淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2407201413271100
中文論文名稱 拉伸流所產生之局部消散能量與溶血相關研究
英文論文名稱 Hemolysis as a function of the local energy dissipation created by a rapid extensional flow
校院名稱 淡江大學
系所名稱(中) 水資源及環境工程學系碩士班
系所名稱(英) Department of Water Resources and Environmental Engineering
學年度 102
學期 2
出版年 103
研究生中文姓名 邱奕銘
研究生英文姓名 Yi-Ming Chiou
學號 601480022
學位類別 碩士
語文別 中文
口試日期 2014-06-18
論文頁數 86頁
口試委員 指導教授-盧博堅
委員-張正興
委員-丁大為
中文關鍵字 溶血  切應力  拉伸應力  能量消散率  計算流體力學  心血管系統 
英文關鍵字 hemolysis  shear stress  extensional stress  energy dissipation rates  CFD  cardiovascular system 
學科別分類 學科別應用科學環境工程
中文摘要 隨著社會與生活型態的日新月異,因此人類的飲食習慣與生活作息也有所改變,但這同時對身體的器官造成相當大的負擔,也使得病變越來越多樣化,人類為了改善這些病狀,研發出人工心血管器官。但心血管中會造成非生理性的流況,其流況所產生的血流應力會引發血液的破壞,特別是紅血球的損傷,稱為溶血。真實流場應包含有剪應力和拉伸應力,許多學者在爭論切應力和拉伸應力何者才是主導溶血的主要因素,於是產生了一個指標也就是能量消散率,這個指標無忽略上述兩種力,本研究以斜角模型與直角模型做為實驗流場,探討這三種力何者才是主導溶血主要因素,此流場先經由CFD的計算,求出其應力值,然後採用豬的新鮮紅血球,進行溶血的測試,發現切應力與能量消散率無法成為主導溶血的主要依據,而拉伸應力才是主導血球破壞的主導血球破壞的機械力,其閥值約為800 Pa。
英文摘要 With newer and newer society and life style, the diet and living habits of people are also changing, but they make a great burden to organs in our body simultaneously. They also make more pathological changes. Therefore, humans develop artificial organs of cardiovascular to improve these symptoms.
However, there is irrational flow conditions in cardiovascular system. What’s more, flow conditions will cause stress and destroy blood, especially in destruction of red blood cell, which is called hemolysis. Real flow field should include shear stress and extensional stress. Many scholars argue that which one is the main hemolysis factor, so they use Energy Dissipation Rates as an indicator. Energy Dissipation Rates don’t disregard foregoing two stress. This research apply bevel model and right Angle model to be a experimental flow field, discussing which one is the main hemolysis factor. Flow field is calculated by CFD and get stress of threshold. Then, I use pig’s fresh red blood cell to test hemolysis. I find that Shear stress and Energy Dissipation Rates can’t be the main factor in hemolysis. Nevertheless, according to 800 Pa threshold value, I find that extensional stress can destroy blood cells, and it is also the main factor.
