淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2407200810462500
中文論文名稱 Serratia sp. TKU020所生產蛋白酶、幾丁質酶及幾丁聚醣酶之純化與定性
英文論文名稱 Purification and Characterization of Protease,Chitinase and Chitosanase from Serratia sp.TKU020
校院名稱 淡江大學
系所名稱(中) 生命科學研究所碩士班
系所名稱(英) Graduate Institute of Life Sciences
學年度 96
學期 2
出版年 97
研究生中文姓名 劉貞儀
研究生英文姓名 Jen-Yi Liou
學號 695180140
學位類別 碩士
語文別 中文
口試日期 2008-07-17
論文頁數 91頁
口試委員 指導教授-王三郎
委員-陳銘凱
委員-陳佑汲
中文關鍵字 Serratia sp.  蛋白酶  幾丁質酶  幾丁聚醣酶 
英文關鍵字 Serratia sp.  protease  chitinase  chitosanase 
學科別分類 學科別醫學與生命科學生物學
中文摘要 本研究主要由台灣北部土壤篩選出一株蛋白酶、幾丁質酶及幾丁聚醣酶生產菌TKU020 ,以烏賊軟骨粉為唯一碳/氮源,經鑑定為Serratia sp.。TKU020生產蛋白酶、幾丁質酶及幾丁聚醣酶之較適培養條件為0.5% 烏賊軟骨粉、0.1 % K2HPO4及0.05 %MgSO4.7H2O,在25℃、pH 9之100 mL液態培養基搖瓶培養3天。所得發酵上清液經硫酸銨沉澱、DEAE-Sepharose、Phenyl- Sepharose及Sephacryl S-100等層析步驟,純化出一種蛋白酶、一種幾丁質酶及一種幾丁聚醣酶,經SDS-PAGE測其分子量分別為55.4 kDa、64.5 kDa及55.4 kDa。其最適反應溫度、熱安定性、最適反應pH、pH安定方面,蛋白酶的分別為50℃、40℃、pH 10及pH 4-11;幾丁質酶為40℃、30℃、pH 4-8及pH 4-8;幾丁聚醣酶為40℃、40℃、pH 5及pH 7。蛋白酶活性不受金屬離子、EDTA、PMSF所抑制,幾丁質酶和幾丁聚醣酶皆受Mn2+、SDS所抑制。
利用TKU020這株菌,分別用不同碳/氮源 (0~2%的蝦殼粉和烏賊軟骨粉)培養在25℃、pH 9之100 mL液態培養基分別培養0~5天,所得發酵上清液去探討其還原糖量和抗氧化之能力。
英文摘要 Strain TKU020 was isolated from the soil in the northern Taiwan by using squid pen powder (SPP) as the sole carbon/nitrogen source and identified as Serratia sp. .The optimized culture condition for protease, chitinase and chitosanase was composed of 0.5% squid pen powder (SPP), 0.1 % K2HPO4 and 0.05 % MgSO4.7H2O at pH 9 and incubate in 100 mL of liquid media in shaking flasks at 25℃ for 3 days.
One protease, chitinase and chitosanase were purified by chromatography procedures of DEAE-Sepharose, Phenyl-Sepharose, and Sephacryl S-100. The molecular mass of protease, chitinase and chitosanase determined by SDS-PAGE was approximately 49 kDa, 55.4 kDa and 65.4 kDa, respectively. The optimum temperature, thermal stability, optimum pH and pH stability of protease were 50℃, 40℃, pH 10 and pH 4-11, respectively. The optimum temperature, thermal stability, optimum pH and pH stability of chitinase were 40℃, 30℃, pH 4-8 and pH 4-8, respectively. The optimum temperature, thermal stability, optimum pH and pH stability of chitosanase were 40℃, 40℃, pH 5 and pH 7, respectively. The protease activity was not inhibited by tested metal ions, EDTA and PMSF;The chitinase and chitosanase were both inactivated by Mn2+ and SDS.
In the second part , Serratia sp. TKU020 was cultured using different carbon source (0~2% shrimp shell powder and squid pen powder)and incubated in 100 mL of liquid media (pH 9) in shaking flasks at 25℃ for 0~5days , and the quantity of DPPH scavenging activity and reducing sugar in culture supernatant was studied.
論文目次 目錄
頁次
授權書
簽名頁
誌謝
中文摘要 I
英文摘要 III
目錄 V
圖目錄 X
表目錄 XII

