§ 瀏覽學位論文書目資料
  
系統識別號 U0002-2407201215392100
DOI 10.6846/TKU.2012.01030
論文名稱(中文) 鋅薄膜在鈉鈣玻璃表面之化成處理及性質
論文名稱(英文) PROPERTIES OF CONVERSION COATINGS FOR ZINC FILM ON SODA-LIME SILICATE SURFACE
第三語言論文名稱
校院名稱 淡江大學
系所名稱(中文) 機械與機電工程學系碩士班
系所名稱(英文) Department of Mechanical and Electro-Mechanical Engineering
外國學位學校名稱
外國學位學院名稱
外國學位研究所名稱
學年度 100
學期 2
出版年 101
研究生(中文) 呂宗翰
研究生(英文) Tsung-Han Lu
學號 600370182
學位類別 碩士
語言別 繁體中文
第二語言別
口試日期 2012-06-26
論文頁數 78頁
口試委員 指導教授 - 劉昭華
委員 - 張子欽
委員 - 蔡有仁
關鍵字(中)
化成處理
氧化亞銅
氯化銅
關鍵字(英) Zinc
conversion coatings
Cu2O
CuCl2
第三語言關鍵字
學科別分類
中文摘要
本研究已探討鈉鈣玻璃表面之鍍鋅薄膜及鋅塊在CuSO4/NaCl混合溶液中化成處理之異同。對鋅塊之化成處理而言,化成反應過程如下:首先形成黑色皮膜(Zn、Cu及Cu(OH)2),銅在黑色皮膜與鋅塊之間析出,脫落的黑色皮膜轉變成黃色粉末(Cu2O),黃色粉末轉變成綠色粉末(CuCl2複合物),鋅塊表面覆蓋白色的ZnO。對鍍鋅薄膜而言,首先形成黑色皮膜(Zn、Cu及Cu(OH)2),紅色皮膜(Cu),黃色皮膜(Cu2O)及綠色皮膜(CuCl2)。鍍鋅薄膜在重量百分濃度為0.6%、1.2%及2.3%化成溶液之活化能分別為33.60(J/mol)、28.21(J/ mol)及14.87(J/mol)。
英文摘要
The conversion coatings of zinc film on the soda-lime silicate surface comparing with bulk zinc in CuSO4/NaCl aqueous solution were investigated. For bulk zinc, first, the black coatings (Zn, Cu and Cu (OH) 2) formed on the surface. Next, copper was precipitated between the black coatings and bulk zinc. Then, part of black coatings fell off and formed the yellow powder (Cu2O). After that, yellow powder turned into green powder (CuCl2 complexes). At last, the surface of bulk zinc was covered by zinc oxide. For zinc film, the change of color was as follows: black coatings (Zn, Cu and Cu (OH) 2), red coatings (Cu), yellow coatings (Cu2O) and green coatings (CuCl2). The activation energy of zinc film for the conversion coatings in 0.6wt%, 1.2wt% and 2.3wt% CuSO4/NaCl aqueous solution are 33.60(J/mol), 28.21(J/mol) and 14.87(J/mol), respectively.