論文目次 目錄
表目錄 VI
圖目錄 VII
第一章 緒論 1
1-1 前言 1
1-2 研究目的與動機 3
1-3 研究過程 5
第二章 文獻回顧 8
2-1 血球破壞閥值 8
第三章 實驗設置 16
3-1 CFD數值方法設定與模式模擬 16
3-2 模型概況 22
3-3溶血實驗 流場設置 24
3-3紅血球破壞實驗 25
第四章 結果與討論 29
4-1 流場模擬速度分布 29
4-2流場上應力分布之探討 52
4-3斜角流場與直角流場分布之探討 53
4-3-1 速度分布比較 53
4-3-2 τ_xx分布比較 54
4-3-3 τ_yy分布比較 55
4-3-4 τ_xy分布比較 56
4-3-5切應力(Shear stress)分布比較 57
4-3-6拉伸應力(Extensional stress)分布比較 58
4-3-7能量消散率(Energy Dissipation Rates)分布比較 59
4-4 流量權重法 60
4-4-1 溶血結果 64
4-4-2速度與溶血指數IH之關係 65
4-4-3六分量的應力與溶血指數IH之關係 66
4-4-6 切應力(Shear stress)、拉伸應力(Extensional stress)、能量消散率(EDR)與溶血指數IH之關係 73
4-5 建議與改進 77
第五章 結論 78
參考文獻 79
表目錄
表2-1.研究學者列表。 9
表3-1.各參數對照表。 21
表3-2.此為流場初始條件設計之依據,初始平均流速與Re數的數值。 21
表4-1.各段面能量消散率(Energy Dissipation Rates)的平均數值。 61
表4-2.流量權重法所得之流場應力值。 63
表4-3.17cP溶血與對應之狹縫平均流速。 64
圖目錄
圖 2-1.斜角與直角流場示意圖(a)斜角流場示意圖(b)直角流場示意圖。 15
圖 3-1.斜角流場模擬圖(單位皆為mm,Z(厚度)=0.5mm) 20
圖 3-2.直角流場模擬圖(單位皆為mm,Z(厚度)= 0.5mm) 20
圖3-3.斜角鋼板(單位為mm) 22
圖3-4.直角鋼板(單位為mm) 22
圖3-5.斜角模型圖 23
圖3-6.斜角模型圖 23
圖3-7.流場設置圖 27
圖3-8.實驗樣本 27
圖3-9.馬達控制器(a)與伺服馬達(b)的實體圖。 28
圖3-10.為流場設置實體圖。 28
圖4-1.黏滯度17cP,斜角橫切面xy軸平面上Velocity分布圖。 31
圖4-2.黏滯度17cP,斜角橫切面xy軸平面上τ_xx分布圖。 32
圖4-3.黏滯度17cP,斜角橫切面xy軸平面上τ_yy分布圖。 33
圖4-4.黏滯度17cP,斜角橫切面xy軸平面上τ_zz分布圖。 34
圖4-5.黏滯度17cP,斜角橫切面xy軸平面上τ_xy分布圖。 35
圖4-6.黏滯度17cP,斜角橫切面xy軸平面上τ_yz分布圖。 36
圖4-7.黏滯度17cP,斜角橫切面xy軸平面上τ_zx分布圖。 37
圖4-8.黏滯度17cP,斜角橫切面xy軸平面上Shear-stress分布圖。 38
圖4-9.黏滯度17cP,斜角橫切面xy軸平面上Extensional-stress分布圖。 39
圖4-10.黏滯度17cP,斜角橫切面xy軸平面上Energy Dissipation Rates分布圖。 40
圖4-11.黏滯度17cP,直角橫切面xy軸平面上Velocity分布圖。 42
圖4-12.黏滯度17cP,直角橫切面xy軸平面上τ_xx分布圖。 43
圖4-13.黏滯度17cP,直角橫切面xy軸平面上τ_yy分布圖。 44
圖4-14.黏滯度17cP,直角橫切面xy軸平面上τ_zz分布圖。 45
圖4-15.黏滯度17cP,直角橫切面xy軸平面上τ_xy分布圖。 46
圖4-16.黏滯度17cP,直角橫切面xy軸平面上τ_yz分布圖。 47
圖4-17.黏滯度17cP,直角橫切面xy軸平面上τ_zx分布圖。 48
圖4-18.黏滯度17cP,直角橫切面xy軸平面上Shear-stress分布圖。 49
圖4-19.黏滯度17cP,直角橫切面xy軸平面上Extensional-stress分布圖。 50
圖4-20.黏滯度17cP,直角橫切面xy軸平面上Energy Dissipation Rates分布圖。 51
圖4-21.速度分布比較。 53
圖4-22.τ_xx分布比較。 54
圖4-23〖.τ〗_yy分布比較。 55
圖4-24〖.τ〗_xy分布比較。 56
圖4-25.切應力(Shear stress)分布比較。 57
圖4-26.拉伸應力(Extensional stress)分布比較。 58
圖4-27.能量消散率(Energy Dissipation Rates)分布比較。 59
圖4-28.能量消散率(Energy Dissipation Rates)的各個段面。 61
圖4-29.17cP下Velocity與溶血之關係圖。 65
圖4-30.17cP下 τ_xx與溶血之關係圖。 66
圖4-31.17cP下 τ_yy與溶血之關係圖。 67
圖4-32.17cP下 τ_zz與溶血之關係圖。 68
圖4-33.17cP下 τ_xy與溶血之關係圖。 69
圖4-34.17cP下 τ_yz與溶血之關係圖。 70
圖4-35.17cP下 τ_zx與溶血之關係圖。 71
圖4-36.17cP下 Shear stress與溶血之關係圖。 73
圖4-37.17cP下拉伸應力(Extensional stress)與溶血之關係圖。 74
圖4-38.17cP下能量消散率(EDR)與溶血之關係圖。 75




參考文獻 1. Aloi LE, Cherry RS. 1996. Cellular response to agitation characterized by energy dissipation at the impeller tip. Chem Eng Sci 51:1523–1529.
