淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2407201215303700
中文論文名稱 X光光譜研究氫氧基相關液態溶液之電子結構
英文論文名稱 X-ray spectroscopy study of hydroxyl-based liquid solutions
校院名稱 淡江大學
系所名稱(中) 物理學系博士班
系所名稱(英) Department of Physics
學年度 100
學期 2
出版年 101
研究生中文姓名 劉亦昇
研究生英文姓名 Yi-Sheng Liu
電子信箱 ysliu2@gmail.com
學號 894180032
學位類別 博士
語文別 英文
口試日期 2012-06-28
論文頁數 99頁
口試委員 指導教授-張經霖
委員-林諭男
委員-杜昭宏
委員-劉嘉吉
委員-郭晶華
中文關鍵字 X光吸收能譜  X光放射能譜    液態溶液  氫氧化納  醇類  超導體  氫鍵 
英文關鍵字 XAS  XES  water  solution  Sodium Hydroxide  Alcohols  Superconductor  Hydrogen bonds 
學科別分類
中文摘要 在液態溶液之微觀電子結構上的研究,是了解液態溶液行為以及其相關特性的重要課題,對於單純液態水而言,水分子間的化學鍵(氫鍵)對於有關於水的物理、化學特性、結構等等具有非常大的關聯性,如此重要的基礎水溶液已經過長久以來的應用但其中所未知的微觀行為如結構特性、溶解後與離子交互作用等的問題卻一直無法得到共識以及透徹的了解,國內對於如此液態電子結構之研究相當稀少,加上實驗上技術方面的困難性,因此本研究利用美國加州柏克萊國家實驗室中的先進光源(Advanced Light Source, ALS)同步輻射光源研究純水溶液、氫氧基掺入的氫氧化鈉水溶液(NaOH)、液態醇類(Alcohols)及水合鈷化物超導體(Na0.3CoO2‧yH2O)利用X光吸收能譜與X光放射能譜研究其電子結構與氫鍵的行為、局部結構的關聯性。
英文摘要 The research of electronic structure in liquid solution under microscopic view is crucial to the understanding of solution behaviors and its properties. For neat liquid water at ambient condition, the intermolecular chemical bonds (Hydrogen bonds) are strongly related to the physical, chemical and structural properties of liquid water. Such an important and fundamental substance have been used for long time, however the understanding under microscopic view are still far from complete such as locally structural geometry, ion-ion interactions or charge immigration in electrolyte. Not to mention the consensus of the behaviors from different experimental technique. The difficulties of the soft x-ray spectroscopic experiment apparatus in Taiwan for liquid systems, leading to the study on the electronic structural researches of liquid systems are impossible. Hence, in this thesis, we are performing the research of electronic structure utilizing soft X-ray Absorption Spectroscopy (XAS) and soft X-ray emission spectroscopy (XES) in hydroxyl-based liquid solutions. Hydroxyl-based solutions include neat liquid water, NaOH solutions, Alcohols and hydrated Sodium Cobaltite. By the similarity of hydroxyl in these systems, to understanding the correlation between electronic structure and HB behavior or local structural information utilizing XAS and XES. All of the soft x-ray spectroscopies were performed at Advanced Light Source (ALS), Berkeley National Laboratory in CA, USA.
論文目次 Acknowledgement i
Abstract iii
Table of Contents v
List of Figures vii
Chapter 1 Introduction 1
1-1 Liquid water 3
1-2 NaOH solutions 8
1-3 Liquid Alcohols 11
1-4 Sodium Cobalt Oxyhydrate (NaxCoO2‧yH2O) 15
1-5 Recent research development of liquids 18
Chapter 2 Experiments 19
2-1 Synchrotron Radiation 20
2-2 Beamline utilities 24
2-3 Liquid cell 26
2-4 X-ray Absorption Spectroscopy (XAS) 31
2-5 X-ray Emission Spectroscopy (XES) 37
2-5-1 Non-resonant X-ray emission Spectroscopy (NXES)38
2-5-2 Resonant X-ray Emission Spectroscopy (RXES) 39
Chapter 3 Results and Discussion 42
3-1 Water-related 42
3-2 NaOH solutions 49
3-3 Liquid Alcohols 60
3-4 Sodium Cobalt Oxyhydrate (NaxCoO2‧yH2O) 79
Chapter 4 Conclusion 88
Bibliography 91

List of Figures
Chapter-1.
