淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2407201314075400
中文論文名稱 Mastoparan-B及其衍生物在TFE與SDS環境下結構、動力學的行為與活性的關係
英文論文名稱 Relationship between structure, backbone dynamics and activity of Mastoparan-B and its analogues in TFE and SDS environment
校院名稱 淡江大學
系所名稱(中) 化學學系碩士班
系所名稱(英) Department of Chemistry
學年度 101
學期 2
出版年 102
研究生中文姓名 張鴻鈞
研究生英文姓名 Hong-Jyun Jhang
學號 600160476
學位類別 碩士
語文別 中文
口試日期 2013-07-05
論文頁數 109頁
口試委員 指導教授-李長欣
委員-陳銘凱
委員-徐駿森
中文關鍵字 抗菌胜肽  核磁共振  動力學  化學位移 
英文關鍵字 NMR  13C relaxation  Dynamics  Diffusion  Antimicrobial peptides  Model-free 
學科別分類 學科別自然科學化學
中文摘要 Mastoparan B (MPB-NH2)從胡蜂毒液分離出的抗菌胜肽,由14 個
胺基酸所組成並含有多個正電性胺基酸殘基與碳端修飾為NH2。文
獻指出2 號位置的lysine 與九號位置的tryptophan 對MPB-NH2 有重
要的影響。我們分別用asparagine 與tyrosine 置換上述殘基,形成
Y9-MPB-NH2 及N2Y9-MPB-NH2 的MPB-NH2 衍生物,並使用SDS
與TFE 兩種不同溶液環境在溫度310 K 來探討MPB-NH2 與其衍生物
之結構、動力學行為與抗菌活性之間的關係。
抗菌實驗結果表示其抑菌活性由高至低分別為MPB-NH2、Y9-
MPB-NH2 與N2Y9-MPB-NH2。CD 實驗觀察到MPB-NH2 及其衍生物
在水中為無序纏繞的構形,在30 % TFE 溶液中與SDS 微胞中形成α
螺旋結構。但在SDS 微胞中,MPB-NH2 與Y9-MPB-NH2 的α 螺旋含
量均比在30 % TFE 溶液中來得高。從Model-free 分析MPB 胜肽在
TFE 水溶液的動力學行為發現,N2Y9-MPB-NH2 在N 端的動性較另
外兩條胜肽穩定。擴散實驗表示Y9-MPB-NH2 與N2Y9-MPB-NH2 在
TFE 310 K 具有相似的寡聚現象,這兩條胜肽分子間相互作用的能量
也相似。再比較在TFE 與SDS 環境改變時胜肽的化學位移變化,我
們觀察到Y9-MPB-NH2 與N2Y9-MPB-NH2 的N端NH化學位移有不
同的表現,可能是N 端電荷與膜作用改變所導致。
MPB 抑菌活性的表現受到N 端與C 端的正電荷Lys 殘基與膜結
合能力的影響,動性較大的N 端在與膜結合時,誘發N 端helix 的形
成,產生適當的構形與膜接觸,以利疏水殘基的插入。而兩親性螺
旋,其疏水性一側的殘基,如Trp,其疏水性將會影響胜肽插入膜疏
水核心的能力。
英文摘要 Mastoparan B (MPB) is an antimicrobial peptide that was isolated from the hornet
(Vespa basalis) venom. It’s composed of 14 amino acids, containing multiple positive
charge residues and amidated C-terminus. Studies have suggested that the lysine at position
2 and the tryptophan at position 9 are important for the activities of MPB. To probe
their role for structure and activity, we synthesized three peptides, MPB, Y9 (mutated at
position 2 with asparagines) and N2Y9 (mutated at position 2 and 9 with asparagines and
tyrosine, respectively). We investigated their antimicrobial activity, structure and dynamics
at 310 K in both 30%/70% TFE/H2O and SDS micell solutions.
Antimicrobial activity of the peptides, in sequence from the highest to the lowest, is
showed as MPB, Y9 and N2Y9. Circular dichroism (CD) spectra indicated that the peptides
adopt random coil conformation in water and α-helical structure in TFE and SDS
micell solutions. In TFE, the N-terminal structures of MPB and Y9 are demonstrated more
diverged and flexible than that of N2Y9. However, MPB and Y9 form longer and more
stable helical structures in SDS environment. It is suggested that the affinity of binding
with SDS for MPB and Y9 is higher than for N2Y9. The diffusion studies showed that the
oligomerized behaviors of Y9 and N2Y9 are similar in TFE. It indicates that these two
peptides with similar energetics in intermolecular interactions. As changed from TFE to
SDS environment, the change profile of NH chemical shifts in N-terminal is quite different
between Y9 and N2Y9.It may contribute to the consequence of N-terminal charge
interacted with membrane.