2. Apel J, Paul R, Klaus S et al. Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics. Artif Organs 2001; 25(5): 341-347.
3. Arora D, Behr M, and Pasquali M. A tensor-based measure for estimating blood damage. Artif Organs 2004; 28(11): 1002-1015.
4. Arora D, Behr M, and Pasquali M. Hemolysis estimation in a centrifugal blood pump using a tensor-based measure. Artif Organs 2006; 30(7):539-547.
5. Arora D, Behr M, Coronado-Matutti O, Pasquali M. Estimation of hemolysis in centrifugal blood pumps using morphology tensor approach. Computational Fluid and Solid Mechanics 2005; 578-582.
6. Arvand AM, Hormes M, Reul A. A validated computational fluid dynamics model to estimate hemolysis in a rotary blood pump. Artif Organs 2005; 29:531-40.
7. Behbahani M, Behr M, Hormes M, Steinseifer U, Arora D, Pasquali M. A review of computational fluid dynamics analysis of blood pumps. Eur. J. Appl. Math. 2009; 20:369-97.
8. Bentley BJ, and Leal LG. A computer-controlled four-roll mill for investigations of particle and drop dynamics in two-dimensional linear shear flows. J. Fluid Mech. 1986; 167:219-240.
9. Bentley BJ, and Leal LG. An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows. J. Fluid Mech. 1986; 167:241-283.
10. Bluestein D, Li YM, and Krukenkamp IB. Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques. J. Biomech. 2002; 35(12): 1533-1540.
11. Bluestein M, Mockros LF. 1969. Hemolytic effects of energy dissipation in flowing blood. Med Biol Eng 7:1–6.
12. Chan WK, Wong YW, Ding Y et al. Numerical investigation of the effect of blade geometry on blood trauma in a centrifugal blood pump. Artif Organs 2002; 26(9):785-793.
13. Chang KS, and Olbright WL. Experimental studies of the deformation of a synthetic capsule in extensional flow. J. Fluid Mech. 1993; 250:587-608.
14. Chang KS, and Olbright WL. Experimental studies of the deformation and breakup of a synthetic capsule in steady and unsteady simple shear flow. J. Fluid Mech. 1993; 250:609-633.
Croughan MS, Wang DIC. 1989. Growth and death in overagitated microcarrier cell cultures. Biotechnol Bioeng 33:731–744.
15. De WD and Verdonck P. Numerical calculation of hemolysis levels in peripheral hemodialysis cannulas. Artif Organs 2002; 26(7):576-582.
16. Dhaene M, Gulbis B, Lietaer N, et al. Red blood cell destruction in single-needle dialysis. Clin. Nephrol 1989; 31:327-31.
17. Down LA, Papavassiliou DV, O’Rear EA. Significance of extensional stresses to red blood cell lysis in a shearing flow. Ann. Biomed. Eng. 2011; 39(6):1632-42.
18. Farinas MI, Garon A, Lacasse D, N’dri D. Asymptotically consistent numerical approximation of hemolysis. J. Biomech. Eng. 2006; 128:688-696.
19. Fife JP, Derksen RC, Ozkan HE, Grewal PS, Chalmers JJ. 2004. Evaluation of a contraction flow field on hydrodynamic damage to entompathogenic nematodes—A biological pest control agent. Biotechnol Bioeng 86(1): 11: 96–107.
