§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2407201715112000
DOI 10.6846/TKU.2017.00854
論文名稱(中文) 高層建築於干擾效應下氣動力及氣彈力實驗結果比較
論文名稱(英文) Interference Effects of Highrise Building Based on Aerodynamic and Aeroelastic Experiments
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 土木工程學系碩士班
系所名稱(英文) Department of Civil Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 105
學期 2
出版年 106
研究生(中文) 陳紀柔
研究生(英文) Chi-Jou Chen
學號 604380088
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2017-07-13
論文頁數 122頁
口試委員 指導教授 - 羅元隆(142935@mail.tku.edu.tw)
委員 - 王人牧(wang@mail.tku.edu.tw)
委員 - 陳若華(rhchen@ctu.edu.tw)
關鍵字(中) 高層建築
氣彈實驗
干擾效應
干擾因子
關鍵字(英) High-rise building
Aero-elastic test
Interference effect
Interference factor
第三語言關鍵字
學科別分類
中文摘要
風力對高層建築物的反應為高層建築物設計中重要的一環,本研究以建築物之間風力所造成的干擾效應影響比較為中心,比較氣動力實驗與氣彈力實驗結果在干擾效應影響下的差異性。實驗分為三個部分,第一部分為探討干擾效應下氣動力實驗─風壓量測法之建物整體平均風力係數、擾動風力係數與風力干擾因子;第二部分為比較不同風速與流場之干擾效應下氣彈力實驗─位移量測法之位移擾動值與位移干擾因子;第三部分為比較第一部分與第二部分之相同流場下不同實驗方法之干擾效應結果差異。
  第一部分之實驗以國內現行規範之B地況作為逼近流場,模型高風速為9.2 m/s,並選用高寬比6、深寬比1的矩柱模型作為結構斷面與干擾建物斷面,共有32組試驗結果,分別為1個無干擾建物的單棟試驗與31個干擾位置的實驗。風壓實驗以數據分析為主,將得到的風壓歷時資料經過轉換後變為風力歷時資料,可進行第一部分之比較。再經時間域與頻率域分析後,將計算所得的結構擾動反應值與第二部分之氣彈力實驗結果的結構擾動反應值做比較,列出誤差值與位移干擾因子並找出差異較大的干擾位置與影響最為劇烈的干擾位置。第二部分為探討A、B、C三種地況、三個不同風速(6.5、9.2、11.6 m/s)下的位移反應比較,實驗方法為氣彈實驗,實驗模型與干擾建物模型皆為高寬比6深寬比1的模型,實驗共32組,分別為1個無干擾建物的單棟試驗與31個干擾位置的實驗。以實驗結果比較各風速下的結構擾動反應與位移干擾因子,歸納出干擾效應下不同流場與風速對高層建築物的結構擾動影響。
  研究目的以實驗結果探討,在不同的實驗方法中所得到的結構擾動反應值之變化是否相同,誤差值大小與不同干擾位置之影響大小。並且期望能在氣彈力實驗中找出氣動力實驗無法預估的結構氣彈力現象。當結構物因風力而產生振動時兩棟建築物之間的交互影響作用是靜定氣動力實驗無法預測的,本研究期望能探討在不同風速與流場下,結構物的氣彈力現象之位移反應變化與干擾效應之影響。
英文摘要
Wind effects on high-rise buildings are one important topic in safety designs, especially the target building is neighbored by another one or even more high-rise buildings. This study intends to compare the differences between the result from aerodynamic test and the result from aeroelastic test. Physical scaling tests are planned in three parts: firstly aerodynamic test is conducted in order to understand mean and fluctuating force coefficients of a square prism model with interference effects; secondly aeroelastic test is conducted in order to examine the displacement variation under various velocities and terrain flows; thirdly results from both tests in common setup are compared to find the differences by four means of displacement estimation methodologies.
