淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2407201212101600
中文論文名稱 以x光吸收光譜研究非相稱性輝鈷礦之 電子結構及其與熱電性質之關聯性
英文論文名稱 The correlation between electronic structure and thermoelectric properties of misfit-layered cobaltites studied by x-ray absorption spectroscop
校院名稱 淡江大學
系所名稱(中) 物理學系博士班
系所名稱(英) Department of Physics
學年度 100
學期 2
出版年 101
研究生中文姓名 陳政龍
研究生英文姓名 Jeng-Lung Chen
學號 894180024
學位類別 博士
語文別 英文
口試日期 2012-06-28
論文頁數 85頁
口試委員 指導教授-張經霖
委員-郭晶華
委員-劉嘉吉
委員-錢凡之
委員-彭維鋒
中文關鍵字 X光吸收能譜  熱電材料  非相稱性輝鈷礦 
英文關鍵字 XAS  Thermoelectric Materials  Misfit-layered Cobaltites 
學科別分類
中文摘要 非相稱性輝鈷礦Ca3Co4O9+δ於室溫時擁有良好的熱電特性、包括高熱電力、低電阻率及低熱導率等,為良好的熱電材料。相較於 Bi2Te3、Zn4Sb3、PbTe及Si1-xGex,其在高溫的空氣中具有較高的化學穩定度。多晶相的Ca3Co4O9+δ 其熱電特性雖較單晶相的樣品低,但由於製作成本較低廉,因此更具有實用的價值。為了提高多晶材料的熱電特性,不同金屬元素掺雜取代Ca 或Co以增加載子濃度及其遷移率或熱傳導性質皆為可行之方法。本研究工作利用同步輻射光源進行X- 光吸收光譜量測,對 Mn 及 Fe 掺雜的 Ca3Co4-xMx(M = Fe, Mn)O9+δ 及鑭系元素掺雜的 Ca2.9Ln0.1(Ln = Ca, Dy, Ho, Er and Lu)Co4O9+δ 熱電材料作了深入而有系統的探討,以期更進一步瞭解這類材料的電子結構與其熱電性質之關聯性。
由研究結果得知,降低Co4+與Co3+比例有助於提高熱電力。增加Co4+ 3d與O 2p混層軌域有助於電阻率的降低。而藉由摻雜造成其晶格扭曲有助於降低其熱導率。同時我們也發展了可在真空環境裡進行實驗的電化學裝置,使的實驗並不只限於固體樣品的量測。
英文摘要 The misfit-layered cobaltites Ca3Co4O9+δ have shown large thermoelectric power and low electrical resistivity and thermal conductivity at room temperature. These cobaltites exhibit good chemical stability in air at high temperatures in comparing with intermetallic compounds, e.g., Bi2Te3, Zn4Sb3, PbTe and Si1-xGex alloys. The polycrystalline cobaltites are more reliable for practical applications even with a relatively lower performance compared to single crystalline cobaltites. However, single crystalline samples are too expensive for the practical fabrication of TE devices. Partial substitutions of various metal elements for Ca and/or Co to optimize the carrier concentration and to improve other electronic transport properties can result in better thermoelectric properties of these materials. We have performed systematic x-ray absorption spectroscopy measurements on two series of doped misfit-layered cobaltites, Ca3Co4-xMx(M = Fe, Mn)O9+δ and Ca2.9Ln0.1(Ln = Ca, Dy, Ho, Er and Lu)Co4O9+δ, in order to gain a deeper understanding of the correlations between the electronic structure and the thermoelectric properties in these materials. We found that reducing the ratio of Co4+/Co3+ will increase thermoelectric power. Increasing the hybridization of Co4+ (3d5) – O (2p) will decrease the electric resistivity. Introducing lattice distortion will decrease the thermal conductivity. We also developed the in-situ electrochemistry flow cell which can be performed with liquid samples in high vacuum environment.