20. Figlio RS, and Mueller TJ. On the hemolytic and thrombogenic potential of occluder prosthetic heart valves from in-vitro measurements. J.Biomech. 1981;103:83-90.
21. Fischer T and Schmid-Schonbein H . Tank tread motion of red cell membranes in viscometric flow: behavior of intracellular and extracellular markers(with film). Blood Cells. 1997; 3:351-365.
22. Garcia-Briones MA, Chalmers JJ. 1994. Flow parameters associated with hydrodynamic cell injury. Biotechnol Bioeng 44:1089–1098.
23. Garon A and Farinas MI. Fast three-dimensional numerical hemolysis approximation. Artif Organs 2004; 28(11): 1016-1025.
24. Giersiepen M, Wurzinger LJ, Opitz R, Reul H. Estimation of shear stress-related blood damage in heart valve prostheses—in vitro comparison of 25 aortic valves. Int J Artif Organs 1990; 13:300–6.
25. Goubergrits L and Affeld K. Numerical estimation of blood damage in artificial organs. Artif Organs 2004; 28(5):499-507.
26. Goubergrits L, Osman J, Affeld K , and Kertzscher U. First experience with an FDA critical path initiative: CFD and hemolysis. The International Journal of Artificial Organs 2009; 32(7):398.
27. Gregoriades N, Clay J, Ma N, Koelling K, Chalmers JJ. Cell damage of microcarrier cultures as a function of local energy dissipation created by a rapid extensional flow. Biotechnol Bioeng 2000; 69(2):171-182.
28. Gregoriades N, Clay J, Ma Ningning, Koelling K, Chalmers J. 2000. Cell damage of microcarrier cultures as a function of local energy dissipation created by a rapid extensional flow. Biotechnol Bioeng 69:171– 182.
29. Grigioni M, Caprari P, Tarzia A, and D'Avenio G. Prosthetic heart valves' mechanical loading of red blood cells in patients with hereditary membrane defects. J. Biomech. 2005 38(8): 1557-1565.
30. Gu L and Smith WA. Evaluation of computational models for hemolysis estimation. ASAIO J. 2005; 202-207.
31. Hariharan P, Giarra M, Reddy V, et al. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations. ASME J. Biomech. Eng. 2011; 133/ 041002-1-13.
32. Hellums JD, Brown CH. Blood cell damage by mechanical forces. In: Cardiovascular Flow Dynamics and Measurements. Edited by NHC Hwang and NA Normann. Baltimore: University Park Press 1977.
33. Herbertson LH, Lu Q, Malinauskas A. A single-pass orifice system to assess red blood cell fragility. ASAIO J. 2010; 56(2):86.
34. Heuser G, Opitz R. A Couette viscometer for short time shearing of blood. Biorheology 1980; 17:17–24.
35. Hu W, Gladue R, Hansen J, Wojnar C, Chalmers JJ. 2007. The sensitivity of the Dinoflagellate Crypthecodinium cohnii to transient hydrodynamic forces. Biotechnol Progress 23:1355–1362.
36. Kawahito K, Nose’ Y. Hemolysis in different centrifugal pumps. Artif. Organs 1997; 21:323-6.
37. Keshaviah P. Hemolysis in the accelerated flow region of an abrupt contraction. Doctoral Dissertation, University of Minnesota, 1974.
38. Lee SS, Yim Y, Ahn KH, Lee SJ. Extensional flow-based assessment of red blood cell deformability using hyperbolic converging microchannel. Biomed Microdevices 2009; 11:1021-7.
39. Leverett LB, Hellums JD, Alfrey CP, Lynch EC. Red blood cell damage by shear stress. Biophys J. 1972; 12:257–73.
40. Luckras H, Woods M, Large SR. And hemolysis goes on: ventricular assist device in combination with veno-venous hemofiltration. Ann. Thorac. Surg. 2002; 73:546-8.
41. Ma N, Koelling K, Chalmers JJ. 2002. The fabrication and use of a transient contractional flow device to quantify the sensitivity of mammalian and insect cells to hydrodynamic forces. Biotechnol Bioeng 80:428–437.