第三語言摘要
論文目次
總目錄
中文摘要....................................................................................................I
英文摘要...................................................................................................II
總目錄......................................................................................................III
圖目錄......................................................................................................VI
表目錄.......................................................................................................X
	導論..................................................................................................1
1-1前言............................................................................................1
1-2文獻回顧....................................................................................2
1-2.1化成處理介紹........................................................2
1-2.2化成處理的方式....................................................3
				1-2.3化成處理的種類....................................................3
	1-2.4鋅的化成處理.......................................................4
		1-2.4.1鉻酸鹽處理..................................................4
		1-2.4.2鉬酸鹽處理..................................................7
	1-2.5 Cl-與S042-對鋅的影響...........................................9
	1-2.6 影響塊材化成處理之因子................................10
	1-2.7活化能..................................................................11
	1-2.8成核反應..............................................................11
		1-2.8.1均質成核....................................................12
		1-2.8.2異質成核....................................................13
	1-2.9薄膜的製備方式..................................................14
1-3研究動機與研究目的..............................................................16
			1-3.1研究動機..............................................................16
			1-3.2研究目的..............................................................16
	實驗設計........................................................................................20
2-1實驗材料與設備......................................................................20
			2-1.1實驗材料..............................................................20
			2-1.2實驗設備..............................................................20
2-2實驗步驟..................................................................................21
			2-2.1前置作業..............................................................21
2-2.2實驗流程..............................................................22
2-3實驗分析..................................................................................24
参、結果與討論........................................................................................26
3-1鋅塊化成處理..........................................................................26
3-2鋅薄膜化成處理......................................................................27
			3-2.1鋅薄膜化成處理及其化成反應機制..................27
			3-2.2反應時間與溶液濃度/鋅薄膜厚度之關係.........31
3-2.3反應活化能..........................................................32
3-2.4光學性質..............................................................33
3-2.5皮膜應用..............................................................36
肆、結論....................................................................................................70
伍、參考文獻............................................................................................72
 
圖目錄
圖1-1 活化能之反應位能示意圖..........................................................17