論文目次 Table of Contents

Acknowledgement i
Abstract iii
List of Figures xi
List of Tables xviii

1. Introduction 1
1-1. Development History of Thermoelectric Materials 1
1-2. The Characteristics of Misfit Layered Cobaltites 4
1-3. Need for Spectroscopic Studies 9

2. Experimental Techniques 11
2-1. Sample Preparation of Ca3Co4-xMx(M = Fe, Mn)O9+δ (x = 0, 0.05, 0.1, 0.15) 11
2-2. Samples Preparation of Ca2.9Ln0.1Co4O9+δ (Ln = Ca, Dy, Ho, Er, Lu) 11
2-3. Resistivity Measurements 12
2-4. Thermoelectric (TE) Power Measurements 14
2-5. Synchrotron radiation 15
2-6. Beamlines of Utilized 19
2-7. X-ray Absorption Spectroscopy 21

3. Results on Ca3Co4O9+δ Series 27
3-1. Ca3Co4-xFexO9+δ (x = 0, 0.05, 0.1, and 0.15) series 27
3-2. Ca3Co4-xMnxO9+δ (x = 0, 0.05, 0.1, and 0.15) series 42
3-3. Ca2.9Ln0.1Co4O9+δ (Ln = Ca, Dy, Ho, Er and Lu) series 56

4. In situ Electrochemistry Flow Cell 68

5. Summary 74
5-1. Ca3Co4-xMx(M = Fe and Mn)O9+δ (x = 0, 0.05, 0.1, and 0.15) series 74
5-2. Ca2.9Ln0.1Co4O9+δ (Ln = Ca, Dy, Ho, Er and Lu) series 74
5-3. In situ Electrochemistry Flow Cell 75
Bibliography 78

List of Figures
Chapter 1
1-1 Diagram of a single couple made of a p-type and an n-type TE material. I
represents the current flow. (a) When a temperature difference is added on the device,
useful power can be extracted. (b) Electrons pass from p-type to n-type material, and
the temperature will decrease when heat is absorbed. Then heat is dissipated into
surrounding environment ............................................................................................... 2
1-2 Schematic illustration of the NaxCoO2 structure. .................................................... 5
1-3 Schematic illustration of the Ca3Co4O9 structure .................................................... 6
Chapter 2
2-1 Schematic apparatus of resistivity measurement ................................................... 13
2-2 Schematic apparatus of thermoelectric power measurement. ............................... 14
2-3 Schematic diagram of synchrotron radiation extending from the infrared to the
x-ray regions.. .............................................................................................................. 16
2-4 National synchrotron radiation center (NSRRC) in Taiwan. ................................. 17
2-5 Schematic diagram of a synchrotron radiation source. .......................................... 18
2-6 Schematic illustration of x-ray absorption spectroscopy process. ......................... 21
2-7 Energy levels, absorption edges, and characteristics line emissions of a
muti-electron atom . ..................................................................................................... 22
2-8 X-ray absorption spectrum of Ca3Co4O9+δ at Co K-edge, as an example which
corresponds to excitation of a Co 1s electron into empty p state. The spectrum is
divided into XANES and EXAFS. ............................................................................... 23
2-9 (a) The illustration of photoelectron scattering process in the single scattering
regime, and (b) in the multiple scattering regime. ....................................................... 24
2-10 The schematic view of x-ray absorption detecting modes................................... 25
2-11 The decay mechanism for the total electron yield and the total fluorescence
modes. .......................................................................................................................... 26
Chapter 3
3-1 Co K-edge XANES spectra of Ca3Co4−xFexO9+δ (x= 0, 0.05, 0.10 and 0.15) and
the reference oxides. .................................................................................................... 29
3-2 Co K-edge derivative spectra (symbolic lines) of Ca3Co4O9+δ and the reference
oxides..........................................................................................................................30
3-3 Normalized Fe K-edge XANES spectra of Ca3Co4−xFexO9+δ (x= 0, 0.05, 0.10 and
