§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2407201823493800
DOI 10.6846/TKU.2018.00746
論文名稱(中文) S50C與Al-23%Fe鑄造熔接與界面分析
論文名稱(英文) Interface Analysis of S50C Cast Welded with Al-23%Fe Intermetallic compounds
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 106
學期 2
出版年 107
研究生(中文) 杜少崴
研究生(英文) SHAO-WEI DU
學號 606350063
學位類別 碩士
語言別 繁體中文
第二語言別 英文
口試日期 2018-07-04
論文頁數 109頁
口試委員 指導教授 - 林清彬(123femtosecond@gmail.com)
委員 - 林清彬(123femtosecond@gmail.com)
委員 - 廖文毅
委員 - 張子欽
關鍵字(中) Fe-Al金屬間化合物
熱浸鍍
界面反應層
光澤度
磨耗
關鍵字(英) Fe-Al intermetallic compound
hot dip coating
interface reaction layer
gloss
wear
第三語言關鍵字
學科別分類
中文摘要
鋼材熱浸鍍鋁已廣泛用於業界,主要是藉由熱浸鍍鋁層防止鋼材的氧化與腐蝕,由於熱浸鍍鋁層不耐刮,容易使鋼材再次顯露於大氣中進一步被氧化與腐蝕。Fe-Al 金屬間化合物具有低密度、高比強度、熔點高、抗高溫以及抗氧化等優異的性能,因此本研究為了改善鋼材熱浸鍍鋁的缺點,將 S50C 鋼材熱浸鍍於 Al-23%Fe 熔湯,使 S50C 鋼材的表面披覆一層 Fe-Al 金屬間化合物。S50C 鋼材與 Al-23%Fe 熔湯鑄造熔接後,在界面會形成 Fe4Al13以及 Fe3Al等金屬間化合物反應層,可以增加 S50C 鋼材與熱浸鍍層的鍵結。藉由控制不同的擴散溫度(700oC-900oC)與擴散時間(1-24 小時),探討這些界面反應層的動力學與界面反應層的成長機制。另外,使用了光學雷射系統測試熱浸鍍的表面反射率,證明出金屬間化合物熱浸鍍層是有利於增加表面光澤度。藉由磨耗實驗,在不同滑動速度與正向荷重下,介金屬熱浸鍍層可以有效阻擋磨耗。
英文摘要
Hot dip aluminizing of steel has been widely used in the industry, it is mainly used to prevent oxidation and corrosion of steel. Since the hot-dip aluminized layer cannot scratchresistant effectively, it is easy to expose the steel to the atmosphere and further oxidize and corrode again. Fe-Al intermetallic compounds have excellent properties such as low density, high specific strength, high melting point, high temperature resistance and oxidation resistance. The present study further improve the shortcomings of hot dip aluminizing of steel, the S50C steel was hot dip coated with Al-23%Fe melt, so that the surface of the S50C steel was covered with a layer of Fe-Al intermetallic compound.  After the S50C steel is cast-welded with Al-23%Fe melt, an intermetallic compound reaction layer such as Fe4Al13 and Fe3Al is formed at the interface, which can increase the bonding between the S50C steel and hot dip coating layer. In the experiment, the dynamics of the interfacial reaction layers and the growth mechanism of the interfacial reaction layer were discussed by 700 ℃ -900 ℃ diffusion temperatures and 1-24 hours diffusion time.  Additionally, an optical laser system was used to test the surface reflectance of the hot dip coating layer, which proves that the intermetallic compound hot dip coated layer can increased the surface gloss of the S50C steel. Through the wear test, the intermetallic hot dip coating layer can effectively block the wear rate under different sliding speeds and normal loads.