1-1. (a) Molecular structure of monomer H2O. .............................................. 6
1-2. Molecular Orbitals of monomer H2O. .................................................... 7
1-3. Structural diffusion of OH complex. From a OH-(H2O)4 configuration (d) transform to OH-(H2O)3 configuration (e). Finally back to OH-(H2O)4 complex via proton transportation. .................................... 10
1-4. Molecular structure of water and alcohols. .......................................... 14
1-5. Crystal structure of parent γ-NaxCoO2 (a) and hydrated NaxCoO2 (b). 17
Chapter-2.
2-1. The electromagnetic spectrum, representing the scale of wavelength between objects. ................................................................................... 22
2-2. The Advanced Light Source (ALS), Lawrence Berkeley National Lab., CA. ....................................................................................................... 22
2-3. Booster and Storage ring of Synchrotron radiation facility…………..23
2-4. The diagram of how a bending magnet creates SR……………….….23
2-5. Undulator magnet in the front of beamline-7. Electron beam is disturbed by the alternative .................................................................. 25
2-6. The layout of beamline 7 including the x-ray emission spectrometer in the left part of the graph. ...................................................................... 25
2-7. The static liquid cell. ............................................................................ 28
2-8. Transmission percentages versus photon energy and different x-ray windows. .............................................................................................. 28
2-9. The layout of flow liquid cell.. ............................................................. 30
2-10. A installed liquid cell on the experimental chamber in beamline-7 ... 30
2-11. Diagram of the two categories of XAS including XANES and EXAFS............................................................................................................... 32
2-12 The cartoon of XAS process, a core electron of O 1s excited to unoccupied state above the EF by absorbing a photon with the photon energy hv. Here is referring to O K-edge XAS. ................................. 32
2-13. Representing the scattering process of XANES and EXAFS in (a) and (b), respectively.. ................................................................................ 34
2-14. Pictorial detection modes of XAS (a) process including FY (b) and TEY mode (c) ..................................................................................... 34
2-15. Schematic process of O K-edge XAS and XES. ................................ 37
2-16. RXES of TiO2 and corresponding transitions between energy levels diagram. ............................................................................................. 41
2-17. The endstation experimental arrangement for XES experiments. ...... 41
Chapter-3.
3-1. The molecular orbital (MO’s) of H2O molecule. .................................. 43
3-2. (a) The O K-edge XAS of vapor and liquid water, ............................... 44
3-3. (a) The four coordinated HB configuration in ice, the donating and accepting HB were denoted by black and blue lines respectively. (b) Indicating the definition of donor and acceptor molecule. Note that for the molecule in the center is donating a HB to the left so noted as a Donor, but it is also accepting a HB from the right molecule thus it could be an acceptor as well. ............................................................... 46
3-4. RXES spectra of liquid water with different excitation energies. ........ 48
3-5. The O K-edge XAS spectra of concentration dependent NaOH aqueous solution, ................................................................................................ 50
3-6. Spectral differences between solutions and pure water. ....................... 50
3-7. The area integration of OH- peak and pre-peak in O K-edge XA spectra (b) after a suitable background subtraction (a).The background subtraction process as follow: subtract a fraction of Gaussian function from our data to obtain the contribution of individual absorption peaks............................................................................................................... 52