第一章 緒論 1
第二章 文獻回顧 2
2.1 沙雷氏菌屬之特性 2
2.2 幾丁質與幾丁聚醣 2
2.3 幾丁質酶與幾丁聚醣酶 3
2.4 蛋白酶 3
2.5 抗氧化活性 4

第三章 材料與方法 6
3.1 實驗菌株 6
3.2 實驗材料 6
3.3 實驗儀器 7
3.4 生產菌株之篩選 8
3.5 幾丁質之製備 8
3.6 幾丁質酶之活性測定 9
3.7 幾丁聚醣酶之活性測定 9
3.8 蛋白酶之活性測定 10
3.9最適培養條件探討 10
3.9.1 碳/氮源之選擇 10
3.9.2 碳/氮源濃度之影響 11
3.9.3 培養基之酸鹼值和溫度 11
3.9.4 培養體積 (通氣量) 11
3.9.5 較適培養時間 11
3.10 酵素之分離純化 12
3.10.1 粗酵素液之製備 12
3.10.2 陰離子交換樹脂層析法 12
3.10.3 疏水性層析 13
3.10.4 膠體過濾層析 13
3.10.5 蛋白質電泳分析 13
3.10.6 胜肽質譜鑑定 13
3.10.7 蛋白酶活性電泳 14
3.10.8 蛋白質定量分析 14
3.11酵素生化特性分析 14
3.11.1 酵素最適反應溫度 14
3.11.2 酵素熱安定性 15
3.11.3 酵素最適反應pH 15
3.11.4 酵素pH安定性 15
3.11.5 金屬離子與抑制劑對酵素活性之影響 16
3.11.6 界面活性劑對酵素活性之影響 16
3.11.7 幾丁質酶與幾丁聚醣酶之基質特異性 17
3.11.8蛋白酶之基質特異性 17
3.12 DPPH自由基清除能力之測定 18
3.13 薄層色層分析 18
3.14 還原糖量之測定 19

第四章 結果與討論 20
4.1 幾丁質酶/幾丁聚醣酶與蛋白酶生產菌之篩選 20
4.2 菌株之特性 20
4.3 碳/氮源之選擇 20
4.4 碳/氮源濃度之影響 21
4.5 培養基之酸鹼值和溫度 21
4.6 培養體積 (通氣量) 25
4.7 較適培養時間 25
4.8 酵素的較適生長條件 25
4.9 幾丁質酶、幾丁聚醣酶與蛋白酶之純化分離 26
4.9.1 粗酵素液製備 26
4.9.2 陰離子交換層析 26
4.9.3 疏水性層析 27
4.9.4 膠體過濾層析 27
4.9.5 綜合結果 27
4.10 幾丁質酶、幾丁聚醣酶及蛋白酶之分子量判定 28
4.10.1 幾丁質酶、幾丁聚醣酶SDS-PAGE (銀染法) 28
4.10.2 蛋白酶SDS-PAGE (CBR染色法) 28
4.10.3 蛋白酶活性染色 28
4.10.4 蛋白酶胜肽質譜鑑定 29
4.10.5 綜合結果 29
4.11 純化後幾丁質酶、幾丁聚醣酶與蛋白酶之生化特性分析 30
4.11.1酵素之最適反應溫度及熱安定性 30
4.11.2酵素之最適反應pH及pH安定性 31
4.11.3 金屬離子與抑制劑對酵素酵素活性之影響 31
4.11.4 界面活性劑對酵素活性之影響 32
4.11.5 幾丁質酶與幾丁聚醣酶之基質特異性 32
4.11.6 蛋白酶之基質特異性 33
4.12 DPPH自由基清除能力之測定 33
4.13薄層色層分析 34
4.14還原糖量之測定 35

