淡江大學覺生紀念圖書館 (TKU Library)
進階搜尋


下載電子全文限經由淡江IP使用) 
系統識別號 U0002-2407200718120800
中文論文名稱 矽基材表面性狀對奈米碳管成長機制影響之研究
英文論文名稱 Influence of Surface Integrity of Silicon Substrate on the Growth Mechanisms of Carbon Nanotube
校院名稱 淡江大學
系所名稱(中) 機械與機電工程學系碩士班
系所名稱(英) Department of Mechanical and Electro-Mechanical Engineering
學年度 95
學期 2
出版年 96
研究生中文姓名 許家偉
研究生英文姓名 Chia-Wei Hsu
學號 694341776
學位類別 碩士
語文別 中文
口試日期 2007-06-30
論文頁數 75頁
口試委員 指導教授-趙崇禮
委員-劉道恕
委員-趙崇禮
委員-陳盈同
委員-趙崇偉
委員-陳大同
中文關鍵字 奈米碳管  化學氣相沉積  變質層 
英文關鍵字 carbon nanotubes  chemical vapor deposition  amorphous layer 
學科別分類 學科別應用科學機械工程
中文摘要 在本研究中採用化學氣相沉積法利用乙炔作為碳源,二茂鐵和二甲苯則作為金屬催化劑反應沉積奈米碳管。藉由改變矽基材表面處理參數,進而觀察不同矽基材表面處理參數對奈米碳管成長之影響,並且利用場發射掃描式電子顯微鏡觀察奈米碳管之成長形態。
研究結果顯示,經過大氣電漿表面處理過後的試片,很清楚的觀察到900℃都有成長濃密且長的奈米碳管,大氣電漿表面處理可明顯改善試片表面的吸附能力,使得碳原子和催化劑能有效地沉積在試片表面。經過壓痕處理以及輪磨處理過後的試片,因材料表面發生塑性變形而產生變質層,從反應溫度790℃之後可以很明顯的觀察到變質層較厚的試片與變質層中含鐵量較多的試片成長的奈米碳管非常的濃密,故變質層的厚薄程度與變質層中含鐵量的多寡可以很明顯的影響奈米碳管的成長。
英文摘要 Chemical vapor deposition(CVD)was adopted in this research to synthesize multi-wall carbon nanotubes (MWCNT) where acetylene was used as carbon source and ferrocene-xylene worked as catalyst. Various surface pre-treatments were made on the silicon substrate to investigate the effect of the surface integrity on the growth of MWCNT. The morphology and characteristics of obtained carbon nanotubes were analyzed using field-emission scanning electron microscope(FESEM)and micro-Raman spectrometer.
Results showed that atmospheric pressure air plasma(APAP)surface pre-treatment could increase the deposition rate of carbon and extend the growing temperature to up around 900℃. The amorphous layer induced by indentation or grinding processes, especially those having iron diffused into the amorphous layer, proved to have profound effect on the growth rate and growing temperature of carbon nanotube.