圖1-2 自由能與溫度之關係圖..............................................................17
圖1-3 液體-固體之界面示意圖.............................................................18
圖1-4 粒徑大小與自由能之關係圖......................................................18
圖1-5 異質成核之晶體與壁面或外來粒子之接觸角示意圖..............19
圖2-1實驗流程圖....................................................................................25
圖3-1 鋅塊化成處理之流程圖:(a)未反應之鋅塊;(b)浸泡於0.6%的NaCl和0.6%的CuSO4‧5H2O混合溶液後,表面形成黑色皮膜;(c)由於內部銅不斷析出以及溶液吸收引起膨潤,造成黑色皮膜產生體積膨脹;(d)脫落的黑色皮膜粉末(受到氣泡浮力或晃動)與溶液反應形成黃色Cu2O粉末;(e)黃色粉末最後轉變成綠色CuCl2粉末;(f)塊材最後覆蓋滿白色的ZnO皮膜.............37
圖3-2 鋅塊經化成處理後,黑色皮膜之EDAX圖譜............................38
圖3-3 鋅塊化成處理氧化還原反應之示意圖......................................39
圖3-4 鋅塊經化成處理後,紅色析出物之XRD圖譜...........................39
圖3-5 氣泡的浮力或晃動造成黑色皮膜脫落,而脫落的黑色皮膜變成黃色的氧化亞銅..........................................................................40
圖3-6 鋅塊經化成處理後,黃色粉末之EDAX圖譜............................40
圖3-7 鋅塊經化成處理後,黃色粉末之XRD圖譜...............................41
圖3-8 鋅塊經化成處理後,綠色粉末之XRD圖譜...............................41
圖3-9 鋅塊經化成處理後,綠色粉末之EDAX圖譜............................42
圖3-10 鍍鋅薄膜之鈉鈣玻璃浸泡於化成裡溶液後,其反應變化過程:形成(a)黑色皮膜;(b)紅色皮膜;(c)紅色皮膜變成黃色皮膜時,中間存在灰色邊界;(d)黃色皮膜及(e)綠色皮膜.....................43
圖3-11  Na2O-CaO-SiO2基材表面鍍鋅薄膜之SEM照片...................44
圖3-12 鍍鋅薄膜表面經化成處理反應2秒鐘後之EDAX圖譜.........45
圖3-13 鍍鋅薄膜表面經化成處理反應後,反應2秒鐘之SEM照片,箭頭A為Cu析出物,箭頭B為經過腐蝕顆粒之鋅表面腐蝕型態............................................................................................46
圖3-14 鍍鋅薄膜表面經化成處理後,黑色皮膜之EDAX圖譜..........47
圖3-15 銅與鋅形成置換反應後,鋅表面形成黑色物質,其物質為Cu、Zn及Cu(OH)2之示意圖............................................................48
圖3-16 鍍鋅薄膜表面經過化成處理後,黑色皮膜之SEM照片.........49
圖3-17 鍍鋅薄膜表面經化成處理後,紅色皮膜之EDAX圖譜..........50
圖3-18 鍍鋅薄膜表面經化成處理後,紅色皮膜之XRD圖譜.............51
圖3-19鍍鋅薄膜表面經過化成處理後,紅色皮膜之SEM照片,倍率(a)3萬倍;(b)20萬倍..................................................................52
圖3-20鍍鋅薄膜表面經過化成處理後,紅色皮膜由周圍開始向內形成黃色皮膜,(a)紅色皮膜外圍形成黃色皮膜之示意圖(b)紅色皮膜;(c)黃色皮膜與紅色皮膜之灰色邊界;(d)外圍黃色皮膜................................................................................................53
圖3-21鍍鋅薄膜表面經化成處理後,黃色皮膜之EDAX圖譜............54
圖3-22 鍍鋅薄膜表面經化成處理後,黃色皮膜XRD圖譜.................55
圖3-23鍍鋅薄膜表面經過化成處理後,黃色皮膜之SEM照片...........56
圖3-24鍍鋅薄膜表面經化成處理後,綠色皮膜之EDAX圖譜............57
圖3-25 鍍鋅薄膜表面經化成處理後,綠色皮膜XRD圖譜.................58
圖3-26 鍍鋅薄膜表面經化成處理後,綠色皮膜之SEM照片.............58
圖3-27 溶液濃度與反應時間之趨勢圖................................................60
圖3-28 鍍鋅薄膜厚度與反應時間之趨勢圖........................................60
圖3-29 鋅薄膜以高濃度進行化成處理後,ZnO沉積之情形..............61
圖3-30 鋅薄膜以高濃度進行化成處理示意圖:(a)Zn溶解迅速,
Cu2+無法附著及成長;(b)Zn溶解後形成Zn(OH)2的沉積,經脫水後再形成ZnO.....................................................................61
圖3-31  lnV與1000/T作圖,斜率m=- Q/R................................................63
圖3-32各種顏色皮膜經煆燒400OC(持溫4小時)後,其XRD圖譜......64
圖3-33黑色皮膜:(a)未煆燒、(b1)煆燒400OC及(b2)煆燒400OC(煆燒
前表面被破壞區域)之SEM照片;(c)未煆燒及(d)煆燒400OC之吸收光譜;(e)未煆燒及(f) 煆燒400OC之穿透光譜............65
圖3-34紅色皮膜:(a)未煆燒及(b)煆燒400OC之SEM照片;(c)未煆
燒及(d)煆燒400OC之吸收光譜;(e)未煆燒及(f)煆燒400OC之穿透光譜....................................................................................66
圖3-35黃色皮膜:(a)未煆燒及(b)煆燒400OC之SEM照片;(c)未煆
燒及(d)煆燒400OC之吸收光譜;(e)未煆燒及(f)煆燒400OC之穿透光譜...................................................................................67
圖3-36綠色皮膜:(a)未煆燒及(b)煆燒400OC之SEM照片;(c)未煆
燒及(d)煆燒400OC之吸收光譜;(e)未煆燒及(f)煆燒400OC之穿透光譜...................................................................................68
圖3-37 Cu2O在太陽光下照射4小時後,水分解照片...........................69
 
表目錄
表2-1 不同濃度與不同鍍鋅薄膜厚度示意圖......................................23