第五章 結論 80
參考文獻 81
附錄 90

圖目錄

圖4.1 Serratia sp.TKU020之顯微鏡照片 22
圖4.2 16S rDNA部份核酸序列分析 23
圖4.3生理生化試驗 24
圖4.4不同碳/氮源對於TKU020產生蛋白酶活性之影響 36
圖4.5不同碳/氮源對於TKU020產生幾丁質酶活性之影響 37
圖4.6不同碳/氮源對於TKU020產生幾丁聚醣酶活性之影響 38
圖4.7烏賊軟骨粉添加對TKU020產生蛋白酶活性之影響 39
圖4.8烏賊軟骨粉添加對TKU020產生幾丁質酶活性之影響 40
圖4.9烏賊軟骨粉添加對TKU020產生幾丁聚醣酶活性之影響 41
圖4.10溫度及pH對TKU020產生蛋白酶活性之影響 42
圖4.11溫度及pH對TKU020產生幾丁質酶活性之影響 43
圖4.12溫度及pH對TKU020產生幾丁聚醣酶活性之影響 44
圖4.13通氣量對TKU020產生蛋白酶活性之影響 45
圖4.14通氣量對TKU020產生幾丁質酶活性之影響 46
圖4.15通氣量對TKU020產生幾丁聚醣酶活性之影響 47
圖4.16 TKU020培養於烏賊培養基所產蛋白酶、幾丁質酶及幾丁聚醣酶變化情形 48
圖4.17 TKU020所生產酵素之純化分離流程圖 49
圖4.18 Serratia sp.之DEAE-Sepharose CL-6B層析圖譜 50
圖4.19 幾丁質酶和幾丁聚醣酶之Phenyl-Sepharose層析圖譜 51
圖4.20 Serratia sp.之DEAE-Sepharose CL-6B層析圖譜 52
圖4.21 蛋白酶之Sephacryl S-100之層析圖譜 53
圖4.22 幾丁質酶於SDS-PAGE之分子量分析 57
圖4.23幾丁聚醣酶於SDS-PAGE之分子量分析 58
圖4.24蛋白酶於SDS-PAGE之分子量分析 59
圖4.25蛋白酶活性染色 60
圖4.26 TKU020幾丁質酶之最適溫度及熱安定性 61
圖4.27 TKU020幾丁聚醣酶之最適溫度及熱安定性 62
圖4.28 TKU020蛋白酶之最適溫度及熱安定性 63
圖4.29 TKU020幾丁質酶之最適pH及pH安定性 64
圖4.30 TKU020幾丁聚醣酶之最適pH及pH安定性 65
圖4.31 TKU020蛋白酶之最適pH及pH安定性 66
圖4.32 碳/氮源濃度及發酵時間對DPPH自由基清除能力之影響 75
圖4.33 薄層色層分析TKU020發酵上清液之抗氧化物質 76
圖4.34 碳/氮源濃度及發酵時間對還原糖之影響 77
圖4.35 TKU020發酵上清液幾丁質酶、幾丁聚醣酶與還原醣之變化情形 78

表目錄

表4.1 Serratia sp. TKU020幾丁質酶純化總表 54
表4.2 Serratia sp. TKU020幾丁聚醣酶純化總表 55
表4.3 Serratia sp. TKU020蛋白酶純化總表 56
表4.4各種金屬離子與抑制劑對酵素之影響 67
表4.5各種界面活性劑對酵素之影響 68
表4.6幾丁質酶和幾丁聚醣酶之基質特異性 69
表4.7蛋白酶之基質特異性 70
表4.8 微生物來源之幾丁質酶和幾丁聚醣酶特性比較 71
表4.9 微生物來源之蛋白酶特性比較 73
表4.10TKU020蛋白酶胜肽質譜鑑定結果 79

參考文獻 參考文獻
1. Alfonso, C., Martinez, M.J., Reyes, F., 1992. Purification and properties of two endo-chtiosanases from Mucro rouxii implicated in its wall degradation. FEBS Lett. 95, 187–194.

2. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402.