論文目次 目錄
中文摘要 I
英文摘要 II
致謝 IV
目錄 V
圖目錄 IX
表目錄 XI
第1章 序論 1
1-1 前言 1
1-2 研究動機 3
第2章 文獻回顧與理論基礎 4
2-1 奈米碳管的歷史發展 4
2-2 奈米碳管的結構 6
2-3 奈米碳管之製備方法 8
2-3-1 雷射蒸發法( laser ablation process) 8
2-3-2 電弧放電法( electric arc discharge ) 9
2-3-3 化學氣相沉積法(Chemical Vapor Deposition, CVD) 10
2-3-4 低溫固體熱解法 11
2-4 奈米碳管的成長機制 11
2-5 奈米碳管的特性與應用 13
2-5-1 奈米碳管強化複合材料 13
2-5-2 原子力顯微鏡(Atomic Force Microscopy, AFM)之探針 15
2-5-3 場發射性質的應用 16
2-5-4 其他方面的應用 19
2-6 電漿原理、種類與電漿表面處理 20
2-6-1 電漿原理 20
2-6-2 電漿的產生方式 23
2-6-3 電漿表面處理 25
2.7 輪磨原理 27
2.8 變質層 29
2.9歐傑電子能譜儀縱深分佈 30
第3章 實驗方法與設備 31
3-1 實驗規劃 31
3-2 實驗設備 31
3-2-1 化學氣相沉積設備 31
3-2-2 大氣電漿表面處理設備 32
3-2-3 檢測儀器 33
3-3 實驗步驟 34
3-4 實驗流程 36
3-5實驗參數之規劃 37
第4章 結果與討論 38
4-1 電漿表面處理 38
4-2 壓痕表面處理 46
4-3 輪磨表面處理 52
4-4 不同磨輪之輪磨表面處理 58
第5章 結論 67
第6章 參考文獻 68

圖目錄
圖1-1 碳的同素異形體 2
圖2-1 C60分子模型 5
圖2-2 奈米碳管的HRTEM照片(A)5層管壁 (B) 2層管壁 (C) 7層管壁 5
圖2-3 二維片狀的石墨結構圖 7
圖2-4 奈米碳管的各種結構 (A)ARMCHAIR (B)ZIGZAG (C)CHIRAL 7
圖2-8 碳經由催化劑擴散成長機制示意圖 12
圖2-9 (A)頂端成長模式 (B)底部成長模式 13
圖2-10 奈米碳管高分子複合薄膜之破裂圖 15
圖2-11 (A)傳統探針 (B)奈米碳管探針 16
圖2-12 傳統探針與奈米碳管探針觀測高深寬比特徵差異 16
圖2-13 韓國三星電子所製造之奈米碳管平面顯示器 18
圖2-14 奈米碳管平面顯示器內部示意圖 18
圖2-15 平行板電極之電壓與P×D乘積關係圖 22
圖2-16 低壓直流輝光放電的電流–電壓關係圖 22
圖2-17 大氣電漿的電流–電壓關係圖 22
圖2-18各種不同的電漿源(A)電暈放電(B)介電質放電(C)電漿火焰 24
(D)電漿噴射 24
圖 2-22 輪磨加工磨粒移除材料形態 28
圖 2-23 砂輪之三種磨耗形式(A) ATTRIRIOUS WEAR (B) GRAIN FRACTURE (C) BOND FRACTURE 28
圖2-24 變質層 29
圖2-25歐傑電子示意圖 30
圖3-1 化學氣相沉積設備 31
圖3-2 化學氣相沉積設備示意圖 32
圖3-3大氣電漿表面處理設備圖 33
圖3-4 掃描式電子顯微鏡(HITACHI S4160型) 34
圖3-5 電漿表面處理示意圖 35
圖4-1 沒有刮痕的試片未經電漿表面處理之奈米碳管(A)700OC (B)730OC (C)760OC (D)790OC (E)810OC (F)840OC (G)870OC (H)900OC 40
圖4-2 沒有刮痕的試片電漿表面處理60秒之奈米碳管(A)700OC (B)730OC (C)760OC (D)790OC (E)810OC (F)840OC (G)870OC (H)900OC 41
圖4-3 沒有刮痕的試片電漿表面處理120秒之奈米碳管(A)700OC (B)730OC (C)760OC (D)790OC (E)810OC (F)840OC (G)870OC (H)900OC 42
圖4-4有刮痕試片未經電漿表面處理之奈米碳管(A)700OC (B)730OC (C)760OC (D)790OC (E)810OC (F)840OC (G)870OC (H)900OC 43
圖4-5有刮痕試片電漿表面處理60秒之奈米碳管(A)700OC (B)730OC (C)760OC (D)790OC (E)810OC (F)840OC (G)870OC (H)900OC 44
圖4-6有刮痕試片電漿表面處理120秒之奈米碳管(A)700OC (B)730OC (C)760OC (D)790OC (E)810OC (F)840OC (G)870OC (H)900OC 45
圖4-7不同輪磨試片之TEM圖 (A)6K-02 (B)6K-09 (C)6K-17 64
圖4-8不同輪磨試片之AES圖 (A)6K-02 (B)6K-09 65

表目錄
表2-1 奈米碳管可能的應用 19
表2-2 高分子材料經電漿處理後的性質改變 26
表4-1氫氟酸蝕刻壓痕前後所成長奈米碳管(反應時間1分鐘)之SEM比較表 48
表4-2氫氟酸蝕刻壓痕前後所成長奈米碳管(反應時間5分鐘)之SEM比較表 50
表4-3氫氟酸蝕刻輪磨試片前後奈米碳管成長之SEM比較表 54
表4-4不同輪磨試片成長奈米碳管之SEM比較表 60
表4-5輪磨試片未加入催化劑成長奈米碳管之SEM比較表 66

參考文獻 【1】 http://smalley.rice.edu/index.cfm, 6 January 2005
【2】 M.L. Cohen, “Nanotubes, nanoscience, and nanotechnology”, Materials Science and Engineering C 15 (2001) pp. 1-11
【3】 S. Iijima, “Helical microtubules of graphitic carbon”, Nature 354 (1991) pp. 56-58
【4】 R.C. Haddon, L.E. Brus, K. Ragahavachari, “Rehybridization and π-orbital alignment: the key to the existence of spheroidal carbon clusters”, Chem. Phy. Lett. 131 (1986) pp. 165-169