Antibacterial activity of MPB and its binding ability with membrane are affected by
the positive charge residue Lys at N-terminal and C-terminal. The flexible N-terminal
when contact with membrane will form active conformation to facilitate the insertion of
hydrophobic residues into membrane. Trp as well as the hydrophobic residues on one side
of the amphipathic helix can affect the capacity of peptide into hydrophobic membrane
core.
論文目次 目錄.............................................................................................................I
表目錄......................................................................................................IV
圖目錄......................................................................................................VI
縮寫表...................................................................................................XIII
第一章緒論
1.1 抗菌胜肽.....................................................................................1
1.2 Mastoparan 家族簡介...................................................................3
1.3 Mastoparan B (MP-B) 簡介........................................................4
1.4 研究目的.......................................................................................6
第二章實驗原理
2.1 固相胜肽合成.............................................................................7
2.2 圓二色旋光光譜儀原理...........................................................10
2.3 核磁共振...................................................................................16
2.4 二維核磁共振...........................................................................22
2.4.1 COSY 實驗.....................................................................24
2.4.2 TOCSY 實驗...................................................................26
2.4.3 NOESY 實驗...................................................................27
2.4.4 HSQC 實驗......................................................................30
II
2.5 化學位移指數...........................................................................32
2.6 結構計算...................................................................................35
2.7 無模型法則(Model-Free Approach)..........................................37
第三章 實驗材料與方法
3.1 實驗材料...................................................................................41
3.2 實驗方法...................................................................................45
3.2.1 胜肽樣品合成................................................................46
3.2.2 胜肽純化與分子量鑑定................................................48
3.2.3 圓二色旋光光譜儀........................................................49
3.2.4 抗菌活性測試................................................................51
3.2.5 NMR實驗........................................................................52
3.2.6 結構計算........................................................................54
3.2.7 無模型法則(model-free approach)計算........................55
第四章 實驗結果
4.1 胜肽合成與純化.........................................................................58
4.2 圓二色旋光光譜.......................................................................60
4.3 抗菌活性...................................................................................67
4.4 二維核磁共振光譜(2D NMR)...................................................69
4.5 化學位移指數...........................................................................81
III
4.6 結構計算...................................................................................82