第三語言摘要
論文目次
總目錄
壹、導論...................................................1
  1-1前言.................................................1
  1-2文獻回顧.............................................5
    1-2.1金屬間化合物的定義與性質.........................5
    1-2.2 Fe-Al金屬間化合物的形成機制.....................5
    1-2.3 Fe-Al金屬間化合物的優點與缺點...................8
    1-2.4 Fe-Al金屬間化合物層之製造方法..................11
    1-2.5鋁鐵金屬間化合物界面反應層之生長動力學..........22
  1-3研究動機............................................25
貳、實驗設計..............................................27
  2-1實驗材料............................................27
  2-2實驗設備............................................28
  2-3鋁鐵介金屬製程-S50C熱浸鍍Al-23%Fe熔湯..............29
  2-4 X光繞射分析........................................31
  2-5表面反射率測試......................................32
  2-6磨耗測試............................................34
参、結果與討論............................................35
  3-1 Al-23%Fe與S50C碳鋼的鑄造熔接時間與溫度成長分析....35
    3-1.1共軛焦顯微結構..................................35
    3-1.2鑄造層成長分析..................................47
    3-1.3界面反應層(II)的形成機制........................51
    3-1.4界面反應層(III)的形成機制.......................54
  3-2 Al-23%Fe與S50C鑄造熔接動力學分析..................56
  3-3 Al-23%Fe與S50C鑄造熔接其表面性質...................61
    3-3.1 Fe-Al熔湯顯微結構..............................61
    3-3.2 8%-23%Fe之Al浸鍍層的表面反射分析..............62
    3-3.3表面粗糙度與氧化層對表面反射之影響..............64
  3-4表面磨耗測試........................................65
    3-4.1磨耗率..........................................65
    3-4.2磨耗面顯微結構..................................66
3-4.3磨耗面顯微結構..................................80
3-4.4磨耗的機制......................................99
肆、結論.................................................101
伍、參考文獻.............................................103
圖目錄
圖1.1 Fe-Al界面之介金屬...................................4
圖1.2 Al-Si-Fe金屬間化合物初晶形核的液相線................7
圖1.3鋁、鐵介金屬成長.....................................8
圖1.4熔化鐵鋁化合物的示意圖............................. 14
圖1.5(左)鑄造、(右)粉末燒結..............................18
圖1.6 [左]有出現過渡層、[右]無出現過渡層..................20
圖1.7 放電接合界面.......................................21
圖2.1 製造Al-23%Fe熔湯的示意圖..........................29
圖2.2 S50C碳鋼片之熱浸鍍.................................30
圖2.3光學顯微量測系統...................................32
圖2.4鍵與鐶試片之尺寸規格圖(左:下試片、右:上試片)........34
圖3.1 700℃擴散溫度下,經由(a)1小時;(b)3小時;(c)6小時;(d)9
    小時;(e)12小時;(f)16小時;(g)20小時;(h)24小時,Al-23%Fe
    與鋼片界面處剖斷面的共軛焦顯微結構...................36
圖3.2 750℃擴散溫度下,經由(a)1小時;(b)3小時;(c)6小時;(d)9
    小時;(e)12小時;(f)16小時;(g)20小時;(h)24小時,Al-23%Fe
    與鋼片界面處剖斷面的共軛焦顯微結構...................38