【5】 成會明,奈米碳管,五南圖書出版公司,台北,第21-23頁,2004年。
【6】 N. Hamada, S. Sawada, A. Oshiyama, “New one-dimensional conductors: Graphitic microtubules”, Phys. Rev. Lett. 68 (1992) pp. 1579-1581
【7】 R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, “ Electronic structure of chiral graphene tubules”, Appl. Phys. Lett. 60 (1992) pp. 2204-2206
【8】 L. Chico, V.H. Crespi, L.X. Benedict, S.G. Louie, M.L. Cohen, “Pure carbon nanoscale devices: Nanotube heterojunctions”, Phys. Rev. Lett. 76 (1996) pp. 971-974
【9】 P.J.F Harris, “Carbon nanotubes and related structures”, Cambridge Press, Cambridge (1999)
【10】 R.B. Weisman, “Simplifying carbon nanotube identification”, American Institute of Physics 10 (2004) pp. 24-27
【11】 P.G. Collins, P. Avouris, “Nanotubes for electronics”, Scientific American 283 (2000) pp. 62-69
【12】 A.G. Rinzler, J. Liu, H. Dai, P. Nikolaev, C.B. Huffman, F.J. Rodriguez-Macias, P.J. Boul, A.H. Lu, D. Heymann, D.T. Colbert, R.S. Lee, J.E. Fischer, A.M. Rao, P.C. Eklund, R.E. Smalley, “Large-scale purification of single-wall carbon nanotubes: Process, product and characterization”, Applied Physics A: Materials Science & Processing 67 (1998) pp. 29-37
【13】 A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tománek, J.E. Fischer, R.E. Smalley, “Crystalline ropes of metallic carbon nanotubes”, Science 273 (1996) pp. 483-487
【14】 Y. Zhang, S. Iijima, “Formation of single-wall carbon nanotubes by laser ablation of fullerenes at low temperatures”, Appl. Phys. Lett. 75 (1999) pp. 3087-3089
【15】 Y. Saito, K. Nishikubo, K. Kawabata, T. Matsumoto, “Carbon nanocapsules and single-layered nanotubes produced with platinum group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge”, J. Appl. Phys. 80 (1996) pp. 3062-3067
【16】 C.J. Lee, S.C. Lyu, Y.R. Cho, J.H. Lee, K.I. Cho, “Diameter- controlled growth of carbon nanotubes using thermal chemical vapor deposition”, Chem. Phys. Lett. 341 (2001) pp. 245-249
【17】 E.F. Kukovitsky, S.G. L’vov, N.A. Sainov, V.A. Shustov, L.A. Chernozatonskii, “Correlation between metal catalyst particle size and carbon nanotube growth”, Chem. Phys. Lett. 355 (2002) pp. 497-503
【18】 T. Okazaki, H. Shinohara, “Synthesis and characterization of single-wall carbon nanotubes by hot-filament assisted chemical vapor deposition”, Chem. Phys. Lett. 376 (2003) pp. 606-611
【19】 R. Vajtai, B.Q. Wei, Z.J. Zhang, Y. Jung, G. Ramanath, P.M. Ajayan, “Building carbon nanotubes and their smart architectures”, Smart Mater. Struct. 11 (2002) pp. 691-698
【20】 Baker, R.T.K., Barber, M.A., Harris, P.S., Feates, F.S., Waite, R.J., “Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene,” Journal of Catalysis, Vol. 26, pp. 51-54, 1972.