第五章討 論..........................................................................................85
第六章結 論........................................................................................102
第七章 參考文獻..................................................................................104
表目錄
表1-1:Mastoparan家族與初級結構序列。………..............................3
表2.2-1:二級結構與光譜的特定波長關係。............................................14
圖2.5-1:20種常見胺基酸在無序纏捲下,αH的化學位移範圍。...32
圖2.5-2:20種常見的胺基酸在無序纏捲下,αC、CO和βC的化學位
移範圍。Gly沒有βC的化學位移範圍,13C的化學位移範圍
即為CO的化學位移範圍。......................................................33
表3.2-1:合成時所設定的活化、偶合、去保護時間。.............................47表3.2-2:HPLC半製備管柱純化的梯度條件設定。...........................48
表3.2-3:HPLC分析管柱純化的梯度條件設定。................................48
表3.2-4:胜肽樣品在SDS 310 K實驗所設定的參數。..........................53
表3.2-5:MPB-NH2 在TFE 310 K弛緩實驗的參數設定。...............53表3.2-6:mfinput變數。............................................................................56
表4.2-1:MPB-NH2及其修飾物在SDS微胞環境下的
α-helix 含量。......................................................................66
表4.2-2:MPB-NH2在1:60 SDS變溫環境下的α-helix 含量。.............66
表4.2-3:Y9-MPB-NH2在1:60 SDS變溫環境下的α-helix 含量。........66
表4.3-1:MPB胜肽之抗菌活性比較。..................................................68

表4.4-1:Y9-MPB-NH2在300 mM SDS-d25/50% D2O/50% H2O水溶
液,pH為3.11,溫度310K的1H化學位移表。..............80
表5-1:20種胺基酸的親疏水性值,數值越大親水性越強;
反之,則疏水性越強。............................................................87
表5-2:MPB胜肽在30% TFE 310K計算所得到的RMSD值。......93
表5-3:MPB胜肽在1:60 SDS 310K計算所得到的RMSD值。......94

圖目錄
圖1-2:左圖為MPB-NH2在TFE水溶液中20個最小能量疊圖。右圖
為MPB-NH2在SDS micelles中20個最小能量疊圖。...............5
圖2.1-1:Ninhydrin Test。...........................................................................8
圖2.1-2:固相胜肽合成流程圖。.............................................................9
圖2.2-1:電場與磁場示意圖。................................................................10
圖2.2-2:光經過偏光片產生單相光源。................................................10
圖2.2-3:平面偏極光及其圓形偏極光示意圖。..................................11
圖2.2-4:A圖為光通過非光學活性物質。B圖為光通過旋光性物質
使相位角發生改變。.............................................................12
圖2.2-5:光偵測樣品流程為(1) 平面偏極光(2)圓形偏極光(3)光被吸
收造成相位改變(4)偵測。....................................................12
圖2.2-6:CD光譜曲線。.......................................................................14
圖2.3-1:原子核在磁場B0下產生的磁矩μ繞著磁場進動,
頻率為ω。...............................................................................17
圖2.3-2:原子在靜磁場中的能量分裂。..............................................17
圖2.3-3:原子核吸收RF pulse能量,產生能階狀態的躍遷。..........18
圖2.3-4:整個系統磁矩向量總和M0產生示意圖。............................18
圖2.3-5:M0受電磁脈衝偏轉到XY平面。.........................................19
圖2.3-6:M0在Z軸與XY平面弛緩的簡易圖。........................................20
圖2.3-7:Mz’和Mx’-y’與T1、T2關係式與關係圖。...................................21
圖2.3-8:弛緩過程中,原子核能階變化圖。........................................21
圖2.4-1:二維核磁共振實驗的脈衝序列。.............................................22
圖2.4-2:在二維核磁共振實驗中,將t1做線性增加。......................23圖2.4.1-1:COSY的脈衝序列。..............................................................24圖2.4.2-1:TOCSY的脈衝序列。.............................................................26圖2.4.3-1:兩個偶極耦合的自旋,I和S的弛緩路徑,W0、W1和W2
分別表示零量子、單量子和雙量子的躍遷。...................27
圖2.4.3-2:兩個相鄰胺基酸之間質子的距離。......................................28
圖2.4.3-3:NOESY的脈衝序列。............................................................28