    For the first part, terrain B in Taiwan code is selected for flow simulation. Both the principal and the interfering models are square prism models with aspect ratio of 6. In total there are 32 interference effect cases. Instantaneous pressures over the surfaces of the principal model are measured and integrated into wind forces. For the second, terrain A, B, and C are simulated and three different velocities are adopted for aeroelastic model under interference effects. Displacements are recorded by laser sensors. By performing free vibration test, the model characteristics are found and the mechanical function is defined. Then four methodologies, time domain analysis, frequency domain analysis, estimation by background component and resonant component, and direct displacement record, are performed in the third part. It is found that,  adopting aerodynamic test for wind-induced response is not reliable compared to aeroelastic test since the wind-induced response with/without interference effects are much more complicated and need more investigations in systematic aeroelastic test work.
第三語言摘要
論文目次
目錄
第一章 緒論	1
1.1 研究動機	1
1.2 研究方法	2
1.3 研究內容	3
1.4 論文架構	4
第二章 文獻回顧	5
2.1 風洞實驗之模擬	5
2.1.1 大氣邊界層之模擬	5
2.1.2 阻塞效應	6
2.1.3 雷諾數效應	6
2.2 干擾效應之於主要建物的風力影響	7
2.2.1 整體風力影響之定性描述	7
2.2.2 以干擾因子定義之定量描述	8
2.3 結構物之振動行為	9
2.3.1 逼近流與尾跡對結構物造成之運動機制	10
2.3.2 順風向振動	10
2.3.3 橫風向振動	10
第三章 理論背景	12
3.1 大氣邊界層特性	12
3.1.1 平均風速剖面	12
3.1.2 紊流強度	13
3.1.3 紊流長度尺度	14
3.1.4 縱向擾動風速頻譜	15
3.2 風與結構體之相互關係	16
3.2.1 氣動力現象	16
3.2.2 結構物之整體設計風載重	18
3.2.3 結構物局部設計風載重	20
3.2.4 風力作用下的位移反應計算	20
3.3  隨機數據理論	22
第四章 實驗設置與數據處理分析	24
4.1 實驗設置	24
4.1.1 風洞	24
4.1.2 模型	25
4.1.3 量測儀器	27
4.1.4 大氣邊界層流場模擬	31
4.2 數據採樣	32
4.3 氣彈力模型之模擬、率定、量測及數據分析	34
4.3.1 自由振動	34
4.3.2 風洞實驗及數據分析	36
4.4 氣動力實驗數據分析	36
4.4.1 風壓實驗之背景+共振方法	36
4.4.2 風壓實驗之頻率域分析	37
4.4.3 風壓實驗之時間域分析	37