0.15) and the reference oxides. .................................................................................... 31
3-4 Fe K-edge derivative spectra (symbolic lines) of Ca3Co3.85Fe0.15O9+δ and the
reference oxides............................................................................................................32
3-5 (a) O K-edge XANES spectra of Ca3Co4−xFexO9+δ (x= 0, 0.05, 0.10 and 0.15) and
the reference oxides. (b) The inset shows the magnified pre-edge peak after
background subtraction using a best fitted Gaussian curve indicated by the dotted line
(Fig. 3-5a)…………………………………………………………………………….34
3-6 Co L2,3-edge XANES spectra of Ca3Co4−xFexO9+δ (x= 0, 0.05, 0.10 and 0.15) and
the reference oxides. The inset shows the magnified L3-edge after background
subtraction using an arctangent function indicated by the dotted line……………….35
3-7 Plot of magnetic susceptibility verse temperature for Ca3Co3.95Fe0.05O9+δ in an
applied field of 5000 Oe. The solid line is a fit to the Curie-Weiss law. ...................... 36
3-8 Integrated intensities of the Co L3 - and pre-edge features of O K-edges, Fe K- and
Co K-edges for Ca3Co4−xFexO9+δ (x=0, 0.05, 0.10, and 0.15). The inset is the variation
of the room-temperature resistivity with x…………………………………………...40
3-9 Integrated intensity of Co L2,3 -edge (Co) and thermoelectric power (S) for
Ca3Co4-xFexO9+δ (x = 0, 0.05, 0.1 and 0.15)……………………………………..…...41
3-10 Normalized Co K-edge XANES spectra of Ca3Co4-xMnxO9+δ (x = 0, 0.05, 0.1
and 0.15) and standard oxides.……..….......................................................................44
3-11 (a) Magnified Co K-edge XANES spectra of Ca3Co4-xMnxO9+δ (x = 0, 0.05, 0.1
and 0.15). (b) The variation of A1 intensity with x…………………………………..45
3-12 Normalized Mn K-edge XANES spectra of Ca3Co4-xMnxO9+δ (x = 0, 0.05, 0.1
and 0.15) and standard oxides………………………………………………………..46
3-13 Mn K-edge derivative spectra (symbolic lines) of Ca3Co3.85Mn0.15O9+δ and the
reference oxides………………………………………………………………………47
3-14 (a) O K-edge XANES spectra of Ca3Co4−xMnxO9+δ (x= 0, 0.05, 0.10 and 0.15).
(b) The inset shows the magnified pre-edge peak after background subtraction using a
best fitted Gaussian curve indicated by the dotted line (Fig. 3-14a). ........................... 48
3-15 Normalized Co L2,3-edge spectra of Ca3Co4-xMnxO9+δ (x = 0, 0.05, 0.1 and 0.15)
and the background arctangent function (the dotted line).. ......................................... 50
3-16 Plot of magnetic susceptibility as a function of temperature for
Ca3Co3.85Mn0.15O9+δ in an applied field of 5 T. The solid line is a fit to the Curie-Weiss
law. ............................................................................................................................... 51
3-17 Integrated intensity of Co L2,3 -edge (Co) and thermoelectric power (S) for
Ca3Co4-xMnxO9+δ (x = 0, 0.05, 0.1 and 0.15)………………………………………...54
3-18 Integrated intensity of the Co4+ (3d5) – O 2p hybridization and the resistivity for
Ca3Co4-xMnxO9+δ (x = 0, 0.05, 0.1 and 0.15)………………………………………...55
3-19 Co K-edge XANES spectra of a series of Ca2.9Ln0.1Co4O9+δ (Ln = Ca, Dy, Ho, Er
and Lu) and the two standard oxides. .......................................................................... 58
3-20 Co K-edge derivative spectra (symbolic lines) of Ca3Co4O9+δ and the reference
oxides. .......................................................................................................................... 59
3-21 Normalized Co L2,3-edge XANES spectra of a series of Ca2.9Ln0.1Co4O9+δ (Ln =
Ca, Dy, Ho, Er and Lu). ............................................................................................... 60
3-22 The plots of Co L2,3-edge (including A2 and B2) magnitude after background
subtraction and the room temperature thermoelectric power………………………...61
3-23 Normalized O K-edge XANES spectra of a series of Ca2.9Ln0.1Co4O9+δ (Ln = Ca,
Dy, Ho, Er and Lu). ...................................................................................................... 64
3-24 The intensity of Co4+ 3d-O 2p hybridized states and the room temperature