圖2.4.4-1:HSQC的脈衝序列。............................................................31
圖2.6-1:連續和非連續的NOE可預測產生特定的二級結構。.......36
圖2.7-1:局部與總體的物理模型示意圖。...........................................39
圖4.1-1:半製備管柱HPLC層析圖,
主要波峰出現在18.1分鐘。..................................................58
圖4.1-2:分析管柱HPLC層析圖,
主要波峰出現在16.15分鐘。................................................58

圖4.1-3:經由MALDI-TOF MASS測得的
分子量為1612.434。.............................................................59
圖4.2-1:MPB-NH2在310 K不同SDS比例下的CD光譜圖。.......61
圖4.2-2:Y9-MPB-NH2在310 K不同SDS比例下的
CD光譜圖。............................................................................61
圖4.2-3:N2Y9-MPB-NH2在310 K不同SDS比例下的
CD光譜圖。............................................................................62
圖4.2-4:MPB-NH2在定比例SDS變溫的CD光譜圖。...................62
圖4.2-5:Y9-MPB-NH2在定比例SDS變溫的CD光譜圖。...................63
圖4.2-6:N2Y9-MPB-NH2在定比例SDS變溫的CD光譜圖。........63
圖4.2-7:MPB-NH2在310 K在SDS與TFE的CD光譜圖。..........64
圖4.2-8:Y9- MPB-NH2在310 K在SDS與TFE的CD光譜圖。........64
圖4.2-9:N2 Y9- MPB-NH2在310 K在SDS與TFE的CD光譜圖。.....65
圖4.3-1 MPB濃度對E.coli生長抑制率的趨勢圖。...............................68
圖4.4-1:濃度為5mM的Y9-MPB-NH2在300mM SDS-d25/50% D2O/
50% H2O水溶液,pH為3.11,溫度310K之TOCSY光
譜圖。.....................................................................................70


圖4.4-2:濃度為5mM的Y9-MPB-NH2在300 mM SDS-d25/50% D2O/
50% H2O水溶液,pH為3.11,溫度310K之NOESY光譜圖,
其顯示dαN(i, i+1)的NOE連結。...........................................71
圖4.4-3:濃度為5mM的Y9-MPB-NH2在300 mM SDS-d25/50% D2O/
50% H2O水溶液,pH為3.11,溫度310K之NOESY光譜圖,
其顯示dβN(i, i+1)的NOE連結。...........................................72
圖4.4-4:濃度為5mM的Y9-MPB-NH2在300 mM SDS-d25/50% D2O/
50% H2O水溶液,pH為3.11,溫度310K之NOESY光譜圖,
其顯示dNN (i, i+1)的NOE連結。...........................................73
圖4.4-5:Y9-MPB-NH2在300 mM SDS-d25,50% D2O/ 50% H2O,
pH 3.11,溫度310K之NOESY光譜圖。顯示dαN(i, i+1)、
dαN(i, i+2)、dαN(i, i+3)、dαN(i, i+4)的NOE連結。...........74
圖4.4-6:Y9-MPB-NH2在300 mM SDS-d25,50% D2O/ 50% H2O,
pH 3.11,溫度310K之NOESY光譜圖。顯示dβN(i, i+1)、
dβN(i, i+2)、dβN(i, i+3)、dβN(i, i+4)的NOE連結。...........75
圖4.4-7:濃度為5mM的Y9-MPB-NH2在300 mM SDS-d25/50% D2O/
50% H2O水溶液,pH為3.11,溫度310K之NOESY光譜圖,
顯示Tyr9 側鏈及C端末端修飾的-NH2與其它殘基的NOE
訊號。.....................................................................................76
圖4.4-8:濃度為5mM的Y9-MPB-NH2在300 mM SDS-d25/50% D2O/
50% H2O水溶液,pH為3.11,溫度310K之NOESY光譜圖,
顯示SDS的methylene proton (βH)與Y9的L3、K4、I6、
A10及K11的amide proton (NH) 之間的NOE訊號。....77
圖4.4-9:濃度為5mM的Y9-MPB-NH2在300 mM SDS-d25/50% D2O/
50% H2O水溶液,pH為3.11,溫度310K之NOESY光譜
圖,顯示SDS的methylene proton (βH)與Y9的S8 (βH)
之間的NOE訊號。..............................................................78
圖4.4-10:Y9-MPB-NH2在300 mM SDS-d25/50% D2O/50% H2O水溶
液,pH為3.11,溫度310K的NOE連線。線條的粗細分
別表示強、中、弱的NOE訊號。...........................................79
圖4.5-1:9Y-MPB-NH2在SDS 310 K下各殘基的αH化學位移與無序
纏繞時的化學位移差值。......................................................81
圖4.6-1:9Y-MPB-NH2在310 K時20個能量最小結構疊圖。........82
圖4.6-2:9Y-MPB-NH2 backbone及side chain在310 K時20
個能量最小結構疊圖。........................................................83
圖4.6-3:9Y-MPB-NH2在310 K的緞帶圖,其螺旋為K4-V13。........83
圖4.6-4:9Y-MPB-NH2的20個最低能量結構在310 K時的
Ramachandran plot圖。..........................................................84
圖5-1:SDS單體示意圖。.......................................................................85
圖5-2:MPB-NH2、Y9-MPB-NH2與N2Y9-MPB-NH2在30% TFE 310K
的αH 二次化學位移示意圖。..................................................89
圖5-3:Y9-MPB-NH2與N2Y9-MPB-NH2在1:60 SDS 310K的αH