表3-1 鋅塊經化成處理後,黑色皮膜之EDAX成份含量....................38
表3-2 鋅塊經化成處理後,黃色粉末之EDAX成分含量....................40
表3-3鋅塊經化成處理後,綠色粉末之EDAX成份含量......................42
表3-4 鍍鋅薄膜表面經化成處理反應2秒鐘後,EDAX之成分含量..45
表3-5 鍍鋅薄膜表面經化成處理後,黑色皮膜之EDAX成分含量....47
表3-6 鍍鋅薄膜表面經化成處理後,黑色皮膜之EPMA成分莫耳數
比................................................................................................48
表3-7 鍍鋅薄膜表面經化成處理後,紅色皮膜之EDAX成分含量....50
表3-8鍍鋅薄膜表面經化成處理後,紅色皮膜之EPMA成分莫數
比................................................................................................51
表3-9 鍍鋅薄膜表面經化成處理後,黃色皮膜之EDAX成分含量....54
表3-10 鍍鋅薄膜表面經化成處理後,黃色皮膜之EPMA成分莫耳數比................................................................................................55
表3-11鍍鋅薄膜表面經化成處理後,綠色皮膜之EDAX成分含量....57
表3-12不同厚度之鋅薄膜在不同濃度條件下,經化成處理後,反應
	 不在變化所需時間....................................................................59
表3-13 鋅薄膜化成反應完畢所需的反應時間(黃色皮膜出現的時間,C4T1、C5T1、C6T1及C6T2無法看見黃色皮膜,由白色出現為判斷)...........................................................................................62
表3-14鋅薄膜化成反應之反應速率(nm/s) ..........................................62
表3-15 以鋅薄膜厚度(1414nm)在不同濃度與溫度條件下進行化成處理後,鋅置換反應完畢所需時間(秒) ....................................63
表3-16 鋅薄膜化成反應速率(nm/s) .....................................................63
參考文獻
1. 鄭憶中,“鍍鋅鋼板表面潤滑皮膜製備及分析研究”,國立台灣大學  
   碩士論文,(2007)
2. M. Geszke, M. Murias ,L. Balan, G. Medjahdi,J. Korczynski, M. Moritz, J. Lulek, R. Schneider,“Folic acid-conjugated core/shell ZnS:Mn/ZnS quantum dots as targeted probes for two photon fluorescence imaging of cancer cells”, Acta Biomaterialia, Vol. 7,(2011) p. 1327-1338
3. M. Benhaliliba, C.E. Benouis, M.S. Aida, A. Sanchez Juarez, F. Yakuphanoglu, A. Tiburcio Silver,“A comparative study on structural, optical, photoconductivity properties of In and Al doped ZnO thin films grown onto glass and FTO substrates grown by spray pyrolysis process”, Journal of Alloys and Compounds, Vol. 506,(2010) p.548-553
4. J. C. Sun, Q. J. Feng, J. M. Bian , D. Q. Yu, M. K. Li, C. R. Li, H. W. Liang, J. Z. Zhao, H. Qui, G. T. Du,“Ultraviolet electroluminescence from ZnO-based light-emitting diode with p-ZnO:N/n-GaN:Si heterojunction structure”, Journal of Luminescence,Vol. 131,(2011) p.825-828
5.S. Li, Z. Ma, J. Zhang, Y. Wu, Y. Gong,“A comparative study of 
 photocatalytic degradation of phenol of TiO2and ZnO in the presence of   
 manganese dioxides”,Catalysis Today, Vol.139, (2008)p.109-112
6.呂振嘉,“鍍鋅鋼板之腐蝕與電化學行為”,國立中央大學碩士論文, 
  (2008)
7.魏豊義,“熱浸鍍鋅防蝕原理與壽命”,Journal of Chinese Corrosion  
  Engineering,Vol.9,No.1, (1995) p.53-72
8.董育煌,“銅/奈米碳管複合材料製造暨磨潤性質”,私立淡江大學碩
  士論文,(2004)p14
9. J. Zhao, G. Frankel, R. L. McCreery ,"Corrosion Protection of Untreated AA-2024-T3 in Chloride Solution by a Chromate Conversion Coating Monitored with Raman Spectroscopy", Journal of the Electrochemical Society, Vol. 145,(1998)p.2258-2264
10.J. R. Liu, Y. N. Guo, W. D. Huang,“Study on the corrosion resistance   
  of phytic acid conversion coating for magnesium alloys”,Surface and  
  Coatings Technology,Vol. 201,(2006)p.1536-1541
11.A. L. Rudd, C. B. Breslin, F. Mansfeld,“The corrosion protection  
  afforded by rare earth conversion coatings applied to magnesium”,
  Corrosion Science,Vol. 42,(2000)p.275-288
12. M. Dabala, E. Ramous, M. Magrini,“Corrosion resistance of    
   cerium-based chemical conversion coatings on AA5083 aluminium 
   alloy”,Materials and Corrosion,Vol. 55,(2004)p.381-386
13.H. Guan, R.G. Buchheit ,“Corrosion Protection of Aluminum Alloy 
   2024-T3 by Vanadate Conversion Coatings”,Corrosion Science,Vol. 