electrical resistivity……………………………………………………….…………..65
3-25 Normalized Ca L2,3-edge XANES spectra of a series of Ca2.9Ln0.1Co4O9+δ (Ln =
Ca, Dy, Ho, Er and Lu). ............................................................................................... 66
3-26 The intensity of Ca L2,3-edge after arctangent background subtraction. ............. 67
Chapter 4
4-1 Schematic drawing of the electrochemical cell assembly for in situ x-ray
absorption spectroscopy studies. a) Si3N4 window, b1) electrical connection to Si3N4
window (working electrode), b2) reference electrode, b3) counter electrode, c) PEEK
body, d) support tube assembly. The green arrow indicates the liquid flow. ............... 69
4-2 a) Cyclic voltammogram of a Cu thin film working electrode in 0.1 M NaHCO3
solution at a scan rate of 0.02 Vs−1. Pt and Ag wires were used as counter and
pseudo-reference electrodes, respectively. b) Total fluorescence yield XAS of Cu
L2,3-edge. (1) Reference metallic Cu foil. (2) Cu thin film (∼300 nm) evaporated on
the Si3N4 membrane (oxidized during transfer in air). Spectra (3) and (4) were
recorded after insitu oxidation at nominally 0.2 V and after reduction at nominally
-0.9 V in 2 mM NaHCO3 solution, respectively. ......................................................... 71
4-3 Time evolution of the Cu L2,3-edge XAS spectra showing the a) oxidation and b)
reduction kinetics in 2 mM NaHCO3 solution at nominal potential of -0.1 V and -1.0
V, respectively. The spectra were collected sequentially with a time difference of
approximately 15 min. ................................................................................................. 72
Chapter 5
5-1 The variation of Co4+ (3d5) 3d – O 2p hybridized area with room-temperature
electrical resistivity of Ca3Co4-xMx(M = Fe and Mn)O9+δ (x = 0, 0.05, 0.1, and 0.15)
series. ........................................................................................................................... 76
5-2 The variation of Co L2,3-edge intensity with room-temperature thermoelectric
power of Ca3Co4-xMx(M = Fe and Mn)O9+δ (x = 0, 0.05, 0.1, and 0.15) series……...77

List of Tables
Chapter 1
1-1 Various physical parameters for NaCo2O4 (in-plane) and Bi2Te3 at 300 K, where ρ,
S, and μ are, electrical resistivity, TE power and mobility, respectively. ...................... 4
1-2 The ratio g3/g4 in Heikes formula for possible cases. .............................................. 8
Chapter 3
3-1 Effective magnetic moment of Co, carrier concentration, average oxidation
number, and oxygen content of Ca3Co4−xFexO9+δ (x= 0 - 0.1). .................................... 37
3-2 Effective magnetic moment of Co, average oxidation number and oxygen content
of Ca3Co4−xMnxO9+δ (x = 0, 0.05, 0.10 and 0.15). ....................................................... 52
參考文獻 [1] E. Velmre, Proceedings of 12th Biennial Baltic Electronics Conference, p17-24, Estonia (2010).
[2] C Wood, Rep. Prog. Phys. 51, 495 (1988).
[3] M. V. Vedernikov, Proceedings ICT 98. XVII International Conference on Thermoelectrics, p37-42, Japan (1998).
[4] H. J. Goldsmid and R. W. Douglas, Br. J. Appl. Phys. 5, 386 (1954).
[5] G. Mahan, B. Sales and J. Sharp, Phys. Today, 50, 42 (1997).
[6] C. Kittel, Introduction to Solid State Physics, Wiley (1996).
[7] T. M. Tritt and M. A. Subramanian, MRS Bulletin, 31, 188 (2006).
[8] I. Terasaki, Y. Sasago and K. Uchinokura, Phys. Rev. B, 56, R12685 (1997).
[9] T. Caillat, M. Carle, P. Pierrat, H. Scherrer and S. Scherrer, J. Phys. Chem. Solids, 53, 1121 (1992).
[10] T. Kawata, Y. Iguchi, T. Itoh, K. Takahata and I. Terasaki, Phys. Rev. B, 60,10584 (1999).
[11] Y. Wang, N. S. Rogado, R. J. Cava and N. P. Ong, Nature, 423, 425 (2003).
[12] D. J. Singh, Phys. Rev. B, 61,13397 (2000).
[13] W. Koshibae, K. Tsutsui and S. Maekawa, Phys. Rev. B, 62 6869 (2000).
[14] W. Koshibae and S. Maekawa, Phys. Rev. Lett., 87, 236603-1 (2001).
[15] W. B. Wu, D. J. Huang, J. Okamoto, A. Tanaka, H. -J. Lin, F. C. Chou, A. Fujimori and C. T. Chen, Phys. Rev. Lett., 94, 146402 (2005).