第五章 實驗結果與討論	39
5.1 干擾效應下之氣動力實驗	39
5.1.1 干擾建物置於主要建物前方	39
5.1.2 干擾建物置於主要建物左前方	39
5.1.3 干擾建物置於主要建物左方	40
5.1.4 干擾建物置於主要建物左後方	40
5.1.5 干擾建物置於主要建物後方	40
5.2 干擾效應下之氣彈力實驗	49
5.2.1 干擾建物置於主要建物前方	49
5.2.2 干擾建物置於主要建物左前方	49
5.2.3 干擾建物置於主要建物左方	49
5.2.4 干擾建物置於主要建物左後方	50
5.2.5 干擾建物置於主要建物後方	50
5.3 氣動力及氣彈力實驗結果比較	63
5.3.1 干擾建物置於主要建物前方	63
5.3.2 干擾建物置於主要建物左前方	63
5.3.3 干擾建物置於主要建物左方	64
5.3.4 干擾建物置於主要建物左後方	64
5.3.5 干擾建物置於主要建物後方	64
第六章 結論與建議	69
6.1  結論	69
6.2 建議	70
參考文獻	71
[附錄A]氣彈力實驗之位移頻譜	75
[附錄B]氣彈力實驗之位移干擾因子分佈圖	107
[附錄C]氣動力及氣彈力實驗之頻譜比較	113

  
表目錄
表3-1 不同地況之指數律參數	12
表3-2 不同地況之地表粗糙長度尺度	13
表3-3 地表粗糙長度尺度對應之β	14
表4-1  風壓模型之樓層高度配置	25
表4-2 本研究風壓實驗所假設的各項相似性比例縮尺	33
表4-3 本研究氣彈力實驗所假設的各項相似性比例縮尺	33
表4-4 模型參數	35
表5-1 干擾建物置於主要建物前方之平均風力係數與擾動風力係數	41
表5-2 干擾建物置於主要建物左前方之平均風力係數與擾動風力係數	41
表5-3 干擾建物置於主要建物左方之平均風力係數與擾動風力係數	41
表5-4 干擾建物置於主要建物左後方之平均風力係數與擾動風力係數	42
表5-5 干擾建物置於主要建物後方之平均風力係數與擾動風力係數	42
表5-6 順風向位移擾動值	51
表5-7 橫風向位移擾動值	52

  
圖目錄
圖3-1紊流長度尺度參數C、m與高度z0關係圖	15
圖3-2鈍體分離流及渦漩示意圖	18
圖4-1淡江大學風工程研究中心第一號大氣邊界層風洞實驗室	24
圖4-2風壓模型主建物與干擾建物模型示意圖及照片	26
圖4-3氣彈模型主建物與干擾建物模型示意圖及照片	26
圖4-4座標版配置示意圖	27
圖4-5皮托管與壓力轉換器	28
圖4-6訊號擷取器	29
圖4-7壓力量測系統	29
圖4-8壓力訊號處理系統(RADBASE3200)	30
圖4-9 64頻道壓力感應器模組	30
圖4-10雷射位移計	31
圖4-11淡江大學大氣邊界層風洞實驗室擾流板與粗糙元素擺設示意圖	32
圖4-12 A、B、C地況之平均風速剖面及紊流強度	32
圖4-13氣彈架構	34
圖4-14自由振動模型位移歷時	35
圖5-1干擾建物置於主要建物前方之順風向約化頻譜	43
圖5-2干擾建物置於主要建物前方之橫風向約化頻譜	43
圖5-3干擾建物置於主要建物左前方之順風向約化頻譜	44
圖5-4干擾建物置於主要建物左前方之橫風向約化頻譜	44
圖5-5干擾建物置於主要建物左方之順風向約化頻譜	45
圖5-6干擾建物置於主要建物左方之橫風向約化頻譜	45
圖5-7干擾建物置於主要建物左後方之順風向約化頻譜	46
圖5-8干擾建物置於主要建物左後方之橫風向約化頻譜	46
圖5-9干擾建物置於主要建物後方之順風向約化頻譜	47
圖5-10干擾建物置於主要建物後方之橫風向約化頻譜	47
圖5-11順風向風力干擾因子分佈圖	48
圖5-12橫風向風力干擾因子分佈圖	48
圖5-13干擾建物置於主要建物正前方之順風向結構擾動反應比較	53
圖5-14干擾建物置於主要建物正前方之橫風向結構擾動反應比較	54
圖5-15干擾建物置於主要建物左前方之順風向結構擾動反應比較	55
圖5-16干擾建物置於主要建物左前方之橫風向結構擾動反應比較	56
圖5-17干擾建物置於主要建物左方之順風向結構擾動反應比較	57
圖5-18干擾建物置於主要建物左方之橫風向結構擾動反應比較	58
圖5-19干擾建物置於主要建物左後方之順風向結構擾動反應比較	59