3-8. The RXES spectra of liquid water and concentrated solutions. (a) the resonantly excited energies were denoted by arrows and corresponding RXES were presented in (b). ............................................................... 56
3-9. The structure diffusion of OH- in liquid water, yellow, red and gray circle represents Oxygen atom of OH- ion, Oxygen atom of H2O and Hydrogen atom, respectively20 and dashed line represent the HBs. The process of proton transfer is from d to f. .............................................. 59
3-10. Single molecular structure of alcohols and water. Red, white and black circles represent the oxygen, hydrogen and carbon atom respectively............................................................................................................... 61
3-11. (a) the O K-edge XAS spectra of liquid alcohols and water, (b) the zoom-in plot in the pre edge region after a background subtraction. .. 62
3-12. C K-edge XAS spectra of liquid (solid curve) and corresponding vapor alcohols (dotted) is presented. The spectra of vapor alcohols are from Hitchcock by EELS. .................................................................... 65
3-13 (a). The O Kα-emission spectra of liquid alcohols. The notions represent the outmost molecular orbitals of liquid water are 1b1, 3a1 and 1b2, respectively. Note that α and β corresponding to splitting of liquid water, whereas α′ and β′ thus corresponding to splitting of liquid alcohols. ................................................................................... 69
3-14. The ratio of Ring/Chains structure of all liquid alcohols. .................. 73
3-15. The C K-edge XES spectrum of liquid methanol, outmost orbitals are obtained from the analysis of methanol molecule. ............................ 73
3-16. The C K-edge XES spectra of liquid alcohols .................................... 76
3-17. Co L2,3-edge XAS spectrum of Na0.7CoO2. Notion (a) to (f) indicates the resonant excitation energies. The inset is the schematic XAS process of mix valence Co in trigonal lattice. .................................... 80
3-18. Co 3d degenerate orbitals split by crystal field in CoO6 octahedron and distorted octahedron. ................................................................... 80
3-19. RIXS spectra of parent Na0.7CoO2: left panel represents the resonantly excited spectra with different energies which are denoted in fig.2 and n represented the non-resonant x-ray emission. Right panel is the loss-energy scale between -10eV to 5eV. The zero photon energy position came from subtract the incident photon energy from individual resonant excited spectrum corresponding to the elastic emission. ............................................................................................ 82
3-20. The O K-edge XAS spectrum of parent Na0.7CoO2. ........................... 83
3-21. O K-edge XAS spectra of hydrated Na0.3CoO2, parent sample Na0.7CoO2 and water. ......................................................................... 85
3-22. Co L2,3-edge XAS spectra of time dependent hydrous sample. .......... 86
參考文獻 1 T. Tokushima, Y. Harada, O. Takahashi, Y. Senba, H. Ohashi, L.G.M. Pettersson, A. Nilsson and S. Shin, Chem. Phys. Lett. 460, (2008) 387-400.
2 J.-H. Guo Y. Luo, A. Augustsson, J.-E. Rubensson, C. Sathe, H. Agren, H. Siegbahn, and J. Nordgren, Phys. Rev. Lett. 89, (2002) 137402.
3 J. D. Smith, Christopher D. Cappa, Kevin R. Wilson, Benjamin M. Messer, Ronald C. Cohen and Richard J. Saykally, Science 306, (2004) 851.
4 Ph. Wernet, D. Nordlund, U. Bergmann, M. Cavalleri, M. Odelius, H. Ogasawara, L. A. Naslund, T. K. Hirsch, L. Ojamae, P. Glatzel, L. G. M. Pettersson and A. Nilsson, Science 304, (2004) 995.
5 Teresa Head-Gordon and Margaret E. Johnson, PNAS 103, (2006) 7973–7977.
6 B. Brena, D. Nordlund, M. Odelius, H. Ogasawara, A. Nilsson and L. G. M. Pettersson, Phys. Rev. Lett. 93, (2008) 148302.
7 M. Odelius, H. Ogasawara, D. Nordlund, O. Fuchs, L. Weinhardt, F. Maier, E. Umbach, C. Heske, Y. Zubavichus, M. Grunze, J. D. Denlinger, L. G. M. Pettersson, and A. Nilsson, Phys. Rev. Lett. 94, (2005) 227401.
8 O. Fuchs, M. Zharnikov, L. Weinhardt, M. Blum, M. Weigand, Y. Zubavichus, M. Bar, F. Maier, J. D. Denlinger, C. Heske, M. Grunze and E. Umbach, Phys. Rev. Lett. 100, (2008) 027801.