圖3.3 800℃擴散溫度下,經由(a)1小時;(b)3小時;(c)6小時;(d)9
    小時;(e)12小時;(f)16小時;(g)20小時;(h)24小時,Al-23%Fe
    與鋼片界面處剖斷面的共軛焦顯微結構...................41
圖3.4 850℃擴散溫度下,經由(a)1小時;(b)3小時;(c)6小時;(d)9
    小時;(e)12小時;(f)16小時;(g)20小時;(h)24小時,Al-23%Fe
    與鋼片界面處剖斷面的共軛焦顯微結構...................43
圖3.5 900℃擴散溫度下,經由(a)1小時;(b)3小時;(c)6小時;(d)9
    小時;(e)12小時;(f)16小時;(g)20小時;(h)24小時,Al-23%Fe
    與鋼片界面處剖斷面的共軛焦顯微結構...................45
圖3.6 Fe-Al相圖.........................................46
圖3.7 S50C與Al-23%Fe界面反應層的示意圖.................47
圖3.8鋁原子與鐵原子相互擴散及鑄造熔接層成長的示意圖.....49
圖3.9鑄造熔接層等效寬度與反應時間的關係圖...............50
圖3.10 S50C碳鋼與Al-23%Fe基地在不同擴散溫度(a)700℃;(b)750
℃;(c)800℃;(d)850℃;(e)900℃鑄造熔接層的共軛焦顯微結
構...................................................50
圖3.11 900℃反應溫度及反應溫度24小時之XRD數據圖........51
圖3.12 900℃反應溫度及24小時反應時間之EPMA數據圖.......52
圖3.13 (a)鐵熱浸鍍於鋁熔湯時, Fe-Al介金屬形成於鋁基地;(b)
鐵熱浸鍍於鋁熔湯時,Fe-Al介金屬形成於鐵基地..............53
圖3.14 S50C碳鋼與Al-23%Fe基地在不同擴散溫度(a)700℃;(b)750
    ℃;(c)800℃;(d)850℃;(e)900℃界面反應層(II)的等效寬度與
    擴散時間的關係圖.....................................54
圖3.15 擴散溫度900℃,擴散時間24小時的Al-23%Fe基地與S50C
    碳鋼基地剖斷面共軛焦顯微結構.........................55
圖3.16 S50C碳鋼與Al-23%Fe基地在不同擴散溫度(a)700℃;(b)750
    ℃;(c)800℃;(d)850℃;(e)900℃界面反應層(III)的等效寬度
    與擴散時間的關係圖...................................56
圖3.17鑄造熔接層的成長驅動力分析排序....................57
圖3.18界面反應層(II)的成長驅動力分析排序................58
圖3.19界面反應層(III)的成長驅動力分析排序...............58
圖3.20 S50C熱浸鍍Al-x%Fe鑄造熔接的顯微結構,(a)8%; (b)13%; 
    (c)18%; (d)23% .......................................62
圖3.21 不同含鐵量之鋁鍍層的磨耗率........................66
圖3.22 在1.04 m/s與19.6kPa之條件下,Al-0%Fe鍍層~Al-23%Fe
    鍍層之磨耗面的共軛焦顯微照片(a)Al-0%Fe; (b)Al-8%Fe; 
    (c)Al-13%Fe; (d)Al-18%Fe; (e)Al-23%Fe................69
圖3.23 在1.04 m/s與34.3kPa之條件下,Al-0%Fe鍍層~Al-23%Fe
    鍍層之磨耗面的共軛焦顯微照片(a)Al-0%Fe; (b)Al-8%Fe; 
    (c)Al-13%Fe; (d)Al-18%Fe; (e)Al-23%Fe.................70
圖3.24 在1.04 m/s與49kPa之條件下,Al-0%Fe鍍層~Al-23%Fe鍍
    層之磨耗面的共軛焦顯微照片(a)Al-0%Fe; (b)Al-8%Fe; 
    (c)Al-13%Fe; (d)Al-18%Fe; (e)Al-23%Fe................72
圖3.25 在1.38 m/s與19.6kPa之條件下,Al-0%Fe鍍層~Al-23%Fe
    鍍層之磨耗面的共軛焦顯微照片(a)Al-0%Fe; (b)Al-8%Fe; 
    (c)Al-13%Fe; (d)Al-18%Fe; (e)Al-23%Fe................73
圖3.26 在1.38 m/s與34.3kPa之條件下,Al-0%Fe鍍層~Al-23%Fe
    鍍層之磨耗面的共軛焦顯微照片(a)Al-0%Fe; (b)Al-8%Fe; 
    (c)Al-13%Fe; (d)Al-18%Fe; (e)Al-23%Fe................74
圖3.27 在1.38 m/s與49kPa之條件下,Al-0%Fe鍍層~Al-23%Fe鍍
    層之磨耗面的共軛焦顯微照片(a)Al-0%Fe; (b)Al-8%Fe; 
    (c)Al-13%Fe; (d)Al-18%Fe; (e)Al-23%Fe................76
圖3.28 在1.73 m/s與19.6kPa之條件下,Al-0%Fe鍍層~Al-23%Fe
    鍍層之磨耗面的共軛焦顯微照片(a)Al-0%Fe; (b)Al-8%Fe;  
    (c)Al-13%Fe; (d)Al-18%Fe; (e)Al-23%Fe................77
圖3.29 在1.73 m/s與34.3kPa之條件下,Al-0%Fe鍍層~Al-23%Fe