[16] T. Mizokawa, L. H. Tjeng, H. -J. Lin, C. T. Chen, R. Kitawak, I. Terasak, S. Lambert and C. Michel, Phys. Rev. B, 71, 193107 (2005).
[17] W. B. Wu, D. J. Huang, J. Okamoto, H. -J. Lin, F. C. Chou and C. T. Chen, Physica B, 378-380, 867 (2006).
[18] T. Kroll, M. Knupfer, J. Geck, C. Hess, T. Schwiger, G. Krabbes, C. Sekar and D. R. Batchelor, H. Berger and B. Büchner, Phys. Rev. B, 74, 115123 (2006).
[19] Y. Ando, N. Miyamoto, K. Segawa, T. Kawata and I. Teraski, Phys. Rev. B, 60, 10580 (1999).
[20] A. C. Masset, C. Michel, A. Maignan, M. Hervieu, O. Toulemonde, F. Studer, B. Raveau and J. Hejtmanek, Phys. Rev. B, 62, 166 (2000).
[21] Y. Miyazaki, K. Kudo, M. Akoshima and Y. Ono, Jpn. J. Appl. Phys., 39, L531 (2000).
[22] Y. Miyazaki, M. Onoda, T. Oku, M. Kikuchi, Y. Ishii, Y. Ono, Y. Morii and T. Kajitani, J. Phys. Soc. Jpn., 71, 491 (2002).
[23] G. Xu, R. Funahashi, M. Shikano, I. Matsubara and Y. Zhou, Appl. Phys. Lett., 80, 3760 (2002).
[24] I. Matsubara, R. Funahashi, M. Shikano, K. Sasaki and H. Enomoto, Appl. Phys. Lett., 80, 4729 (2002).
[25] M. Shikano and R. Funahashi, Appl. Phys. Lett., 82, 1851 (2003).
[26] Y. Morita, J. Poulsen, K. Sakai, T. Motohashi, T. Fujii, I. Terasaki, H. Yamauchi and M. Karppinen, J. Solid State Chem., 177, 3149 (2004).
[27] Y. Masuda, D. Nagahama, H. Itahara, T. Tani, W. S. Seo and K. Koumoto, J. Mater. Chem., 13, 1094 (2003).
[28] M. Mikami, N. Ando and R. Funahashi, J. Solid State Chem., 178, 2186 (2005).
[29] Y. -H. Lin, C.-W. Nan, Y. H. Liu, J. F. Li, T. Mizokawa and Z. Shen, J. Am. Ceram. Soc., 90, 132 (2007).
[30] R. Asahi, J. Sugiyama and T. Tani, Phys. Rev. B, 66, 155103 (2002).
[31] M. Abbate, J. C. Fuggle, A. Fujimori, L. H. Tjeng, C. T. Chen, R. Potze, G. A. Sawatzky, H. Eisaki and S. Uchida, Phys. Rev. B, 47, 16124 (1993).
[32] R. H. Potze, G. A. Sawatzky and M. Abbate, Phys. Rev. B, 51, 11501 (1995).
[33] T. Saitoh, T.Mizokawa, A. Fujimori, M. Abbate, Y. Takeda and M. Takano, Phys. Rev. B, 55, 4257 (1997).
[34] K. Tsutsui, J. Inoue and S. Maekawa, Phys. Rev. B, 59, 4549 (1999).
[35] S. A. Warda, W. Massa, D. Reinen, Z. Hu, G. Kaindl and F. M. F. de Groot, J. Solid State Chem.,146, 79 (1999).
[36] P. M. Chaikin and G. Beni, Phys. Rev. B, 13, 647 (1976).
[37] N. V. Nong, C. -J. Liu and M. Ohtaki, J. Alloys Compd., 509, 977 (2011).
[38] C. -J. Liu, C. -Y. Liao, J. -S. Wang, P. K. Nayan and Z. -R. Lin, Appl. Phys. Lett., 91, 142509 (2007).
[39] C.-J. Liu, L.-C. Huang, and J.-S. Wang, Appl. Phys. Lett., 89, 204102-1 (2006).