二次化學位移示意圖。.............................................................89
圖5-4:由A.到C.分別為MPB-NH2、Y9-MPB-NH2及N2Y9-MPB-NH2
在30% TFE 310K環境的結構示意圖,圖中紅、藍、黑、白色
球分別代表氧、氮、碳、氫原子,數字表示可能氫鍵的距離。
....................................................................................................92
圖5-5:MPB胜肽在310K TFE中各殘基NOE訊號數目示意圖。
....................................................................................................93
圖5-6:MPB胜肽在30% TFE 310K的動性比較示意圖。................95
圖5-7: MPB胜肽與SDS之間NOE訊號的310K NOESY示意圖,
上圖為Y9-MPB-NH2、下圖為N2Y9-MPB-NH2。.............97
圖5-8:MPB胜肽與SDS βH之間的空間關係示意圖,左圖為
Y9-MPB-NH2、右圖為N2Y9-MPB-NH2。..........................98
圖5-9:MPB胜肽在SDS溶液中所預測的雙性結構投影圖,左圖為
Y9-MPB-NH2、右圖為N2Y9-MPB-NH2;著色表示親水性殘基,未著色則表示疏水性殘基。................................................98
圖5-10:MPB系列胜肽在變溫環境下的寡聚現象示意圖。................99
圖5-11:Y9與N2Y9在 TFE與SDS 310K的NH化學位移差值示圖。
....................................................................................................100
圖5-12:Y9-MPB-NH2(左圖)與N2Y9-MPB-NH2(右圖)在310K時根據
化學位移差值所推斷與SDS微胞作用示意圖。...................101
參考文獻 1. Koczulla, A. R., Bals, R. Antimicrobial peptides-current status and therapeutic
potentials. Drugs 63, 389–406 (2003).
2. Zasloff, M. Antimicrovial peptides of multicellular organisms. Nature (London)
415, 389–395 (2002).
3. Barra, D., Simmaco, M. Amphibian skin: a promising resource for antimicrobial
peptides. Trends Biotechnol. 13, 205–209 (1995).
4. Lehrer, R., I., Lichtenstein, A. K. and Ganz, T. Defensins: antimicrobial and
cytotoxic peptides of mammalian cells. Annu. Rev. Immunol. 11, 105–128 (1993).
5. Boman, H. G., Faye, I., Gudmundsson, G. H., Lee, J. Y., Lidholm, D. A. Cell-free
immunity in Cecropia. A model system for antibacterial proteins. Eur. J. Biochem. 201,
23–31 (1991).
6. De Lucca, A. J., Walsh, T. J. Antifungal peptides: novel therapeutic compounds
against emerging pathogens. Antimicrob. Agents Chemother. 43, 1–11 (1999).
7. Peters, B. M., Shirtliff, M. E., Jabra-Rizk, M. A. Antimicrobial peptides: primeval
molecules or future drugs? PLoS Pathog 6, e1001067 (2010).
8. Ho, C. L., Hwang, L. L. Structure and biological activities of a new mastoparan
isolated from the venom of the hornet Vespa basalis. Biochem. J. 274, 453-456
(1991).
9. 張永仁,行政院農委會台灣自然觀察圖鑑36台灣的昆蟲,綜合篇,
台灣野生動物資源調查手冊6.
10. Yu, K., Kim, Y., Kang, S., Park, N., Shin, J. Relationship between the tertiary
structures of mastoparan B and its analogs and their lytic activities studied by NMR
spectroscopy. J. Pept. Res. 55, 51-62 (2000).
11. Ho, C. L., Lin, Y. L., Chen, W. C., Hwang, L. L., Yu, H. M., Wang, K. T.
Structural requirements for the edema-iducing and hemolytic activities of mastoparan
B isolated from the hornet (Vespa basalis) venom. Toxicon 34, 1027-1035 (1996).
105
12. Chyh, C. C., Wen, C. H., Hui, M. Y., Kung, T. W., Shih, H. W. Conformation of
Vespa basalis mastoparan-B in trifluoroethanol containing aqueous solution. Biochim.
Biophys. Acta 1292, 1-8 (1996).
13. Murata, K., Shinada, T., Ohfune, Y., Hisada, M., Yasuda, A.,
Naoki, H., Nakajima, T. Novel mastoparan and protonectin analogs isolated from a
solitary wasp, Orancistrocerus drewseni drewseni. Amino Acids 37, 389-394 (2009).
14. Ho, C. L., Lin, Y. L., Chen, W. C., Yu, H. M., Wang, K. T., Hwang, L. L.,
Chen, C. T. Immunogenicity of mastoparan B, a cationic tetradecapeptide isolated
from the hornet (Vespa basaus) venom, and its structural requirements. Toxicon 33,
1443-1451 (1995).