    鍍層之磨耗面的共軛焦顯微照片(a)Al-0%Fe; (b)Al-8%Fe; 
    (c)Al-13%Fe; (d)Al-18%Fe; (e)Al-23%Fe................78
圖3.30 在1.73 m/s與49kPa之條件下,Al-0%Fe鍍層~Al-23%Fe鍍
    層之磨耗面的共軛焦顯微照片(a)Al-0%Fe; (b)Al-8%Fe; 
    (c)Al-13%Fe; (d)Al-18%Fe; (e)Al-23%Fe.................80
圖3.31 在1.04 m/s與19.6kPa之條件下,Al-0%Fe鍍層~Al-23%Fe
    鍍層之磨屑的共軛焦顯微照片(a)(b)Al-0%Fe; (c)(d)Al-8%Fe; 
    (e)(f)Al-13%Fe; (g)(h)Al-18%Fe; (i)(j)Al-23%Fe........82
圖3.32 在1.04 m/s與34.3kPa之條件下,Al-0%Fe鍍層~Al-23%Fe
    鍍層之磨屑的共軛焦顯微照片(a)(b)Al-0%Fe; (c)(d)Al-8%Fe; 
    (e)(f)Al-13%Fe; (g)(h)Al-18%Fe; (i)(j)Al-23%Fe........84
圖3.33 在1.04 m/s與49kPa之條件下,Al-0%Fe鍍層~Al-23%Fe鍍
    層之磨屑的共軛焦顯微照片(a)(b)Al-0%Fe; (c)(d)Al-8%Fe; 
    (e)(f)Al-13%Fe; (g)(h)Al-18%Fe; (i)(j)Al-23%Fe........86
圖3.34 在1.38 m/s與19.6kPa之條件下,Al-0%Fe鍍層~Al-23%Fe
    鍍層之磨屑的共軛焦顯微照片(a)(b)Al-0%Fe; (c)(d)Al-8%Fe; 
    (e)(f)Al-13%Fe; (g)(h)Al-18%Fe; (i)(j)Al-23%Fe........88
圖3.35 在1.38 m/s與34.3Pa之條件下,Al-0%Fe鍍層~Al-23%Fe
    鍍層之磨屑的共軛焦顯微照片(a)(b)Al-0%Fe; (c)(d)Al-8%Fe; 
    (e)(f)Al-13%Fe; (g)(h)Al-18%Fe; (i)(j)Al-23%Fe........90
圖3.36 在1.38 m/s與49kPa之條件下,Al-0%Fe鍍層~Al-23%Fe鍍
    層之磨屑的共軛焦顯微照片(a)(b)Al-0%Fe; (c)(d)Al-8%Fe; 
    (e)(f)Al-13%Fe; (g)(h)Al-18%Fe; (i)(j)Al-23%Fe........92
圖3.37 在1.73 m/s與19.6kPa之條件下,Al-0%Fe鍍層~Al-23%Fe
    鍍層之磨屑的共軛焦顯微照片(a)(b)Al-0%Fe; (c)(d)Al-8%Fe; 
    (e)(f)Al-13%Fe; (g)(h)Al-18%Fe; (i)(j)Al-23%Fe........94
圖3.38 在1.73 m/s與34.3kPa之條件下,Al-0%Fe鍍層~Al-23%Fe
    鍍層之磨屑的共軛焦顯微照片(a)(b)Al-0%Fe; (c)(d)Al-8%Fe; 
    (e)(f)Al-13%Fe; (g)(h)Al-18%Fe; (i)(j)Al-23%Fe........96
圖3.39 在1.73 m/s與49kPa之條件下,Al-0%Fe鍍層~Al-23%Fe鍍
    層之磨屑的共軛焦顯微照片(a)(b)Al-0%Fe; (c)(d)Al-8%Fe; 
    (e)(f)Al-13%Fe; (g)(h)Al-18%Fe; (i)(j)Al-23%Fe........98
表目錄
表3-1不同擴散溫度經由擴散12小時後,發生最高成長驅動力之時
    間次序比較圖.........................................59
表3-2 三種色光在不同Fe濃度下的能量反射率................63
表3-3 三種粗糙度表面之RGB能量反射率.....................64
表3-4 綠光在不同Fe濃度下之氧化層的能量反射率............64
參考文獻
1.Li Cui, Boxu Chen, Wei Qian, Dingyong He and Li Chen, "Microstructures and Mechanical Properties of Dissimilar Al/Steel Butt Joints Produced by Autogenous Laser Keyhole Welding", Metals (2017) pp.492-510
2.Dmitri V. Malakhova,Damon Panahi , Mark Gallerneault, "On the formation of intermetallics in rapidly solidifying Al–Fe–Si alloys",CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry No.34 (2010) pp.159-166
3.W. Khalifa, F.H. Samuel, and J.E. Gruzleski, "Iron intermetallic phases in the Al corner of the Al-Si-Fe system",Metallurgical and Materials Transactions,Vol.34A,March (2003)pp.807-825