42. McQueen A, Bailey JE. 1989. Influence of serum level, cell line, flow type, and viscosity on flow-induced lysis of suspended mammalian cells. Biotechnol Lett 11:531–536.
43. McQueen A, Melhoc E, Bailey JE. 1987. Flow effects on the viability and lysis of suspended mammalian cells. Biotechnol Lett 9:831–836.
44. Mitoh A, Yano T, Sekine K et al. Computational fluid dynamics analysis of an intra-cardiac axial flow pump. Artif Organs 2003; 27(1):34-40.
45. Mollet M, Godoy-Silva R, Berdugo C, Chalmers JJ. 2007. Acute hydrodynamic forces and apoptosis: A complex question. Biotechnol Bioeng 98(4):772–788.
46. Mollet M, Godoy-Silva R, Berdugo C, Chalmers JJ. 2008. Computer simulations of the engergy dissipation rate in a fluorescence-activated cell sorter: Implications to cells. Biotechnol Bioeng 100(2):260–272.
47. Mollet M, Ma N, Zhao Y, Brodkey R, Taticek R, Chalmers J. 2004. Bioprocess equipment: Characterization of energy dissipation rate and its potential to damage cells. Biotechnol Progress 20:1437–1448.
48. Nevaril CG, Lynch EC, Alfrey CP, Hellums JD. Erythrocyte damage and destruction induced by shearing stress. J. Lab. Clin. Med. 1968; 71: 784-790.
49. Paul R, Apel J, Klaus S, Schugner F, Schwindke P, and Reul H. Shear Stress Related Blood Damage in Laminar Couette Flow. Artif Organs 2003; 27(6):517–529.
50. Polaschegg HD Red blood cell damage from extracorporeal circulation in hemodialysis. Semin. Dial. 2009; 22:524-31.
51. Raisky F, Gauthier C, Marchal A, Blum D. Haemolyzed sample responsibility of short catheters.Ann. Biol. Clin. Paris 1994; 52:523-527.
52. Rooney JA. Hemolysis near an ultrasonically pulsating gas bubble. Science 1970; 169:869–71.
53. Song X, Throckmorton AL, Wood HG et al. Computational fluid dynamics prediction of blood damage in a centrifugal pump. Artif Organs 2003; 27(10):938-941.
54. Stewart S, Day S, Burgreen GW et al. Preliminary results of FDA’s “critical path” project to validate computational fluid dynamic methods used in medical device evaluation. ASAIO J. 2009; 55(2): 173.
55. Stewart S, Paterson EG, Burgreen GW et al., Assessment of CFD Performance in Simulations of an Idealized Medical Device: Results of FDA’s First Computational Interlaboratory Study, Cardiovascular Engineering and Technology. 2012; 3(2): 139-160.
56. Stewart S, Paterson EG, Burgreen GW et al., Turblence modeling as a source of error in FDA’s “critical path” interlaboratory computational study of flow in a nozzle model, ASAIO J. 2010; 56(2): 82.
57. Tsuji A, Tanabe M, Onishi K, et al. Intravascular hemolysis in aortic stenosis. Intern. Med. 2004;43:935-8
58. White FM. Viscous Fluid Flow. Third Edition. McGraw Hill. New York. 2006.
59. Williams AR, Hughes DE. Hemolysis near a transversely oscillating wire. Science 1970; 169:871–3.
60. Wurzinger LJ, Opitz R, Eckstein H. Mechanical bloodtrauma. An overview. Angeiologie 1986; 38:81–97.
61. Yano T, Sekine K, Mitoh A et al. An estimation method of hemolysis within an axial flow blood pump by computational fluid dynamics analysis. Artif Organs 2003; 27(10): 920-925.
62. Zhao R, Antaki JF, Naik T, Bachman TN, Kameneva MV, Wu ZJ. Microscopic investigation of erythrocyte deformation dynamics. Biorheology 2006; 43:747-65.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2014-08-12公開。
  • 同意授權瀏覽/列印電子全文服務,於2014-08-12起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信