[40] C. -J. Liu, J. L. Chen, L.-C. Huang, Z. -R. Lin, and C. L. Chang, J. Appl. Phys. 102, 014908 (2007).
[41] J. L. Chen, Y. S. Liu, C. -J. Liu, L. -C. Huang, C. L. Dong, S. S. Chen and C. L. Chang, J. Phys. D: Appl. Phys. 42, 135418 (2009).
[42] T. Mizokawa, L. H. Tjeng, P. G. Steeneken, N. B. Brookes, I. Tsukada, T. Yamamoto and K. Uchinokura, Phys. Rev. B, 64, 115104 (2001).
[43] D. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation, Cambridge (1999).
[44] C. Kunz and K. Codling, Synchrotron Radiation, Techniques and Applications, Spring-Verlag (1979).
[45] G. Margaritondo, Introduction to Synchrotron Radition, Oxford, New York (1988).
[46] F. de Groot and A. Kotani, Core Level Spectroscopy Solids, CRC, Taylor & Francis (2008).
[47] H. Winick and S. Doniach, Synchrotron Radiation Research, Plenum, New York (1980).
[48] H. Winick, Synchrotron Radiation Source, World Scientific (1995).
[49] http://www.nsrrc.org.tw/
[50] G. C. Baldwin and D. W. Kerst, Phys. Today, 28, 9 (1975).
[51] H. Winick, Synchrotron Radiation Source, a primer, Singapore (1994).
[52] S. C. Chung, C. I. Chen, P. C. Tseng, H. F. Lin, T. E. Dann, Y. F. Song, L. R. Huang, C. C. Chen, J. M. Chuang, K. L. Tsang and C. N. Chang, Rev. Sci. Instrum., 66, 1655 (1995).
[53] K. L. Tsang, C. H. Lee, Y. C. Jean, T. E. Dann, J. R. Chen, K. L. D’Amico, and T. Oversluizen, Rev. Sci. Instrum., 66, 1812 (1995).
[54] J. G. Ferreira and M. T. Ramos, X-Ray Spectroscopy in Atomic and Solid State Physics, Plenum, New York (1988).
[55] D. C. Koningsberger and R. Prins, X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, John Wiley & Sons (1988).
[56] B. K. Teo, EXAFS: Basic Principles and Data Analysis, Spring, Berlin (1986).
[57] Y. Iwasawa, X-Ray Absorption Fine Structure for Catalyst and Surfaces, World scientific (1995).
[58] J. -H. Guo, X-rays in Nanoscience: Spectroscopy, Spectromicroscopy, and Scattering Techniques, Wiley-VCH (2010).
[59] R. Funahashi, I. Matsubara, H. Ikuta, T. Takeuchi, U. Mizutani and S. Sodeoka, Jpn. J. Appl. Phys., 39, L1127 (2000).
[60] K. Fujita, T. Mochida and K. Nakamura, Jpn. J. Appl. Phys., 40, 4644 (2001).
[61] M. Mikami, K. Chong, Y. MiyazakiI, T. Kajitani, T. Inoue, S. Sodeokai and R. Funahashi, Jpn. J. Appl. Phys., 45, 4131 (2006).
[62] R. Funahashi and I. Matsubara, Appl. Phys. Lett., 79, 362 (2001).
[63] Y. -H. Lin, C. -W. Nan, J. F. Li, T. Mizokawa and Z. Shen, J. Am. Ceram. Soc., 90, 132 (2007).
[64] G. Xu, R. Funahashi, M. Shikano, Q. Pu and B. Liu, Solid State Commun., 124, 73 (1999).
[65] G. D. Tang, Z. H. Wang, X. N. Xu, L. Qiu, L. Xing and Y. W. Du, J. Mater Sci., 45, 3969 (2010).
[66] H. Q. Liu, X. B. Zhao, F. Liu, Y. Song, Q. Sun, T. J. Zhu and F. P. Wang, J. Mater Sci., 43, 4933 (2008).
[67] B. C. Zhao, Y. P. Sun and W. H. Song, J. Appl. Phys., 99, 073906 (2006).
[68] D. L. Wang, L. D. Chen, Q. Yao and J. G. Li, Solid State Commun., 129, 615 (2004).
[69] K. Takahashi, T. Kanno, A. Sakai, H. Adachi and Y. Yamada, Phys. Rev. B, 83, 115107 (2011).