【21】 http://www.chemtech.com.tw/Column.php?mode=detail&id=45,ChemTech化工產業技術知識網奈米專欄網站。
【22】 M.J. Yacaman, M.M. Yoshida, L. Rendon, J.G. Santiesteban, “Catalytic growth of carbon microtubules with fullerene structure”, Appl. Phys. Lett. 62 (1993) pp. 202-204
【23】 M.J. Jung, K.Y. Eun, J.K. Lee, Y.J. Baik, K.R. Lee, J.W. Park, “Growth of carbon nanotubes by chemical vapor deposition”, Diamond and Related Materials 10 (2001) pp. 1235-1240
【24】 Y.M. Shyu, F.C.N. Hong, “Low-temperature growth and field mission of aligned carbon nanotubes by chemical vapor deposition”, Materials Chemistry and Physics 72 (2001) pp. 223-227
【25】 E.F. Kukovitsky, S.G. L’vov, N.A. Sainov, V.A. Shustov, L.A. Chernozatonskii, “Correlation between metal catalyst particle size and carbon nanotube growth”, Chem. Phys. Lett. 355 (2002) pp. 497-503
【26】 H. Zhang, E. Liang, P. Ding, M. Chao, “Layered growth of aligned carbon nanotube arrays by pyrolysis”, Physica B 337 (2003) pp. 10-16
【27】 M.M.J. Treacy, T.W. Ebbesen, T.M. Gibson, “Exceptionally high Young’s modulus observed for individual carbon nanotubes”, Nature 381 (1996) pp. 678-680
【28】 E.W. Wong, P.E. Sheehan, C.M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes”, Science 277 (1997) pp. 1971-1975
【29】 F. Li, H.M. Cheng, S. Bai, G. Su, “Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes”, Appl. Phys. Lett. 77 (2000) pp. 3161-3163
【30】 D. Qian, E.C. Dickey, R. Andrews, T. Rantell, “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites”, Appl. Phys. Lett. 76 (2000) pp. 2868-2870
【31】 R.Z. Ma, J. Wu, B.Q. Wei, J. Liang, D.H. Wu, “Processing and properties of carbon nanotubes-nano-SiC ceramic”, Journal of Materials Science 33 (1998) pp. 5243-5246
【32】 E. Flahaut, A. Peigney, C. Laurent, C. Marliere, F. Chastel, A. Rousset, “Carbon nanotube-metal-oxide nanocomposites: microstructure, electrical conductivity and mechanical properties”, Acta Materialia 48 (2000) pp. 3803-3812.