圖5-20干擾建物置於主要建物左後方之橫風向結構擾動反應比較	60
圖5-21干擾建物置於主要建物後方之順風向結構擾動反應比較	61
圖5-22干擾建物置於主要建物後方之橫風向結構擾動反應比較	62
圖5-23干擾建物置於主要建物前方之順風向位移干擾因子折線圖	65
圖5-24干擾建物置於主要建物前方之橫風向位移干擾因子折線圖	65
圖5-25干擾建物置於主要建物左前方之順風向位移干擾因子折線圖	65
圖5-26干擾建物置於主要建物左前方之橫風向位移干擾因子折線圖	66
圖5-27干擾建物置於主要建物左方之順風向位移干擾因子折線圖	66
圖5-28干擾建物置於主要建物左方之橫風向位移干擾因子折線圖	66
圖5-29干擾建物置於主要建物左後方之順風向位移干擾因子折線圖	67
圖5-30干擾建物置於主要建物左後方之橫風向位移干擾因子折線圖	67
圖5-31干擾建物置於主要建物後方之順風向位移干擾因子折線圖	67
圖5-32干擾建物置於主要建物後方之橫風向位移干擾因子折線圖	68
圖A-1單棟之A、B、C地況位移頻譜	75
圖A-2干擾建物位置x/B=1.5,y/B=0, A、B、C地況位移頻譜	76
圖A-3干擾建物位置x/B=2,y/B=0, A、B、C地況位移頻譜	77
圖A-4干擾建物位置x/B=2.5,y/B=0, A、B、C地況位移頻譜	78
圖A-5干擾建物位置x/B=3,y/B=0, A、B、C地況位移頻譜	79
圖A-6干擾建物位置x/B=4,y/B=0, A、B、C地況位移頻譜	80
圖A-7干擾建物位置x/B=5,y/B=0, A、B、C地況位移頻譜	81
圖A-8干擾建物位置x/B=6,y/B=0, A、B、C地況位移頻譜	82
圖A-9干擾建物位置x/B=1.5,y/B=1.5, A、B、C地況位移頻譜	83
圖A-10干擾建物位置x/B=2,y/B=2, A、B、C地況位移頻譜	84
圖A-11干擾建物位置x/B=2.5,y/B=2.5, A、B、C地況位移頻譜	85
圖A-12干擾建物位置x/B=3,y/B=3, A、B、C地況位移頻譜	86
圖A-13干擾建物位置x/B=4,y/B=4, A、B、C地況位移頻譜	87
圖A-14干擾建物位置x/B=5,y/B=5, A、B、C地況位移頻譜	88
圖A-15干擾建物位置x/B=6,y/B=6, A、B、C地況位移頻譜	89
圖A-16干擾建物位置x/B=0,y/B=1.5, A、B、C地況位移頻譜	90
圖A-17干擾建物位置x/B=0,y/B=2, A、B、C地況位移頻譜	91
圖A-18干擾建物位置x/B=0,y/B=2.5, A、B、C地況位移頻譜	92
圖A-19干擾建物位置x/B=0,y/B=3, A、B、C地況位移頻譜	93
圖A-20干擾建物位置x/B=0,y/B=4, A、B、C地況位移頻譜	94
圖A-21干擾建物位置x/B=0,y/B=5, A、B、C地況位移頻譜	95
圖A-22干擾建物位置x/B=0,y/B=6, A、B、C地況位移頻譜	96
圖A-23干擾建物位置x/B=-1.5,y/B=1.5, A、B、C地況位移頻譜	97
圖A-24干擾建物位置x/B=-2,y/B=2,A、B、C地況位移頻譜	98
圖A-25干擾建物位置x/B=-2.5,y/B=2.5, A、B、C地況位移頻譜	99
圖A-26干擾建物位置x/B=-3,y/B=3, A、B、C地況位移頻譜	100
圖A-27干擾建物位置x/B=-4,y/B=4, A、B、C地況位移頻譜	101
圖A-28干擾建物位置x/B=-1.5,y/B=0, A、B、C地況位移頻譜	102
圖A-29干擾建物位置x/B=-2,y/B=0, A、B、C地況位移頻譜	103
圖A-30干擾建物位置x/B=-2.5,y/B=0, A、B、C地況位移頻譜	104
圖A-31干擾建物位置x/B=-3,y/B=0, A、B、C地況位移頻譜	105
圖A-32干擾建物位置x/B=-4,y/B=0, A、B、C地況位移頻譜	106
圖B-1 A地況順風向位移干擾因子分佈圖(U=6.5)	107
圖B-2 A地況順風向位移干擾因子分佈圖(U=9.2)	107
圖B-3 A地況順風向位移干擾因子分佈圖(U=11.6)	107