[70] N. V. Nong, C. -J. Liu and M. Ohtaki, J. Alloys Compd., 491, 53 (2010).
[71] P. -H. Xiang, Y. Kinemuchi, H. Kaga and K. Watari, J. Alloys Compd., 454, 364 (2008).
[72] D. Wang, L. Chen, Q. Wang and J. Li, J. Alloys Compd., 376, 58 (2004).
[73] Y. Liu, Y. Lin, L. Jiang, C. -W. Nan and Z. Shen, J. Electroceram., 21, 748 (2008).
[74] Y. Wang, Y. Sui, P. Ren, L. Wang, X. Wang, W. Su and H. Fan, Chem. Mater., 22, 1155 (2010).
[75] Y. H. Lin, J. L. Lan, Z. J. Shen, Y. H. Liu, C. W. Nan and J. F. Li, Appl. Phys. Lett., 94, 072107 (2009).
[76] Y. Wang, Y. Sui, J. G. Cheng, X. J. Wang, J. P. Miao, Z. G. Liu, Z. N. Qian and W. H. Su, J. Alloys Compd., 448, 1 (2008).
[77] H. Ohta, K. Yoshimura, Z. Hu, Y. Y. Chin, H. -J. Lin, H. H. Hsieh, C. T. Chen, and L.H. Tjeng, Phys. Rev. Lett. 107, 066404-1 (2011).
[78] G. M. Kim, Y. S. Im, E. J. Oh, K. H. Kim and C. H. Yo, Physica B, 229, 338 (1997).
[79] C. L. Chen, C. L. Dong, J. L. Chen, J. -H. Guo, W. L. Yang, C. C. Hsu, K. W. Yeh, T. W. Huang, B. H. Mok, T. S. Chan, J. F. Lee, C. L. Chang, S. M. Rao and M. K. Wu, Phys. Chem. Chem. Phys., 13, 15666v(2011).
[80] C. L. Chen, S. M. Rao, C. L. Dong, J. L. Chen, T. W. Huang, B. H. Mok, M. C. Ling, W. C. Wang, C. L. Chang, T. S. Chan, J. F. Lee, J.-H. Guo and M. K. Wu, Europhys. Lett., 93, 47003 (2011).
[81] J. Lee, B. Kim, B. H. Kim, B. I. Min, S. Kolesnik, O. Chmaissem, J. Mais, B. Dabrowski, H. J. Shin, D. H. Kim, H. J. Lee, and J.-S. Kang, Phys. Rev. B, 80, 205112 (2009).
[82] Z. Hu, C. Grazioli, M. Knupfer, M. S. Golden, J. Fink, P. Mahadevan, A. Kumar, S. Ray, D. D. Sarma, S.A. Warda, D. Reinen, S. Kawasaki, M. Takano, C. Schüssler-Langeheine, C. Mazumdar and G. Kaindl, J. Alloys Compd., 343, 5 (2002).
[83] Z. Hu, H. Wu, M. W. Haverkort, H. H. Hsieh, H. -J. Lin, T. Lorenz, J. Baier, A. Reichl, I. Bonn, C. Felser, A. Tanaka, C. T. Chen and L. H. Tjeng, Phys. Rev. Lett., 92, 207402-1 (2004).
[84] J.-S. Kang1, S. S. Lee1, G. Kim, H. J. Lee, H. K. Song, Y. J. Shin, S. W. Han, C. Hwang, M. C. Jung, H. J. Shin, B. H. Kim, S. K. Kwon and B. I. Min, Phys. Rev. B, 79, 195122 (2007).
[85] V. R. Galakhov, N. A. Ovechkina, A. S. Shkvarin, S. N. Shamin, E. Z. Kurmaev, K. Kuepper, A. F. Takács, M. Raekers, S. Robin, M. Neumann, G. -N. Gavrilă, A. S. Semenova, D. G. Kellerman, T. Käämbre and J. Nordgren, Phys. Rev. B, 74, 045120 (2006).
[86] T. Kroll, A. A. Aligia and G. A. Sawatzky, Phys. Rev. B, 74, 115124 (2006).
[87] W. -S. Yoon, K.-B. Kim, M. -G. Kim, M.-K. Lee, H. -J. Shin and J.-M. Lee, J. Electrochem. Soc. 149, A1305 (2002).