9 I. Hjelte, M.N. Piancastelli, R.F. Fink, O. Bjorneholm, M. Bassler, R. Feifel, A. Giertz, H. Wang, K. Wiesner, A. Ausmees, C. Miron, S.L. Sorensen and S. Svensson, Chem. Phys. Lett. 334, (2001) 151.
10 D. Nordlund, H. Ogasawara, H. Bluhm, O. Takahashi, M. Odelius, M. Nagasono, L. G. M. Pettersson and A. Nilsson, Phys. Rev. Lett. 99, (2007) 217406.
11 C. D. Cappa, J. D. Smith, B. M. Messer, R. C. Cohen and R. J. Saykally, J. Phys. Chem. B 110, (2006) 5301-5309.
12 C. D. Cappa, J. D. Smith, B. M. Messer, R. C. Cohen, and R. J. Saykally, J. Phys. Chem. A 111, (2007) 4776-4785.
13 M. Tuckerman, K. Laasonen, M. Sprik and M. Parrinello, J. Chem. Phys. 103, (1995) 150; J. Phys. Chem. 99, (1995) 5749.
14 D. Eisenberg, and W. Kauzmann, The Structure and Properties of Water, Oxford University Press, Oxford, (1969), p. 225.
15 N. Agmon, J. Chem. Phys. 93, (1996) 1714–1736.
16 N. Agmon, Chem. Phys. Lett. 319, (2000) 247–252.
17 W. R. Busing and D. F. Hornig, J. Chem. Phys. 65, 284.
18 N. B. Librovich, V. P. Sakun, and N. D. Sokolov, Chem. Phys. 39, 351.
19 M. Meot-Ner and C. V. Speller, J. Phys. Chem. 90, 6616.
20 Mark E. Tuckerman, Dominik Marx and M. Parrinello, Nature 417, (2002) 925.
21 Dominik Marx, ChemPhysChem. 8, (2007) 203-211.
22 S. Myneni, Y. Luo, L. A. Naslund, M. Cavalleri, L. Ojamae, H. Ogasawara, A. Pelmenschikov, Ph. Wernet, P. Vaterlein, C. Heske, Z. Hussain, L. G. M. Pettersson and A. Nilsson, J. Phys.: Condens. Matt. 14, (2002) L213.
23 A. Nilsson, Ph. Wernet, D. Nordlund, U. Bergmann, M. Cavalleri, M. Odelius, H. Ogasawara, L.-A. Naslund, T. K. Hirsch, L. Ojamae, P. Glatzel, and L. G. M. Pettersson, Science 308, (2005) 793.
24 J.-H. Guo and Y. Luo, Electron Spectr. Rel. Phenom. 177, (2010) 181-191.
25 Emad F. Aziz, N. Ottosson, M. Faubel, I. V. Hertel and Bernd Winter, Nature 455, (2008) 89–91.
26 Emad F. Aziz, S. Eisebitt and W. Eberhardt, J. Phys. Chem. B 112, (2008) 1262–1266.
27 S. Bonhommeau, N. Ottosson, W. Pokapanich, S. Svensson, W. Eberhardt, O. rneholm and Emad F. Aziz, J. Phys. Chem. B 112, (2008) 12571–12574.
28 Emad F. Aziz, M. Freiwald, S. Eisebitt and W. Eberhardt, Phys. Rev. B 73, (2006) 75120.
29 Emad F. Aziz, A. Zimina, M. Freiwald, S. Eisebitt, and W. Eberhardt, J. Chem. Phys. 124, (2006) 114502.
30 D. Asthagiri, Lawrence R. Pratt, J. D. Kress, and Maria A. Gomez, PNAS 101,
(2004) 7229–7233.
31 Maciej SA miechowski and Janusz Stangret, J. Phys. Chem. A 111, (2007) 2889-2897.
32 L.Weinhardt, O. Fuchs, M. Blum, M. Bar, M. Weigand, J.D. Denlinger, Y. Zubavichus, M. Zharnikov, M. Grunze, C. Heske and E. Umbach, J. Electron. Spectrosc. Relat. Phenom. 177, (2010) 206–211.