圖B-4 A地況橫風向位移干擾因子分佈圖(U=6.5)	108
圖B-5 A地況橫風向位移干擾因子分佈圖(U=9.2)	108
圖B-6 A地況橫風向位移干擾因子分佈圖(U=11.6)	108
圖B-7 B地況順風向位移干擾因子分佈圖(U=6.5)	109
圖B-8 B地況順風向位移干擾因子分佈圖(U=9.2)	109
圖B-9 B地況順風向位移干擾因子分佈圖(U=11.6)	109
圖B-10 B地況橫風向位移干擾因子分佈圖(U=6.5)	110
圖B-11 B地況橫風向位移干擾因子分佈圖(U=9.2)	110
圖B-12 B地況橫風向位移干擾因子分佈圖(U=11.6)	110
圖B-13 C地況順風向位移干擾因子分佈圖(U=6.5)	111
圖B-14 C地況順風向位移干擾因子分佈圖(U=9.2)	111
圖B-15 C地況順風向位移干擾因子分佈圖(U=11.6)	111
圖B-16 C地況橫風向位移干擾因子分佈圖(U=6.5)	112
圖B-17 C地況橫風向位移干擾因子分佈圖(U=9.2)	112
圖B-18 C地況橫風向位移干擾因子分佈圖(U=11.6)	112
圖C-1干擾建物置於主要建物前方之順風向位移頻譜比較	113
圖C-2干擾建物置於主要建物前方之橫風向位移頻譜比較	114
圖C-3干擾建物置於主要建物左前方之順風向位移頻譜比較	115
圖C-4干擾建物置於主要建物左前方之橫風向位移頻譜比較	116
圖C-5干擾建物置於主要建物左方之順風向位移頻譜比較	117
圖C-6干擾建物置於主要建物左方之橫風向位移頻譜比較	118
圖C-7干擾建物置於主要建物左後方之順風向位移頻譜比較	119
圖C-8干擾建物置於主要建物左方之橫風向位移頻譜比較	120
圖C-9干擾建物置於主要建物後方之順風向位移頻譜比較	121
圖C-10 干擾建物置於主要建物後方之橫風向位移頻譜比較	122
參考文獻
[2-1] C. F. Cowdery, (1986), “Two topics of interesting experimental industrial aerodynamic”, symposium on wind effects on buildings and structures, National physical laboratory, Teddington.
[2-2] D. J. Cockrell and S. E. Lee, (1964), “Methods and consequences of atmospheric boundary layer simulation”, paper 13-AGARD conference proc. No.48 on aerodynamic of atmospheric shear flows, Munich.
[2-3] J. Counihan, (1970), “Further Measurements in a Simulated Atmospheric Bounday Layer”, Atmospheric Environment, Vol.4, pp.159-275.
[2-4] J. Counihan, (1970), “An Improved Method of Simulation Atmospheric Boundary Layer”, Atmospheric Environment, Vol.4, pp.159-275.
[2-5] J. Counihan, (1973), “Simulation of an Adiabatic Urban Boundary Layer in a Wind Tunnel”, Atmospheric Environment, Vol.7, pp.673-689.
[2-6] N. M. Standen, (1972), “A Spire Array for Generating Thick Turbulent Shear Layers for Natural Wind Simulation in Wind Tunnels”, Rep. LTR-LA-94, National Aeronautical Establishment, Ottawa, Canada.