   60,(2004)p.284-296
14. Celia Regina Tomachuk, Alejandro Ramon Di Sarli, Cecilia Ines Elsner,“Anti-Corrosion Performance of Cr+6-Free Passivating Layers Applied on Electrogalvanized”,Materials Sciences and Applications,
   (2010)p.202-209
15. M. Zhao, S. Wu, J. Luo, Y. Fukuda, H. Nakae,“A chromium– 
   free conversion coating of magnesium alloy by a  phosphate– 
   permanganate solution”, Surface and Coatings Technology,Vol. 
   200,(2006)p.5407-5412
16.P. Campestrini, G. Goeminne, H. Terryn, J. Vereecken, J. H. W. de 
   Wit,“Chromate Conversion Coating on Aluminum Alloys”,J. 
   Electrochem. Soc.,Vol. 151,(2004)p.59-70
17.W. Zhang, B. Hurley, R. G. Buchheit,“Characterization of Chromate Conversion Coating Formation and Breakdown Using Electrode Arrays”, J. Electrochem. Soc.,Vol. 149, (2002)p.357-365
18.G.M. Brown, K. Shimizu, K. Kobayashi, G.E. Thompson, G.C. Wood,“The growth of chromate conversion coatings on high purity          aluminium”,Corrosion Science,Vol. 34,(1993)p.1045-1054
19.G. Li, L. Niu, J. Lian, Z. Jiang,“A black phosphate coating for C1008 steel”,Surface and Coatings Technology,Vol. 176,(2004)p.215-221
20.C.M. Wang, H. C. Liau,W.T. Tsai,“Effects of temperature and applied potential on the microstructure and electrochemical behavior of manganese phosphate coating”,Surface and Coatings Technology,Vol. 201,(2006)p.2994-3001
21.L. Y. Niu, Z.H. Jiang, G.Y. Li, C. D. Gu, J. S. Lian,“A study and application of zinc phosphate coating on AZ91D magnesium alloy”, Surface and Coatings Technology,Vol. 200,(2006)p.3021-3026
22.C. S. Lin, H. C. Lin, K. M. Lin, W. C. Lai,“Formation and properties of stannate conversion coatings on AZ61 magnesium alloys”,Vol. 48,(2006)p.93-109
23.H. H. Elsentriecy, K. Azumi, H. Konno,“Improvement in stannate
 chemical conversioncoatings on AZ91 D magnesium alloy using the potentiostatic technique”, Vol. 53,(2007)p.1006-1012
24.Y. L. Lee, C. S. Lin,“Influence of Die-Chill Skin on the Formation of Stannate Conversion Coating on AZ91D Magnesium Alloy”,J. Electrochem. Soc.,Vol. 157,(2010)p.187-193
25. S. A. Kulinich, A. S. Akhtar, P. C. Wong, K. C. Wong, K. A. R. Mitchell,“Growth of permanganate conversion coating on 2024-Al alloy”,Thin Solid Films,Vol. 515,(2007)p.8386-8392
26. M. Mosiałek, G. Mordarski, P. Nowak, W. Simka, G. Nawrat, M. Hanke, R. P. Socha, J. Michalska, “Phosphate–permanganate conversion coatings on the AZ81 magnesium alloy: SEM, EIS and XPS studies”,Surface and Coatings Technology,Vol.206,(2011) p.51-62
27. H. Zhang, G. Yao, S. Wang, Y. Liu, H. Luo,“A chrome-free
 conversion coating for magnesium–lithium alloy by a phosphate–
permanganate solution”,Surface and Coatings  Technology,Vol. 202,(2008)p.1825-1830