33 C. D. Cappa, J. D. Smith, B. M. Messer, R. C. Cohen and R. J. Saykally, J. Phys. Chem. A 111, (2007) 4776-4785.
34 L. Pauling, The Nature of the Chemical Bond (Cornell University, Ithaca, NY, 1960).
35 S. Sarkar and R. N. Joarder, J. Chem. Phys. 99, (1993) 2032.
36 M. Manini, G. Paschina and G. J. Piccaluga, J. Am. Phys. 77, (1982) 2052.
37 W. Weltner and K. S. Pitzer, J. Am. Chem. Soc. 73, (1951) 2606.
38 K. S. Vahvaselka, R. Serimaa and M. Torkkeli, J. Appl. Crystallogr. 28, (1995) 189-195.
39 J. Lehtola, M. Hakala and K. Hamalainen, J. Phys. Chem. B 114, (2010) 6426-6436.
40 M. TomŠiČ and A. Jamnik, J. Phys. Chem. B 111, (2007) 1738-1751.
41 S. Sarkar and R. N. Joarder, J. Chem. Phys. 100, (1994) 5118.
42 A. Sahoo, S. Sarkar, P. S. R. Krisna and R. N. Joarder, Pramana J. Phys. 74, (2010) 5.
43 A. K. Karmakar, S. Sarkar, and R. N. Joarder, J. Phys. Chem. 99, (1995) 45.
44 Sidney W. Benson, J. Am. Chem. Soc. 118, (1996) 10645-10649.
45 Ralf Ludwig, ChemPhysChem. 6, (2005) 1369-1375.
46 Stephen E. DeBolt and Peter A. Kollman, J. Am. Chem. SOC.117, (1995) 316-5340.
47 Kevin R. Wilson, Matteo Cavalleri, Bruce S. Rude, R. D. Schaller, T. Catalano, A. Nilsson, R. J. Saykally and L. G. M. Pettersson, J. Phys. Chem. B 109, (2005) 10194-10203.
48 S. Kashtanov, A Augustson, J-E Rubensson, J Nordgren, Hans Agren, J-H Guo, and YLuo, Phys. Rev. B. 71, (2005) 104205.
49 C.-J. Liu, C.-Y. Liao, J.-Y. Lin and J-F Lee, Philosophical Magazine 90, (2010) 1585.
50 C.-J. Liu, C.-Y. Liao, L.-C. Huang, C.-H. Su, S. Neeleshwar, Y.-Y. Chen and C.-J.C. Liu, Physica C 416, (2004) 43–46.
51 K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R.A. Dilanian and T. Sasaki, Nature 422, (2003) 53.
52 M. Ogata, J. Phys.: Condens. Matt. 19, (2007) 145282.
53 H. Ohta, K. Yoshimura, Z. Hu, Y. Y. Chin, H. -J. Lin, H. H. Hsieh, C. T. Chen, and L. H. Tjeng, Phys. Rev. Lett. 107, (2011) 066404.
54 C.-J. Liu, W.-C. Hung, J.-S. Wang and C.-J. C. Liu, J. Am. Chem. SOC. 127, (2005) 830-831.
55 Accounts of chemical research 45, (2012) 1-138. http://pubs.acs.org/toc/achre4/45/1
56 T. Warwick, P. Heimann, D. Mossessain, W. MacKinney, and H. Padmore, Rev. Sci. Instrum. 66, (1995) 2037.
57 J. Nordgren, G. Bray, S. Cramm, R. Nyholm, J.-E. Rubensson, and N. Wassdahl, Rev. Sci. Instrum. 60, (1989) 1690.
58 J.-H. Guo, N. Wassdahl, P. Skytt, L. C. Duda, S. Butorin, C.-J. Englund, and J. Nordgren, Rev. Sci. Instrum. 66, (1995) 1561.
59 J.-H. Guo, Y. Luo, A. Augustsson, S. Kashtanov, J.-E. Rubensson, D. K. Shuh, H. Agren, and J. Nordgren, Phys. Rev. Lett. 91, (2003) 157401.