4.D. Alba Venero, R. Rodríguez García, L. Fernández Barquín, E. Apiñaniz, J. S. Garitaonandia, and F. Plazaola,"Dynamics of the Magnetic Susceptibility of FexAl100−x(x=70,71) Alloys", IEEE Transactions on magnetics, Vol. 44, No. 11, (2008) pp.3883-3886
5.Song Haixia , Wu Yunxin, Tang Chuan'an , Yuan Shuai , Gong Qianming , Liang Ji , "Microstructure and Mechanical Properties of FeAl Intermetallics Prepared by Mechanical Alloying and Hot-Pressing", Tsinghua science and Technology ISSN 1007-0214   Vol.14, No.3, (2009) pp.300-306
6.Yoshiaki Osawa, Susumu Takamori, Takashi Kimura, Kazumi Minagawa and Hideki Kakisawa, "Morphology of Intermetallic Compounds in Al-Si-Fe Alloy and Its Control by Ultrasonic Vibration", Materials Transactions, Vol.48, No.9 (2007) pp.2467-2475
7.Weihua Zhang, Daqian Sun, Lijun Han, Wenqiang Gao and Xiaoming Qiu, "Characterization of Intermetallic Compounds in Dissimilar Material Resistance Spot Welded Joint of High Strength Steel and Aluminum Alloy", ISIJ International, Vol.51 , No.11(2011)pp.1870-1877
8.Gang Zhang,ManJiao Chen Yu Shi, Jiankang Huang and Fuqian Yang,"Analysis and modeling of the growth of intermetallic compounds in aluminum–steel joints", The Royal Society of Chemistry Adv.7 (2017) pp.37797-37805
9.Shigeaki Kobayashi, Takao Yakou,"Control of intermetallic compound layers at interface between steeland aluminum by diffusion-treatment," Materials Science and Engineering A338 (2002) pp.44-53
10.S. Janakiraman, K. Udaya Bhat. "Formation of composite surface during friction surfacing of steel with aluminum ", Advances in Tribology, Vol.614278 (2012)
11.G. Eggeler, W. Auer, H. Kaesche,"On the influence of silicon on the growth of the alloy layer during hot dip aluminizing", Journal of Materials Science 21 (1986) pp.3348-3350
12.V.I. Dybkov,"Interaction of 18Cr-10Ni stainless steel with liquid aluminum", Journal of Materials Science,Vol.25 (1990) pp.3615-3633
13.D Srinivas Rao, A Krishnaiah, Y Krishna,"Optimization of cutting parameters for improved machining of Fe-Al alloy", International Conference for Convergence in Technology, Vol.2 (2017) pp.1203-1206
14.Jun Maki,Shinichi Yamaguchi,"Hot Dip Al Coated Steel Sheet Excellent in Heat Black Discoloration Resistance and Method of Production of Same", European Patent Application, Art. 153(4) EPC, (2013)
15.Prashanth Huilgol,Suma Bhat and K. Udaya Bhat, "Hot-Dip Aluminizing of Low Carbon Steel Using Al-7Si-2Cu Alloy Baths", Journal of Coatings Vol.2013 (2013)
16.C.W. Su, J.W. Lee, C.S. Wang, C.G. Chao, T.F. Liu,"The effect of hot-dipped aluminum coatings on Fe-8Al-30Mn-0.8C alloy", Surface & Coatings Technology 202 (2008) pp.1847-1852