3. Beg, K.B., Sahai, V., Gupta, R., 2003. Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Process Biochem. 39, 2003–2209.

4. Bradford M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72, 284–254.

5. Chang, C.T., Fan, M.H., Kuo, F.C., Sung, H.Y, 2000. Potent fibrinolytic enzyme from a mutant of Bacillus subtilis IMR-NK1. J Agric Food Chem. 48,3210–3216.

6. Choi ,Y.J., Kim, E.J., Piao, Z., Yun, Y.C., Shin, Y.C., 2004. Purification and characterization of chitosanase from Bacillus sp. strain KCTC 0377BP and its application for the production of chitosan oligosaccharides. Appl Environ Microbiol. 70,4522-4531.

7. Chu, W.H., 2007. Optimization of extracellular alkaline protease production from species of Bacillus. J Ind Microbiol Biotechnol . 34:241- 245.

8. Dill, K.A., 1990. Dominant forces in protein folding. Biochem. 29,7133-7155.

9. Doddapaneni, K.K., Tatineni, R., Vellanki, R.N., Gandu, B., Panyala, N. R. , Chakali, B., Mangamoori, L.N., 2007. Purification and characterization of two novel extra cellular proteases from Serratia rubidaea. Process Biochem. 42, 1229–1236.

10. Ellaiah ,P. , Adinarayana, K. , Rajyalaxmi, P. , Srinivasulu, B., 2003. Optimization of process parameters for alkaline protease production under solid state fermentation by alkalophilic Bacillus sp. Asian J Microbiol Biotechnol Environ . 5, 49–54.

11. Fang, F ., Aguilar, M.I. , Hearn ,M.T.W., 1996. Temperature-induced changes in the bandwidth behaviour of proteins separated with cation- exchange adsorbents. J Chromatogr A. 729, 67-79.

12. Fenton, D. M., Eveleigh, D. E., 1981. Purification and mode of action of a chitosanase from Penicillium islandicum. J Gen Microbiol. 126, 151-165.

13. Frankowski, M., Lorito, F. Scala,R. Schmid,G.B., Hubert Bahl., 2001.Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol. 176,421–426.
14. Gal ,S.W., Choi ,J.Y., Kim ,C.Y., Cheong ,Y.H., Choi ,Y.J., Bahk, J.D., Lee, S.Y., Cho, M.J., 1997. Isolation and characterization of the 54-kDa and 22-kDa chitinase genes of Serratia marcescens KCTC2172. FEMS Microbiol Lett. 151, 197-204.

15. Griffin, H. L. , Greeve, R. V. , Cotta, M. A., 1992. Isolation and characterization of an alkaline protease from the marine shipworm bacterium. Curr Microbiol. 24, 111-117.

16. Gupta ,R., Beg, Q. K., Lorenz, P., 2002. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol . 59, 15–32.

17. Heussen C.,Dowdle E.B., 1980. Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem. 102, 196 –202.

18. Holst ,O. ,Vinogradov , E ., Lindner ,B., Seltmann, G., adziejewska- Lebrecht ,J., 2006. Lipopolysaccharides from Serratia marcescens possess one or two 4-Amino-4-deoxy-l-arabinopyranose 1- phosphate residues in the lipid A and dglycero-d-talo-Oct-2- ulopyranosonic acid in the inner core region. Chem Eur J .12, 6692 – 6700.

19. Imoto T., Yagishita K., 1971. A simple activity measurement by lysozyme. Agric Biol Chem. 35,1154-6.

20. Ito, N., Hiroze, M., Fukushima, G., Tauda, H., Shira, T., Tatematsu, M., 1986. Studies on antioxidant; their carcinogenic and modifying effects on chemical carcinogensis. F. Chem. Toxicol. 24, 1071-1081.

21. Johnvesly, B., Manjunath, B. R., Naik, G. R., 2002. Pigeon pea waste as a novel, inexpensive, substrate for production of a thermostable alkaline protease from thermoalkalophilic Bacillus sp. JB-99. Biores Technol. 82, 61–64.