60 H. Liu, J.-H. Guo, Y. Yin, A. Augustsson, C. L. Dong, J. Nordgren, C. L. Chang, P. Alivisatos, G. Thornton, D. F. Ogletree, F. G. Requejo, F. de Groot, and M. Salmeron, Nano Lett. 7, (2007) 1919.
61 P. Jiang, J.-L. Chen, F. Borondics, P.-A. Glans, M. W. West, C.-L. Chang, M. Salmeron and J.-h. Guo, Electrochemistry Communications 12, (2010) 820–822.
62 D. C. Konigsberger and R. Prins “X-ray Absorption: Principle, Application, Techniques of EXAFS, SEXAFS and XANES” edited by Chem. Analys. 92, Wiely (1988).
63 F. M. F. de Groot, M. Grioni, J. C. Fuggle, J. Ghijsen, G. A. Sawatzky, and H. Petersen, Phys. Rev. B 40, (1989) 5715.
64 W.-F. Pong, R. A. Mayanovic, B. A. Bunker, J. K. Furdyna and U. Debska, Phys. Rev. B 41, (1990) 8440–8448.
65 C. L. Dong, C. L. Chen, K. Asokan, Y. Y. Chen, P. C. Chen, Y. S. Liu, J. L. Chen, C. L. Chang, H. J. Lin, J. F. Lee and J.-H. Guo, Physica Status Solidi (b) 244, (2007) 4526-4529.
66 M. G. Kim, H. J. Shin, J.-H. Kim, S.-H. Park and Y.-K. Sun, J. Electrochem. Soc. 152, (2005) A1320-A1328.
67 S. Eisebitt, T. Boske, J.-E. Rubensson, and W. Eberhardt, Phys. Rev. B 47, (1993)14103.
68 J. Jaklevic, J.A. Kirby, M.P. Klein, A.S. Robertson, G.S. Brown and P. Eisenberger, Solid State Commun. 88, (2003) 1105.
69 S. M. Butorin, J.-H. Guo, M. Magnuson, and J. Nordgren, Phys. Rev. B 55, (1997) 4242.
70 T. Tokushima, Y. Horikawa, Y. Harada, O. Takahashi, A. Hiraya and S. Shin, Phys. Chem. Chem. Phys. 11, (2009) 1679-1682.
71 A. Nilsson, D. Nordlund, I. Waluyo, N. Huang, H. Ogasawara, S. Kaya, U. Bergmann, L.-A. Naslund, H. Ostrom, Ph. Wernet, K.J. Andersson, T. Schiros and L.G.M. Pettersson, J. Electron. Spectrosc. Relat. Phenom. 177, (2010) 99-129.
72 Emad F. Aziz, J. Electron. Spectrosc. Relat. Phenom. 177, (2010) 168–180.
73 C. D. Cappa, J. D. Smith, B. M. Messer, R. C. Cohen and R. J. Saykally, J. Phys. Chem. B 110, (2006) 1166.
74 C. G. Ning, B. Hajgato, Y. R. Huang, S. F. Zhang, K. Liu, Z. H. Luo, S. Knippenberg, J. K. Deng and M. S. Deleuze, Chem. Phys. 343, (2008) 19-30.
75 B. Winter, R. Weber, W. Widdra, M. Dittmar, M. Faubel, and I. V. Hertel, J. Phys. Chem. A 108, (2004) 2625.
76 J. Nordgren, L. P. Werme, H. Agren, C. Nordling and K. Siegbahn, J. Phys. B: At. Mol. Phys. 8, (1975) L18.
77 O. Fuchs, M. Zharnikov, L. Weinhardt, M. Blum, M. Weigand, Y. Zubavichus, M. Bar, F. Maier, J. D. Denlinger, C. Heske, M. Grunze and E. Umbach, Phys. Rev. Lett. 100, (2008) 249802.
78 D. Marx, ChemPhysChem. 7, (2006) 1848-1870.
79 Y. Tamenori, Spring-8 User’s Meeting, (2005) p.92
80 Y. Tamenori, K. Okada, O. Takahashi, S. Arakawa, K. Tabayashi, A. Hiraya, T. Gejo and K. Honma, J. Chem. Phys. 128, (2008) 124321.