[2-7] R. V. Barret, (1972), “A Versatile Compact Wind Tunnel for Industrial Aerodynamics”, Technical note, Atmospheric Environment, Vol.6, pp.491-495.
[2-8] N. J. Cook, (1973), “On Simulating the lower Third of the Urban Adiabatic Boundary Layer in a Wind Tunnel”, Atmospheric Environment, Vol.7, pp.691-705.
[2-9] J. E. Cermak, J. A. Peterka, (1974), “Simulation of Atmospheric Flows in Short Wind Tunnel Test Sections”, Center for Building Technology, IAT, National Bureau of Standards Washington, D.C., June.
[2-10] Irwin, H.P.A.H., (1981), “The Design of Spire for Wind Simulation”, J. of Wind Engineering and Industrial Aerodynamics, Vol.7, p361-366.
[2-11] Jesen, M., 1958, “The Model Law for Phenomena in Natural Wind” Ingeioen International Edition, Vol.2, No.4, pp.121-123.
[2-12] R. E. Whitbread, (1963), “Model Simulation of Wind Effects on Structures” Proceeding of the Conference on Wind Effects on Buildings and Structures, pp.284-306.
[2-13] J. M. Biggs, (1954), “Wind Load on Truss Bridges”, ASCE, pp.879.
[2-14] A. Hunt, (1982), “Wind Tunnel Measurement of Surface Pressure on Cubic Building Models at Several Scales” J. Wind Eng. Ind. Aero., Vol. 10, pp.137-163.
[2-15] Y. Nakamura, Y. Ohya, (1984), “The effects of turbulence on the mean flowpast two dimensional rectangular cylinders”, J. of Fluid. Mech., Vol.149, pp.255-273.
[2-16] A. Townsend, (1956), “The structure of turbulent shear flow”, Cambridge Univ. Press. Pp. 315
[2-17] Architectural Institute of Japan (AIJ). (2004)
[2-18] 建築物結構荷重規範(GB 50009). (2012)
[2-19] 林倚仲,2005,“干擾效應對高層建築設計風力的影響”,淡江大學土木工程研究所碩士論文。
[2-20] Gu, M., 2004, “Mean interference effects among tall buildings”, Engineering Structures 26 1173-1183.
[2-21] 盧博堅、鄭啟明、賴建志,1987,“邊界層中三方柱體群縱向與橫向排列所受風力之交互作用”,The Chinese Journal of Mechanics, Vol.11., pp.185-193.
[2-22] English, E. C., 1990, “Shielding factors from wind-tunnel studies of prismatic structures”, Journal of Wind Engineering and Industrial Aerodynamics, 36, 611-619
[2-23] Blessmann, J., Riera, J. D., 1985, “Wind excitation of neighboring tall buildings”, Journal of Wind Engineering and Industrial Aerodynamics, 18, 91-103.
[2-24] Kareem, A., 1987, “The effect of aerodynamic interference on the dynamic response of prismatic structures”, J. Wind Eng. Ind. Aero., Vol.25., pp.365-372.
[2-25] Sakamoto, H., Haniu, H., 1988, “Effect of free-stream turbulence on Characteristics of fluctuating forces acting on two square prisms in tandem arrangement”, Trans. ASME, Vol. 110, 140-146.
[2-26] Sakamoto, H., Haniu, H., 1988, “Aerodynamic forces acting on two square prisms placed vertically in a turbulent boundary layer”, Journal of Wind Engineering and Industrial Aerodynamics, 31, 41-66.
[2-27] English, E. C., 1985, “Shielding factors from Wind-Tunnel studies of Mid-Rise and High-Rise structures”, Proceedings Fifth U. S. Conference on Wind Engineering.
[2-28] Khanduri, A. C., Stathopoulos, T., Bedard, C., 1998, “Wind-induced interference effects on buildings—a review of the state-of-the-art”, Eng. Struct., 20(7), 617–630.