28 Z. Zou, N. Li, D. Li, H. Liu, S. Mu.,“A vanadium-based conversion 
coating as chromate replacement for electrogalvanized steel substrates
  ournal of Alloys and Compounds,Vol. 509,(2011)p.503-507
29. K. H. Yang, M. D. Ger, W. H. Hwu, Y. Sung, Y. C. Liu,“Study of 
vanadium-based chemical conversion coating on the corrosion resistance of magnesium alloy”, Materials Chemistry and Physics,Vol. 101,(2007)p.480-485
30. P. Wang, X. C. Dong, D. W. Schaefer,“Structure and water-barrier properties of vanadate-based corrosion inhibitor films”,Corrosion Science,Vol. 52,(2010)p.943-949
31.D.R. Gabe, S.E. Gould,“Black molybdate conversion coatings”,
Surface and Coatings Technology,Vol. 35,(1988)p.79-91
32.J. Hu, Q. Li, X. Zhong, L. Zhang, B. Chen, “Composite anticorrosion
 coatings for AZ91D magnesium alloy with molybdate conversion coating and silicon sol–gel coatings”,Progress in Organic Coatings,Vol. 66,(2009)p.199-205
33. J.A. Wharton, D.H. Ross, G.M. Treacy, G.D. Wilcox, K.R. Baldwin,
   “An EXAFS investigation of molybdate-based conversion coatings”,
   Journal of Applied Electrochemistry,Vol. 33,(2003)p.553-561
34.L. Li, J. Lei, S. Yu,Y. Tian, Q. Jiang, F. Pan ,“Formation and characterization of cerium conversion coatings on magnesium alloy”,Journal of Rare Earths,Vol. 26,(2008)p.383
35.A. de Frutos, M. A. Arenas, Y. Liu, P. Skeldon, G. E. Thompson, J. de Damborenea, A. Conde,“Influence of pre-treatments in cerium conversion treatment of AA2024-T3 and 7075-T6 alloys”,Surface and Coatings Technology,Vol. 202,(2008)p.3797-3807
36.J. Hu, X. H. Zhao, S. W. Tang, W. C. Ren, Z. Y. Zhang,“Corrosion resistance of cerium-based conversion coatings on alumina borate whisker reinforced AA6061 composite”,Applied Surface Science,Vol. 253,(2007)p.8879-8884
37. L. Zhu, F. Yang, N. Ding,“Corrosion resistance of the electro- galvanized steel treated in a titanium conversion solution”
   ,Surface and Coating Technology,Vol. 201,(2007)p.7829-7834
38. M. A. Smit, J. M. Sykes, J. A. Hunter, J. D. B. Sharman, G.M. Scamans,“Titanium based conversion coatings on aluminium alloy 3003”,Surface Engineering,Vol. 15,(1999)p.407-410(4)
39.楊育銓,蔡承洋,林招松,“AZ31鎂合金鈦酸鹽化成處理”,防蝕工程,第25卷第4期,(2011)p.35-42
40. M.A. Dominguez-Crespo, E. Onofre-Bustamante, A.M. Torres- Huerta, F.J. Rodriguez-Gomez, S.E. Rodil, A. Flores-Vela,“Synthesis and Characterization of Chromate Conversion Coatings on GALVALUME and Galvanized Steel Substrates”,Metallurgical and Materials Transactions A,Vol. 40,(2009)p.1631-1644
41.J. D. Ramsey, R. L. McCreery,“In Situ Raman Microscopy of Chromate Effects on Corrosion Pits in Aluminum Alloy”,Journal of The Electrochemical Society,Vol. 146,(1999)p.4076- 4081