15. Yu, H. M., Wu, T. M., Chen, S. T., Ho, C. L., Her, G. R., Wang, K. T.
Mastoparan B, synthesis and its physical and biological properties. J. Biochem. Mol.
Biol. 29, 241-246 (1993).
16. Yu, K., Kang, S., Kim, S. D., Ryu, P. D., Kim, Y. Interactions between
mastoparan B and the membrane studied by 1H NMR spectroscopy. J. Biomol. Struct.
Dyn. 18 (4), 595-606 (2001).
17. Goto,Y., Hagihara, Y. Mechanism of the Conformational Transition of Melittin.
Biochem. 31, 732-738 (1992).
18. Merrifield, R. B. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide.
Contribution from the Rockefeller institute, New York 21, July 20, (1963).
19. Sabatino, G., Chelli, M., Brandi, A., Papini, A. M. Analytical methods for solid
phase peptide synthesis. Curr. Org. Chem. 8, 291-301 (2004).
20. Nelson, D. L., Cox, M. M. Lehninger principles of biochemistry 4th ed.;
W. H. Freeman; p 104-105 (2005).
21. Berova, N., Nakanishi, K., Woody, R. W. Circular dichroism: principles and
applications. Wiley-VCH: New York, (2000).
106
22. Nina B., George A. E., Nobuyuki H. Characterization by Circular Dichroism
Spectroscopy Columbia University, New York, (2010).
23. Kelly, S. M., Jess, T. J., Price, N. C., How to study proteins by circular dichroism.
Biochim. Biophys. Acta 1751, 119-139 (2005).
24. Roge, P. Current Protocols in Protein Science John Wiley & Sons, Inc,
7.6.1-7.6.24 (2004).
25. Engel, M., Williams, R. W., Erickson, B. W. Designed Coiled-Coil Proteins:
Synthesis and Spectroscopy of Two 78-Residue α-Helical Dimers? Biochem. 30,
3161-3169, (1991).
26. Li, Y. , Han, X., Tamm, L. K. Thermodynamics of fusion peptide-membrane
interactions. Biochem. 42, 7245-7251 (2003).
27. Bloch, F., Hansen, W. W., Packard, M. Nuclear induction. Phys. Rev. 70, 460-474
(1946).
28. Bax, A., Davis, D. G . Assignment of complex proton NMR spectra via
two-dimensional homonuclear Hartmann-Hahn spectroscopy. J. Am. Chem.
Soc. 107, 2820-2821 (1985).
29. Aue, W. P., Bartholdi, E., Ernst, R. R. Two-dimensional spectroscopy.
Application to nuclear magnetic resonance. J. Chem. Phys. 64, 2229-2246 (1976).
30. Bax, A., Freeman, R., Morris, G. A. Correlation of proton chemical-shifts by
two-dimensional fouruer-transform NMR. J. Magn. Reson. 42, 164-168 (1981).
31. Soensen, O. W., Eich, G. W., Levitt, M. H., Bodenhausen, G., Ernst, R. R.
Product operator formalism for the description of NMR pulse experiments. Prog.
NMR Spectrosc. 16, 163-192 (1983).
32. Withrich, K., Billeter, M., Braun, W. Polypeptide secondary structure
determination by nuclear magnetic resonance observation of short-proton distances.
J.Mol. Biol. 180, 715-740 (1984).
107
33. Osapay, K., Case, D. A.A new analysis of proton chemical shifts in proteins. J.
Am. Chem. Soc. 113, 9436-9444 (1991).
34. Osapay, K., Case, D. A.A new analysis of proton chemical shifts in proteins. J.
Am. Chem. Soc. 4, 215-230 (1994).
35. Bax, A., Ikura, M., Kay, L. E., Torchia, D. A., Tschudin, R., Comparison of
different modes of two-dimensional reverse-correlation NMR for the study of proteins.
J. Magn. Reson. 86, 304-318 (1990).
36. Wishart, D. S., Sykes, B. D., Richards, F. M., The chemical shift index: a fast and
simple method for the assignment of protein secondary structure through NMR
spectroscopy. Biochem. 31, 1647-1651 (1992).
37. Wishart, D. S., Sykes, B. D. The 13C chemical-shift index: a simple method for the
identification of protein secondary structure using 13C chemical-shift data. J. Biomol.
NMR 4, 171-180 (1994).