[2-29] Khanduri, A. C., Stathopoulos, T., Bedard, C., 2000, “Generalization of wind-induced interference effects for two buildings”. WindStruct., 3, 255–266.
[2-30] Mara, T.G, Terry, B. K., Ho, T. C. E., Isyumov, N., 2014, “Aerodynamic and peak response interference factors for an upstream square building of identical height”, J. Wind Eng. Ind. Aerodyn., 133, 200–210.
[2-31] Xie, Z. N., Gu, M., 2004, “Mean interference effects among tall buildings”, Engineering Structures, 26, 1173-1183.
[2-32] Xie, Z. N., Gu, M., 2007, “Simplified formulas for evaluation of wind-induced interference effects among three tall buildings”, J. Wind Eng. Ind.Aerodyn., 95, 31-52.
[2-33] Huang, P., Gu, M., 2005, “Experimental study on wind-induced dynamic interference effects between two tall buildings”, Wind and structures, Vol.8, No.3, pp. 147-161.
[2-34] Davenport, A.G., “Gust loading factors”, J. of Structure Division, ASCE, Vol. 93, No.st3, June 1967, p11-34
[2-35] Vickery, B. J., 1996, “Fluctuating lift and drag on a long cylinder of square cross-section in a smooth and in a turbulence stream”, J. of Fluid Mech., Vol.22 p481-p494
[2-36] Kawai, H., 1992, “Vortex Induced Vibration of tall building”, J. of Wind Engineering and Industrial Aerodynamics, Vol.44-44, p117-p128
[2-37] Takeo Matsumoto, “ On the across-wind oscillation of tall building”, J. of Wind Engineering and Industrial Aerodynamics, 24(1986), p69-85
[2-38] Kwork, k.c.s., Melbourne, W, H., “Wind-induced Lock-in Excitation of tall structures”, of Structural Division, Vol. 107(1981), No.st1, p57-72
[3-1] A. G. Davenport, 1961, “The Relationship of Wind Structure to Wind Loading”, Proc. Symp. On Wind Effects on Buildings and Structures, Vol.1, National Physical Laboratory, Teddington, U.K. Her Majesty’s Stationary Office, London, pp.53-102.
[3-2] American National Standard A58.1-1982 Minimum American National Standard Institute, Inc., New York.
[3-3] Emil Simiu, Rebort H. Scanlan, 1986, “Wind Effects on Structures” 2nd edit.﹐John Wiley & Sons.
[3-4] J. Counihan, 1975, “Adiabatic Atmospheric Boundary Layers: A Review and Analysis of Data from the Period 1880-1972” , Atmospheric Environment, Vol.9, pp.871-905.
[3-5] A. G. Davenport, 1961, “The Spectrum of Horizontal Gustiness Near the Ground in High Winds”, J. Royal Meteorol. Soc., 87, p194-211.
[3-6] J. C. Kaimal, 1972, “Spectral Characteristics of Surface Layer Turbulence”, J. Royal Meterol Soc., Vol.87, pp.563-589.
[3-7] J.D. Holmes, 2001, Wind loading of structures, Spon Press.
[3-8] A. Kareem, 1981, “Wind excited response of buildings in higher modes”, J. Struct. Div., ASCE, Vol.107, no. ST4, pp.701-706.
[3-9] Ali, H. M., Senseny, P. E., 2003, “Models for standing seam roods”, J. Wind Eng. Ind. Aerodyn. 91:1689-1702.
[3-10] B. J. Vickery, 1970, “On the Reliability of Gust Loading Factors”, Proc. Technical Meeting Concerning Wind Loads on Buildings and Structures,National Bereau of Standards Building Science Series 30,Washington, D. C.
[4-1] Anil K. Chopra, “Dynamics of Structures, theory and applications to earthquake engineering”, pp.171-174.
論文全文使用權限
校內
校內紙本論文立即公開
同意電子論文全文授權校園內公開
校內電子論文立即公開
校外
同意授權
校外電子論文立即公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信