42.M. Costa,“Toxicity and Carcinogenicity of Cr(VI) in Animal Models and Humans”,Critical Reviews in Toxicology,Vol. 27,(1997)p.431- 442
43.C. Raji, T. S. Anirudhan,“Batch Cr(VI) removal by polyacrylamide -grafted sawdust: Kinetics and thermodynamics”,Water Research, Vol. 32,(1998)p.3772-3780
44. G.D. Wilcox, “Replacing Chromates for the Passivation of Zinc Surfaces”,Trans. Inst. Met. Fin.,Vol. 81,(2003)p. B13–B15
45.Y. T. Chang, N. T. Wen, W. K. Chen, M. D. Ger, G. T. Pan, T. C. K. Yang,“The effects of immersion time on morphology and electrochemical properties of the Cr(III)-based conversion coatings on zinc coated steel surface”,Corrosion Science, Vol. 50,(2008)p.3494- 3499
46.R. L. Twite,G. P. Bierwagen,“Review of alternatives to  chromate  for 
  corrosion protection of aluminum aerospace alloys”,Progress in   Organic Coatings,Vol. 33,(1998)p.91-100
47.H. Umehara, M. Takaya, S. Terauchi,“Chrome-free surface treatments for magnesium alloy”,Surface and Coatings Technology,Vol. 169-170, (2003)p.666-669
48.N. M. Martyak,“Internal stresses in zinc-chromate coatings”, Surface and Coatings Technology,Vol. 88,(1997)p.139-146
49.Z. L. Long, Y. C. Zhou, L. Xiao,“Characterization of black chromate conversion coating on the electrodeposited zinc–iron alloy”,Applied Surface Science,Vol. 218,(2003)p.123-136
50. A. A. O. Magalhaes, B. Tribollet, O.R. Mattos, I. C. P. Margarit , O.E. Barcia, "Chromate conversion coatings formation on zinc studied by electrochemical and electrohydrodynamical impedances ", J. Electrochem. Soc. Vol. 150, (2003)p.B16
51.X. Zhang, W. G. Sloof, A. Hovestad, E. P. M. van Westing, H. Terryn, J. H. W. de Wit,“Characterization of chromate conversion coatings on zinc using XPS and SKPFM”, Surface and Coatings Technology,Vol. 197,(2005)p.168-176
52.M.P. Gigandet, J. Faucheu, M. Tachez,“Formation of black chromate conversion coatings on pure and zinc alloy electrolytic deposits: role of the main constituents”, Surface and Coatings Technology,Vol. 89,(1997)p.285-291
53.A. Brenner ,“Electrodeposition of Alloys”, Academic Press, (1963) p.1
54.K. Higashi, H. Fukushima, T. Urakawa,“Mechanism of the Electrodeposition of Zinc Alloys Containing a Small Amount of Cobalt”,J. Electrochem. Soc. ,Vol.128,(1981)p.2081-2085
55. W. M. J. C. Werbene, J. S. Hadley,“Proceedings of Interfinish 88”, Metal Finishing,(1989)p.31
56.J. H. Park, T. H. Yun, K. Y. Kim, Y. K. Song, J. M. Park,“The improvement of anticorrosion properties of zinc-rich organic coating by incorporating surface-modified zinc particle”, Progress in Organic Coatings,Vol. 74,(2012)p.25-35