22. Joo, H. S., Chang, C. S., 2005. Production of protease from a new alkalophilic Bacillus sp. I-312 grown on soybean meal: optimization and some properties. Process Biochem. 40, 1263–1270.

23. Kadokura, K. , Rokutani, A. , Yamamoto ,M. , Ikegami , T. ,Sugita , H. , Itoi ,S., Hakamata, W. , Oku, T. , Nishio ,T., 2007. Purification and characterization of Vibrio parahaemolyticus extracellular chitinase and chitin oligosaccharide deacetylase involved in the production of heterodisaccharide from chitin. Appl Microbiol Biotechnol. 75, 357–365.

24. Kalisz, H.M., 1988. Microbial proteinases. Adv Biochem Eng Biotechnol. 36, 1–65.

25. Kim , H.S. ,Kenneth ,N.T , Golyshin ,P.N., 2007. Characterization of a chitinolytic enzyme from Serratia sp. KCK isolated from kimchi juice. Appl Microbiol Biotechnol. 75, 1275–1283.

26. Kreig ,N.R ., 1986. Facultatively Anaerobic Gram-Negative Rods, Systematic. Bacteriol. 1, 477–484.

27. Laemmli , U. K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227,680–685.

28. Marty, K.B., Williams, C.L., Guynn, L.J., Benedik, M.J., Blanke, S.R., 2002. Characterization of a cytotoxic factor in culture filtrates of Serratia marcescens. Infect Immun. 70,1121–1128.

29. Masika, P.J., Adedapo, A.A., Jimoh, F.O., Koduru, S., Afolayan, A.J., 2008. Evaluation of the medicinal potentials of the methanol extracts of the leaves and stems of Halleria lucida. Biores Technol. 99, 4158–4163.

30. Maugh, T., 1984 . Need a catalyst? Design an enzyme. Science .223, 269–271.

31. Maxwell, S. R. J., 1995. Prospects for the use of antioxidant therapies. Drugs. 49, 345–361.

32. Mortimer , P.S., Heinz, S., Hans, G.T., Albert, B., Hans, G.S., 1981.The Genus Serratia. The Prokaryotes. 1192–1193.

33. Ohtakara, A. , Izume, M., 1987. Preparation of D-glucosanmine oligosaccharide by enzymatic hydrolysis of chitosan. Agric Biol Chem. 51, 1189–1191.

34. Peng, Y., Huang, Q., Zhang, R.H., Zhang, Y.Z., 2003. Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Comp Biochem Physiol B. 134, 45–52.

35. Rawlings, N. D. and Barrett, A. J., 1993. Evolutionary families of peptidases. Biochem J. 290, 205–218.

36. Romero, F. J. , Garcı´a, L. A. , Salas J. A. , Dı´az, M. , Quiro´s, L.M., 2001. Production, purification and partial characterization of two extracellular proteases from Serratia marcescens grown in whey. Process Biochem . 36, 507–515.

37. Sakai, K., Akira, Y., Hajime, K., Mamoru, W., Mitsuaki, M., 1998. Purification and characterization of three thermostable endochitinases of a noble Bacillus strain, MH-1, isolated from chitin-containing compost. Appl Environ Microbiol. 64, 3397-3402.

38. Salamone, P.R., Wodzinski, R.J., 1997. Production, purication and characterization of a 50-kDa extracellular metalloprotease from Serratia marcescens. Appl Microbiol Biotechnol . 48, 317–324.

39. Sasaki, YF. , Kawaguchi, S., Kamaya, A., Ohshita, M., Kabasawa, K., Iwama, K., 2002 . The comet assay with 8 mouse organs: results with 39 currently used food additives. Mutation Res/Genetic Toxicol Environ Mutage. 519, 103–119.

40. Sekaran ,G. , Ganesh Kumar,A. , Swarnalatha ,S. , Sairam ,B., 2008. Production of alkaline protease by Pseudomonas aeruginosa using proteinaceous solid waste generated from leather manufacturing industries. Biores Technol. 1939–1944.

41. Sekiguchi, J., Matsumiya, M., Mochizuki, A., 1995. Distribuction of chitinolytic enzymes in seaweeds. Fisheriers Sci. 61, 876–881.

