方法	9
3.2.1質傳模型	9
3.2.2 熱傳模型	11
3.2.3 熱力學性質及其他關係式	11
3.3 PB氣提塔模型驗證	12
3.4 RPB氣提塔模型驗證	14
第四章 PB與RPB氣提塔規模放大案例	17
4.1 PB氣提塔規模放大	17
4.2 RPB氣提塔規模放大	20
4.3 規模放大下RPB與PB再生能量分析與比較	22
4.4 規模放大下RPB與PB體積比較	25
第五章 工業規模發電廠500 MW下RPB氣提塔	26
5.1 單座RPB	26
5.2 500 MW規模下三座RPB串聯	28
5.3 500 MW規模下 RPB並聯	30
5.4 500 MW規模下RPB氣相分流-方法1	32
5.5 500 MW規模下RPB氣相分流-方法2	34
5.6 500 MW規模下再生能量及總體積分析及比較	37
第六章 結論	39
第七章 符號說明	40
第八章 參考文獻	42
第九章 附錄	45
 
圖目錄
圖2.1 二氧化碳捕獲製程強化方法[3]	4
圖2.2內置熱交換氣提塔[10]	5
圖2.3 RPB脫附二氧化碳流程圖Cheng, et al. [12]	6
圖2.4 RPB建模方式及計算方式[7]	7
圖3.1 PB 貧負荷量驗證圖	13
圖4.2 RPB 貧負荷量驗證圖	15
圖4.3 RPB二氧化碳脫附速率驗證圖	15
圖4.4 RPB再沸器熱負荷驗證圖	16
圖4.1 PB氣提塔流程圖	17
圖4.2 RPB氣提塔流程	20
圖4.3規格放大下 RPB與PB再生能量比較	23
圖4.4再沸器限制邊界圖	23
圖4.5 0.1 tonnes/day下塔內溫度分布	24
圖4.5規模放大下RPB與PB體積比較	25
圖5.1 500 MW下單座RPB氣提塔流程圖	26
圖5.2 500 MW下三座RPB串聯流程圖	29
圖5.3單座RPB並聯流程圖	30
圖5.4單座RPB脫附規模對能耗比較圖	31
圖5.5 單座氣相分流RPB流程圖	32
圖5.6氣相分流數對再生能量圖	33
圖5.7 氣相分流流程圖-方法二	35
圖5.8 500 MW規模下總再生能量	37
圖5.9 500 MW規模下總設備體積	38

表目錄
表3.1 PB實驗操作條件[22]	13
表 3.2 RPB實驗條件 [12]	14
表4.1 PB氣提塔操作條件及設計條件	18
表4.2 PB最適化設定條件	18
表4.3 PB設備規格	19
表4.4 RPB氣提塔操作條件及設計條件	21
表4.5 RPB最適化設定條件	21
表4.6 RPB設備規格	21
參考文獻
[1] H.V.R.A. IEA, Guide to the Balancing Challenge, International Energy Agency, Paris, France (2011).
[2] G.T. Rochelle, Amine scrubbing for CO2 capture, Science 325 (2009) 1652-1654.
[3] C.-H. Yu, et al., A review of CO2 capture by absorption and adsorption, Aerosol Air Qual. Res 12 (2012) 745-769.
[4] H. Yang, et al., Progress in carbon dioxide separation and capture: A review, Journal of environmental sciences 20 (2008) 14-27.
[5] Y. Zhang, et al., Modeling CO2 absorption and desorption by aqueous monoethanolamine solution with Aspen rate-based model, Energy Procedia 37 (2013) 1584-1596.
[6] C. Ramshaw, et al., Mass transfer process, Google Patents, 1981.
[7] A.S. Joel, et al., Modelling, simulation and analysis of intensified regenerator for solvent based carbon capture using rotating packed bed technology, Applied Energy 203 (2017) 11-25.
[8] J.-L. Kang, et al., Modeling studies on absorption of CO2 by monoethanolamine in rotating packed bed, International Journal of Greenhouse Gas Control 25 (2014) 141-150.
[9] M.S. Jassim, et al., Carbon dioxide absorption and desorption in aqueous monoethanolamine solutions in a rotating packed bed, Industrial engineering chemistry research 46 (2007) 2823-2833.
[10] B.A. Oyenekan, et al., Alternative stripper configurations for CO2 capture by aqueous amines, AIChE Journal 53 (2007) 3144-3154.
[11] S. Ziaii, et al., Dynamic modeling to minimize energy use for CO2 capture in power plants by aqueous monoethanolamine, Industrial Engineering Chemistry Research 48 (2009) 6105-6111.
[12] H.-H. Cheng, et al., Thermal regeneration of alkanolamine solutions in a rotating packed bed, International Journal of Greenhouse Gas Control 16 (2013) 206-216.
[13] B.A. Oyenekan, et al., Energy performance of stripper configurations for CO2 capture by aqueous amines, Industrial Engineering Chemistry Research 45 (2006) 2457-2464.
[14] K. Onda, et al., Mass transfer coefficients between gas and liquid phases in packed columns, Journal of chemical engineering of Japan 1 (1968) 56-62.
[15] R. Billet, et al., Prediction of mass transfer columns with dumped and arranged packings: updated summary of the calculation method of Billet and Schultes, Chemical Engineering Research Design
 77 (1999) 498-504.
[16] J. Stichlmair, et al., General model for prediction of pressure drop and capacity of countercurrent gas/liquid packed columns, Gas Separation Purification
 3 (1989) 19-28.
[17] H.-H. Tung, et al., Modeling liquid mass transfer in HIGEE separation process, Chemical Engineering Communications 39 (1985) 147-153.
[18] J. Burns, et al., Process intensification: operating characteristics of rotating packed beds—determination of liquid hold-up for a high-voidage structured packing, Chemical Engineering Science 55 (2000) 2401-2415.
[19] S.P. Singh, et al., Removal of volatile organic compounds from groundwater using a rotary air stripper, Industrial engineering chemistry research 31 (1992) 574-580.
[20] M. Keyvani, et al., Operating characteristics of rotating beds. Technical progress report for the third quarter 1988, Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Chemical Engineering, 1988.
[21] K. Li, et al., Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: techno-economic assessment of the MEA process and its improvements, Applied Energy 165 (2016) 648-659.
[22] N.E. Flø, et al., Dynamic model validation of the post-combustion CO2 absorption process, International Journal of Greenhouse Gas Control 41 (2015) 127-141.
[23] K. Li, et al., Technical and energy performance of an advanced, aqueous ammonia-based CO2 capture technology for a 500 MW coal-fired power station, Environmental Science Technology
 49 (2015) 10243-10252.
[24] D. Sachde, et al., Novel Absorber Configurations Using Aqueous Piperazine for CO2 Capture from NGCC Flue Gas, Energy Procedia 114 (2017) 1584-1600.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信