57. M. Wang, Y. Zhou, Y. Zhang, S. H. Hahn, E. J. Kim,“From Zn(OH)2 to ZnO:a study on the mechanism of phase transformation”,The Royal Society of Chemistry,Vol.13,(2011) p.6024-6026
58.T. K. Rout, N. Bandyopadhyay,“Effect of molybdate coating for white rusting resistance on galvanized steel”,Anti-Corrossion Methods and Materials,Vol. 54,(2007)p.16-20
59.D. L. Liu, Z. G. Yang, Z. Q. Wang, C. Zhang, “Synthesis and evaluation of corrosion resistance of molybdate-based conversion coatings on electroplated zinc”,Surface and Coatings Technology,Vol. 205,(2010)p.2328-2334
60.J. T. Lu, G. Kong, J. H. Chen, Q. Y. Xu, R. Z. Sui, “Growth and corrosion behavior of molybdate passivation film on hot dip galvanized steel”,Trans. Nonferrous Met. Soc. china,Vol. 13,(2003)p.145-148
61.L. F. G. Williams,“THE MECHANISM OF FORMATION OF CHROMATE CONVERSION FILMS ON ZINC”,Surface Technology,Vol. 4,(1976)p.355-366
62.K. Cho, V. Shankar Rao, H. Kwon, “Microstructure  and electrochemical characterization of trivalent chromium based conversion coating on zinc”,Electrochimica Acta,Vol. 52,(2007) p.4449-4456
63.李威志,林招松,“AZ31鎂合金磷酸鹽/過錳酸鹽化成皮膜微結構與抗蝕性”,防蝕工程,第21卷第1期,(2007)p.39~48
64.http://elearning.ice.ntnu.edu.tw/km/Data/Teacher/5566/Data/%E6%95%99%E6%9D%90/2769/1.%E5%8F%8D%E6%87%89%E9%80%9F%E7%8E%87%E8%88%87%E5%B9%B3%E8%A1%A1%E8%AC%9B%E7%BE%A9.pdf  2012/04/10
65. Schaffer, Saxena, Antolovich, Sanders, Warner,“The Science and   Design of Engineering Materials”,McGraw-Hill Companies,Second 
   Edition,(1999)p.290-297 
66.柯昱光,“以原子力學顯微鏡分析透光玻璃陶瓷之奈米微結構與成核密度”,私立大同大學碩士論文,(2005)
67. http://electrical.csu.edu.tw/Material/EE4Y/45848.pdf  2012/06/10
68. 蔡銘修,“氣相凝結法製備奈米氧化錳粉體之製程開發與特性研究”,私立逢甲大學碩士論文,(2003)p.12
69. R. Pareek, A. S. Joshi, P. D. Gupta, P.K. Biswas, S. Das,“Sol-gel 
based anti-reflection coatings on wedged”,Optics and Laser 
Technology,Vol. 37,(2005)p.369-374
70. http://baike.baidu.com/view/4386696.htm?tp=2_01  2012/04/12
71. http://www.yulishih.com.tw/200-5.html  2012/03/05
72. S. Li, J. Zheng, Y. Zhao, Y. Liu,“Preparation of a Three-Dimensional Ordered Macroporous Titanium Dioxide Material with Polystyrene Colloid Crystal as a Template”,Journal of Applied Polymer Science ,
Vol. 107, (2008) p.3903-3908
73. 侯光煦,“脈衝電流電鑄Ni-P 鍍層之磨潤特性研究”,國立中央大學博士論文,(2006)p.12
74. http://xueke.maboshi.net/hx/hxsy/gzsy/tjgjsy/838.html  2012/05/15
75.K. E. Brown, K. S. Choi,“Electrochemical synthesis and characterization of transparent nanocrystalline Cu2O films and their conversion to CuO films”,  Chemical Communications, Vol. 1, (2006)
p.3311-3313
76.黃昭順,“銅系觸媒氣相合成碳酸二甲酯之研究”,國立台灣科技大學碩士論文,(2005)
77.蔡承翰,“添加界面劑對電鍍Cu2O膜表面結構與特性之影響”,私立大同大學碩士論文,(2009)
論文全文使用權限
校內
紙本論文於授權書繳交後5年公開
同意電子論文全文授權校園內公開
校內電子論文於授權書繳交後5年公開
校外
同意授權
校外電子論文於授權書繳交後5年公開

如有問題,歡迎洽詢!
圖書館數位資訊組 (02)2621-5656 轉 2487 或 來信