42. Shimada, K., Fujikawa, K., Yahara, K., Nakamura T., 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem. 40, 945–948.

43. Tamai ,Y., Miyatake, K., Okamoto, Y., Takamori ,Y., Sakamoto, K., Minami, S., 2003.Enhanced healing of cartilaginous injuries by N-acetyl-D- glucosamine and glucuronic acid. Carbohydr Polym.54, 251–262.

44. Thompson, S.E., Smith, M., Wilkinson, M.C., Peek K., 2001. Identification and characterization of a chitinase antigen from Pseudomonas aeruginosa strain 385. Appl Environ Microbiol. 67, 4001-4008.

45. Toharisman, A. , Suhartono, M.T. , Spindler-Barth, M., Hwang, J.K. , Pyun, Y.R., 2005. Purification and characterization of a thermostable chitinase from Bacillus licheniformis Mb-2. World J Microbiol Biotechnol. 21,733–738.

46. Tolaimate, A.J. ,Desbrieres, Rhazi, M. ,Alagui, A. ,Vincendon, M. , Vottero, P., 2000. On the influence of deacetylation ptocess on the physicochemical characteristics of chitosan from squid chitin. Polymer.41, 2463–2469.

47. Venter, H., Osthoff, G., Litthauer, D., 1999. Purification and characterization of a metalloprotease from Chryseobacterium indologenes Ix9a and determination of the amino acid specificity with electrospray mass spectrometry. Protein Expr Purif. 15, 282– 295.

48. Wang, S.L., Chang, W.T., 1997. Purification and characterization of two bifunctional chitinase/lysozmes extracellularly produced by Pseudomonas aeruginosa K-187 in a shrimp and crab shell powder medium. Appl Envior Microbiol. 63, 380–386.

49. Wang, S.L., Chen, Y.S., Wang, C.L., Yen, Y.H., Chern, M.K., 2005 . Purification and characterization of a serine protease extracellularly produced by Aspergillus fumigatus in a shrimp and crab shell powder medium. Enzyme Microb Technol. 36, 660–665.

50. Wang ,S.L.,Yeh, P.Y., 2006. Production of a surfactant- and solvent- stable alkaliphilic protease by bioconversion of shrimp shell wastes fermented by Bacillus subtilis TKU007. Process Biochem . 41, 1545–1552.

51. Wang, S.L., Hsu, W.T. , Liang, T.W. , Yen, Y.H. , Wang, C.L ., 2008a. Purification and characterization of three novel keratinolytic metalloproteases produced by Chryseobacterium indologenes TKU014 in a shrimp shell powder medium. Biores Technol. 99, 5679–5686.

52. Wang, S.L., Lin, C.L. , Liang, T.W., Liu, K.C., Kuo, Y.H., 2008b. Conversion of squid pen by Serratia ureilytica for the production of enzymes and antioxidants. Biores Technol. 99, in press.

53. Wang, S.L., Peng, J.H. , Liang, T.W., Liu, K.C., 2008c. Purification and characterization of a chitosanase from Serratia marcescens TKU011. Carbohydr Res. 343, 1316 –1323.

54. Wang,S.L. , Chena,S.J. , Wang, C.L., 2008d. Purification and characterization of chitinases and chitosanases from a new species strain Pseudomonas sp. TKU015 using shrimp shells as a substrate. Carbohydr Res. 343, 1171–1179.

55. Saiga, A., Tanabe, S., Nishimura, T.,2003. Antioxidant Activity of Peptides Obtained from Porcine Myofibrillar Proteins by Protease Treatment. J. Agric. Food Chem. 51, 3661-3667.

56. Yosra, T.E., Basma, G., Nabil, S., Sadok, K., Moncef, N., 2003. Biosynthesis of protease by Pseudomonas aeruginosa MN7 on Wsh substrate. World J Microbiol Biotechnol. 19, 41–45.
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2013-07-25公開。
  • 同意授權瀏覽/列印電子全文服務,於2013-07-25起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信