17.V.K. Sikka,U, D. Wilkening , J. Liebetrau, B. Mackey,"Melting and casting of FeAl-based cast alloy", Materials Science and Engineering ,A258,Elsevier (1998) pp.229-235
18.X. Fang, G. Shao, Y.Q. Liu, Z. Fan,"Effects of intensive forced melt convection on the mechanical properties of Fecontaining Al-Si based alloys",Materials Science and Engineering: A, Vol. 445–446 (2007)pp.65-72
19.Wojciech Szkliniarz, Eugeniusz Hadasik, Agnieszka Kościelna, Ivo Schindler, "Melting, Casting and Rolling problems in FeAl based alloy",Metal (2004)
20.Essam R. I. Mahmoud and Mahmoud M. Tash,"Characterization of Aluminum-Based-Surface Matrix Composites with Iron and Iron Oxide Fabricated by Friction Stir Processing", Materials, Vol.9, No. 505 (2016)
21.Z. Shen , Y. Chen , M. Haghshenas, A.P. Gerlich,"Role of welding parameters on interfacial bonding in dissimilar steel/aluminum friction stir welds", Engineering Science and Technology, an International Journal 18 (2015) pp.270-277
22.Kh. A.A. Hassan, A.F. Norman , D.A. Price, P.B. Prangnell,"Stability of nugget zone grain structures in high strength Al-alloy friction stir welds during solution treatment", Acta Materialia,Vol.51,Issue.7 (2003) pp.1923-1936
23.Jhewn-Kuang Chen, Shih-Fan Chen and Che-Shun Huang,"Formation of Al and Cr Dual Coatings by Pack Cementation on SNCM439 Steel", ISIJ International, Vol. 52, No. 1 (2012) pp.127-133
24.Michihisa Fukumoto, Yuzi Matsumura, Shigenari Hayashi, Toshio Narita Kazusi Sakamoto, Akio Kasama and Ryouhei Tanaka, "Coatings of Nb-based Alloy by Cr and/or Al Pack Cementations and Its Oxidation Behavior in Air at 1273–1473 K", Materials Transactions, Vol. 44, No. 4 (2003) pp731-735
25.Sirong Yu , Li Liu, "Zn-Fe and Zn-Fe-Y Cementation Coatings for Enhancing Corrosion Resistance of Steel", Int. J. Electrochem. Sci., 12 (2017) pp.4782-4794
26.P. Han, X. Z. An, Y. X. Zhang, Z. S. Zou,"FEM modeling on the compaction of Fe and Al composite powders", Journal of Mining and Metallurgy, Section B:Metallurgy,Vol.51 No.2 B (2015) pp.163-171
27.Pavel Novák, Ivo Marek, Lucie Mejzlíková, Alena Michalcová, Dalibor Vojtìch,"Reactive-Sintering Production of Intermetallics", Materials and technology, Vol.46, No.6 (2012) pp.559-562
28.Dmitri V. Malakhova,Damon Panahi , Mark Gallerneault,"On the formation of intermetallics in rapidly solidifying Al-Fe-Si alloys", CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry Vol.34,Issue.2 (2010) pp.159-166
29.LI Yajiang , Wang Juan , Yin Yansheng and Ma Haijun,"Diffusivity of Al and Fe near the diffusion bonding interface of Fe3Al with low carbon steel", Bulletin of Materials Science, Vol. 28, Issue. 1 (2005) pp.69-74.