[88] J. -S. Kang, S. W. Han, T. Fujii, I. Terasaki, S. S. Lee, G. Kim, C. G. Olson, H. G. Lee, J. -Y. Kim and B. I. Min, Phys. Rev. B, 74, 205116 (2006).
[89] T. Burnus, Z. Hu, M. W. Haverkort, J. C. Cezar, D. Flahaut, V. Hardy, A. Maignan, N. B. Brookes, A. Tanaka, H. H. Hsieh, H.-J. Lin, C. T. Chen and L. H. Tjeng, Phys. Rev. B, 74, 245111 (2006).
[90] M. A. Korotin, S. Yu, Ezhov, I. V. Solovyev and V. I. Anisimov, Phys. Rev. B, 54, 5309 (1996).
[91] J.-I. Shimoyama, S. Horii, K. Ozachit, M. Sano, and K. Kishio, Jpn. J. Appl. Phys., Part 2 42, L194 (2003).
[92] T. I. Morrison, M. B. Brodsky, N. J. Zaluzec and L. R. Sill, Phys. Rev. B, 32, 3107 (1985).
[93] T. I. Morrison, C. L. Foiles, D. M. Pease and N. J. Zaluzec, Phys. Rev. B, 36 3739 (1987).
[94] F M F de Groot, J. C. Fuggle, B. T. Thole and G. A. Sawatzky, Phys. Rev. B, 42 5459 (1990).
[95] J. C. Jan, H. M. Tsai, C. W. Pao, J. W. Chiou, K. Asokan, Y. H. Tang, M. H. Tsai, S. Y. Kuo and W. F. Pong, Appl. Phys. Lett., 87, 012103 (2005).
[96] M. Groft, D. Sills, M. Greenblatt, C. Lee, S. -W. Cheong, K. V. Ramanujachary and D. Tran, Phys. Rev. B, 55, 8726 (1997).
[97] M. Abbate, S. M. Lala, L. A. Montoro and J. M. Rosolen, Phys. Rev. B, 70, 235101-1 (2004).
[98] M. Valkeapää, Y. Katsumata, I. Asako, T. Motohashi, T. S. Chan, R. S. Liu, J.M. Chen, H. Yamauchi and M. Karppinen, J. Solid State Chem., 180, 1608 (2007).
[99] F. J. Himpsel, U. O. Karlsson, A. B. McLean, L. J. Terminello, F. M. F. de Groot, M. Abbate, J. C. Fuggle, J. A. Yarmoff, B. T. Thole and G. A. Sawatzky, Phys. Rev. B, 43, 6899 (1991).
[100] F. J. Himpsel, U. O. Karlsson, J. F. Morar, D. Rieger and J. A. Yarmoff, Phys. Rev. Lett., 56, 1497 (1986).
[101] Y. -D. Ko, J. -G. Kang, K. J. Choi, J. -G. Park, J. -P. Ahn. K. Y. Chung, K. -W. Nam, W. -S. Yoon and D. -W. Kim, J. Mater. Chem., 19, 1829 (2009).
[102] P. Jiang, J. L. Chen, F. Borondics, P. -A. Glans, M. W. West, C. L. Chang, M. Salmeron and J. -H. Guo, Electrochem. Commun., 12, 820 (2010).
[103] M. Drogowska, L. Brossard, H. Ménard, J. Electrochem. Soc., 139, 39 (1992).
[104] M. P. Sánchez, M. Barrera, S. González, R. M. Souto, R. C. Salvarezza, A. J. Arvia, Electrochim. Acta, 35, 1337 (1990).
[105] K. O. Kvashnina, S. M. Butorin, A. Modin, I. Soroka, M. Marcellini, J. -H. Guo, L. Werme, J. Nordgren, J. Phys.: Condens. Matter 19, 226002 (2007).
[106] M. Magnuson, N. Wassdahl, J. Nordgren, Phys. Rev. B, 56, 12238 (1997).
[107] M. Hävecker, A. Knop-Gericke, T. Schedel-Niedrig, R. Schlögl, Angew. Chem. Int. Ed., 37, 1939 (1998).
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2012-08-06公開。
  • 同意授權瀏覽/列印電子全文服務,於2012-08-06起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信