81 Y. Tamenori, T. Yamaguchi, K. Okada, K. Tabayashi, T. Gejo and K. Honma, J. Electron Spectrosc. Relat. Phenom. 144, (2005) 235-238.
82 U. Bergmann, Ph. Wernet, P. Glatzel, M. Cavalleri, L. G. M. Pettersson, A. Nilsson, and S. P. Cramer, Phys. Rev. B 66, (2002) 092107.
83 A. Hempelmann, M. N. Piancastelli, F. Heiser, O. Gessner, A. Rudel and U. Becker, J. Phys. B:At. Mol. Opt. Phys. 32, (1999) 2677.
84 Kevin C. Prince, R. Richter, M. de Simone, M. Alagia and M. Coreno, J. Phys. Chem. A 107, (2003) 1955.
85 G. R. Wight and C. E. Brion, J. Electron Spectrosc. Relat. Phenom. 4, (1974) 25.
86 T. K. Sham, B. X. Yang, J. Kirz and J. S. Tse, Phys. Rev. A 40, (1989) 652.
87 M. de Simone, M. Coreno, M. Alagia, R. Richter and Kevin C. Prince, J. Phys. B: At. Mol. Opt. Phys. 35, (2002) 61.
88 M. Magnuson, S. M. Butorin, J.-H. Guo, A. Agui, J. Nordgren, H. Ogasawara, A. Kotani, T. Takahashi and S. Kunii, Phys. Rev. B 63, (2001) 75101.
89 M. Odelius, Phys. Rev. B 79, (2009) 144204.
90 L. G. M. Pettersson, T. Tokushima, Y. Harada, O. Takahashi, S. Shin and A. Nilsson, Phys. Rev. Lett. 100, (2008) 249801.
91 T. Pyl nen, . ehtola, M. Ha ala, A. Sa o, . Monaco, S. Huotari and K. H m l inen, J. Phys. Chem. B 114, (2010) 13076-13083.
92 J.-E. Rubensson, N. Wassdahl, R. Brammer and J. Nordgren, J. Electron Spectrosc. Relat. Phenom. 47, (1988) 131-145.
93 V. V. Poltavets, M. Croft, and M. Greenblatt, Phys. Rev. B 74, (2006) 125103.
94 T. Kroll, M. Knupfer, J. Geck, C. Hess, T. Schwieger, G. Krabbes, C. Sekar, D. R. Batchelor, H. Berger, and B. Buchner, Phys. Rev. B 74, (2006) 115123.
95 W. B. Wu, D. J. Huang, J. Okamoto, A. Tanaka, H.-J. Lin, F. C. Chou, A. Fujimori, and C. T. Chen, Phys. Rev. Lett. 94, (2005) 146402.
96 J. L. Chen, Y. S. Liu, Chia-Jyi Liu, L.-C. Huang, C. L. Dong, S. S. Chen and C. L. Chang, J. Phys. D: Appl. Phys. 42, (2009) 135418.
97 H.-J. Lin, Y. Y. Chin, Z. Hu, G. J. Shu, F. C. Chou, H. Ohta, K. Yoshimura, S.Hebert, A. Maignan, A. Tanaka, L. H. Tjeng and C. T. Chen, Phys. Rev. B. 81, (2010) 115138.
98 S. Kobayashi, I. R. M. Kottegoda, Y. Uchimoto and M. Wakihara, J. Mater. Chem. 14, (2004) 1843–1848.
99 Y. Kadoma, Y. Uchimoto, and M. Wakihara, J. Phys. Chem. B 110, (2006) 1.
100 Y. Takata, T. Hatsui, and N. Kosugi, J. Electron. Spectrosc. Relat. Phenom. 101, (1999) 443-447.
101 M. L. Foo, Y. Wang, S. Watauchi, H. W. Zandbergen, T. He, R. J. Cava and N. P. Ong, Phys. Rev. Lett. 92, (2004) 247001.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-08-06公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-08-06起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信