30.Asmawi Ismail, Patthi Hussain,"Fe-Al Diffusion Bonding: Effect of Reaction Time on The Interlayer Thickness", Journal of Mechanical Engineering Vol.5,Issue.1 (2018) pp.80-91
31.Zhisong Fan , Haiping Yu, Chunfeng Li,"Interface and grain-boundary amorphization in the Al/Fe bimetallic system during pulsed-magnetic-driven impact", Scripta Materialia,Vol.110 (2016) pp.14-18
32.Dina V. Dudina, Boris B. Bokhonov and Amiya K. Mukherjee , "Formation of Aluminum Particles with Shell Morphology during Pressureless Spark Plasma Sintering of Fe–Al Mixtures: Current-Related or Kirkendall Effect?",Materials,Vol.9,Issue.5 (2016) pp.375-384
33.Ruidi Li , Tiechui Yuan , Xiaojun Liu, Kechao Zhou, "Enhanced atomic diffusion of Fe–Al diffusion couple during spark plasma sintering", Scripta Materialia 110 (2016) pp.105-108
34.Yoshihiro Kaku, Kiyotaka Hiraoka, Mikio Sugiura, Yoshio Kat, "Composite material of ferrous cladding material and aluminum cast matrix and method for producing the same",United States Patent (1979)
35.Soumitra Kumar Dinda, Md. Basiruddin Sk , Gour Gopal Roya , Prakash Srirangam,"Microstructure and mechanical properties of electron beam welded dissimilar steel to Fe–Al alloy joints", Materials Science and Engineering: A,Vol.677 (2016) pp.182-192
36.T. Mukai , S. Suresh, K. Kita, H. Sasaki, N. Kobayashi, K. Higashi, A. Inoue, "Nanostructured Al–Fe alloys produced by e-beam deposition: static and dynamic tensile properties", Acta Materialia 51 (2003) pp.4197-4208
37.S.D. Kovaleski, R.M. Gilgenbach , L.K. Ang, Y.Y. Lau, J.S. Lash, "Electron beam ablation versus laser ablation: plasma plume diagnostic studies", Applied Surface Science, No.127–129 (1998) pp.947-952
38.Masanori Kajihara,"Quantitative Evaluation of Interdiffusion in Fe2Al5 during Reactive Diffusion in the Binary Fe–Al System", Materials Transactions, Vol. 47, No. 6 (2006) pp. 1480-1484
39.Dingqiang Li and Dongliang Lin, "Microstructure evolution and Activation energy during superplastic deiformation of FeAl Based intermetallics", Scripta Materialia, Vol. 36, No. 11,(1997) pp. 1289-1294
40.I. Schindler, V. Šumšal, M. Cagala, H. Kulveitová, M. Knapiński, "Determination of activation energy in hot forming of alloy Fe-40Al type", In: METAL 2011, Conference Proceedings. Ostrava: Tanger Ltd, (2011) pp.343-349
41.Jianyu Yang, Wangyu Hu and Jianfeng Tangc,"Effect of incident energy on the configuration of Fe–Al nanoparticles, a molecular dynamics simulation of impact deposition",RSC Advances,Vol.4 (2014) pp.2155-2160
42.D. Alba Venero, R. Rodríguez García, L. Fernández Barquín, E. Apiñaniz, J. S. Garitaonandia, and F. Plazaola,"Dynamics of the Magnetic Susceptibility of FeAl Alloys", IEEE Transactions on magnetics, Vol. 44, No. 11, (2008) pp.3883-3886
43.Shigeaki Kobayashi, Takao Yakou, "Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment", Materials Science and Engineering A338 (2002) pp.44-53
44.Z.Shen,Y.Chen,M.Haghshenas,A.P.Gerlich,"Role of welding parameters on interfacial bonding in dissimilar steel/aluminum friction stir welds", Engineering Science and Technology, an International Journal, Vol. 18, Issue.2(2015) pp.270-277
45.Kenneth C.Ludema, "A review of scuffing and running-in of lubricated surfaces, with asperities and oxides in perspective", Wear, Vol. 100, Issues.1–3 (1984) pp.315-331
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信