38. Wishart, D. S., Sykes, B. D.; Richards, F. M. Relationship between nuclear
magnetic resonance chemical shift and protein secondary structure. J. Mol. Biol. 222,
311-333 (1991).
39. Schwieters, C. D., Kuszewski, J. J., Clore, G. M. Using Xplor-NIH for NMR
molecular structure determination. Prog. Nucl. Mag. Reson. Spectrosc. 48, 47-62
(2006).
40. Withrich, K. NMR of proteins and nucleic acids.Wile: New York (1986).
41. Luciana, E., Alfonso, D. S., Adriana, Z., Luigi, V. Correlation between ω and ψ
dihedral angles in protein structures. J. Biomol. 347, 483-487 (2005).
42. Lipari, G., Szabo, A. Model-free approach to the interpretation of nuclear
magnetic resonance relaxation in macromolecules. 1. Theory and range of validity.
J. Am. Chem. Soc. 104, 4546-4559 (1982).
43. Lipari, G., Szabo, A. Model-free approach to the interpretation of nuclear
magnetic resonance relaxation in macromolecules. 2. Analysis of Experimental
Results. J. Am. Chem. Soc. 104, 4559-4570 (1982).
108
44. Mandel, A. M., Akke, M. and palmer, III A. G. Backbone dynamics of Escherichia
coli Ribonuclease HI : Correlations with Structure and Function in an Active Enzyme.
J. Mol. Biol. 246, 144-163 (1995).
45. Li, Y., Han, X., Tamm, L. K. Thermodynamics of fusion peptide-membrane
interactions. Biochem. 42, 7245-7251 (2003).
46. Ellis, J. P., Bakke, C. K., Kirchdoerfer, R. N., Jungbauer, L. M.; Cavagnero, S.
Chain dynamics of nascent polypeptides emerging from the ribosome. ACS Chem.
Biol. 3, 555-566 (2008).
47. Wang, G., Treleaven, W. D., Cushley, R. J. Conformation of human serum
apolipoprotein A-I(166-185) in the presence of sodium dodecyl sulfate or
dodecylphosphocholine by 1H-NMR and CD. Evidence for specific peptide-SDS
interactions. Biochim. Biophys. Acta 1301, 174-184 (1996).
48. Joachim, S. Thermodynamics of lipid–peptide interactions. Biochim. Biophys.
Acta. 1666, 40– 50 (2004).
49. Fioroni, M., Diaz, M. D., Burger, K., Berger, S. Solvation phenomena of a
tetrapeptide in water/trifluoroethanol and water/ethanol mixtures: a diffusion
NMR, intermolecular NOE, and molecular dynamics Study. J. Am. Chem. Soc. 124,
7737-7744 (2002).
50. Lois, M. Y., Michelle, A. E., Jessica, L., Christopher, M. Y., Charles, M. D. Roles
of hydrophobicity and charge distribution of cationic antimicrobial peptides in
peptide-membrane interactions. J. Biochem. 10, 7738–7745 (2012).
51. Fraga, S. Theoretical prediction of protein antigenic determinants from amino acid
sequences. Can. J. Chem. 60, 2606-2610 (1982).
52. Danilo, R., Giorgio, C., Marco, F., Alan, E. M. Mechanism by which
2,2,2-trifluoroethanol / water mixtures stabilize secondary-structure formation in
peptides: A molecular dynamics study. PNAS. 99, 12179–12184 (2002).
53.Thomas, E., Jonas, R. H., Palle, R., Mads, H. C., Thomas, L. Andresen. Selective
acylation enhances membrane charge sensitivity of the antimicrobial peptide
mastoparan-X. Biophys. J. 100, 399–409 (2011).
109
54. Brasseur, R., Pillot, T., Lins, L., Vandekerckhove, J., Rosseneu, M. Peptides in
membranes:tipping the balance of membrane stability. Trends Biochem. Sci. 22,
167-171 (1997).
55. Dathe, M., Wieprecht, T., Nikolenko, H., Handel, L., Maloy, W. L., MacDonald,
D. L., Beyermann, M., Bienert, M. Hydrophobicity, hydrophobic moment and angle
subtended by charged residues modulate antibacterial and haemolytic activity of
amphipathic helical peptides. FEBS Lett. 403, 208-212 (1997).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-07-30公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-07-30起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信