【33】 A. Peigney, C. Laurent, E. Flahaut, A. Rousset, “Carbon nanotubes in novel ceramic matrix nanocomposites”, Ceramics International 26 (2000) pp. 677-683
【34】 A. Peigney, C. Laurent, O. Dumortier, A. Rousset, “Carbon nanotubes-Fe-alumina nanocomposites. Part I: Influence of the Fe content on the synthesis of powders”, Journal of the European Ceramic Society 18 (1998) pp. 1995-2004
【35】 Y. Nakayama, “Scanning probe microscopy installed with nanotube probes and nanotube tweezers “, Ultramicroscopy 91 (2002) pp. 49-56
【36】 T. Larsen, K. Moloni, F. Flack, M.A. Eriksson, M.G. Lagally, C.T. Black, “Comparison of wear characteristics of etched-silicon and carbon nanotubes atomic-force microscopy probes”, Appl. Phys. Lett. 80 (2002) pp. 1996-1998
【37】 C.L. Cheung, J.H. Hafner, C.M. Lieber, “Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging”, PNAS 97 (2000) pp. 3809-3813
【38】 J.M. Kim, “Field emission from carbon nanotubes for displays”, Diamond and Related Materials 9 (2000) pp. 1184-1189
【39】 董家齊, 陳寬任, “奇妙的物質第四態–電漿”, 科學發展 354 (2002) pp. 52-59
【40】 E.E. Kunhardt, “Electrical breakdown of gases: The prebreakdown stage”, IEEE Transactions on Plasma Science PS-8 (1980) pp. 130-138
【41】 A. Schutze, J.Y. Jeong, S.E. Babayan, J. Park, G.S. Selwyn, R.F. Hicks, “The atmospheric-pressure plasma jet: A review and comparison to other plasma sources”, IEEE Transactions on Plasma Science 26 (1998) pp. 1685-1964
【42】 S. Ramakrishnan, M.W. Rogozinski, “Properties of electric arc plasma for metal cutting”, J. Appl. Phys. D 30 (1997) pp. 636-644
【43】 李長久, 孫波, 汪民, 韓峰, 武濤, “微束等離子噴塗工藝條件對Cu塗層組織和性能的影響”, 西安交通大學學報 36 (2002) pp. 1182-1186
【44】 M. Noeske, J. Degenhardt, S. Strudthoff, U. Lommatzsch, “Plasma jet treatment of five polymers at atmospheric pressure: surface modifications and the relevance for adhesion”, International Journal of Adhesives 24 (2004) pp. 171-177
【45】 H. Krump, M. Simor, I. Hudec, M. Jasso, A.S. Luy, “Adhesion strength study between plasma treated polyester fibers and a rubber matrix”, Applied Surface Science 240 (2005) pp. 268-274
【46】 M.C. Kim, D.K. Song, H.S. Shin, S.H. Baeg, G.S. Kim, J.H. Boo, J.G. Han, S.H. Yang, “Surface modification for hydrophilic property of stainless steel treated by atmospheric-pressure plasma jet”, Surface and Coatings Technology 171 (2003) pp. 312-316
【47】 M.C. Kim, S.H. Yang, J.H. Boo, J.G. Han, “Surface treatment of metals using an atmospheric pressure plasma jet and their surface characteristics”, Surface and Coatings Technology 174-175 (2003) pp. 839-844
【48】 王德海,江欞 ,”紫外光固化材料之理論與應用”,科學出版社,北京市, 2001。
【49】 J. Kindernay, A. Blazkova, J. Ruda, V. Jan covi cova, Z. Jakub kova, “Effect of UV light source intensity and spectral distribution on the photopolymerisation reactions of a multifunctional acrylated monomer”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 151, pp. 229–236, 2002.
【50】 樊美公,“光化學基本原理與光子學材料科學” ,科學出版社,北京市,2000。
【51】 D. Christian, “Light-induced crosslinking polymerization”, Polymer International, Vol. 51, pp. 1141-1150, 2002.
【52】 N.S. Allen, “Photoinitiators for UV and visible curing of coatings: mechanisms and properties”, Journal of Photochemistry and Photobiology A: Chemistry 100, pp. 101-107, 1996.
【53】 J. Segurola, N.S. Allen, M. Edge, A. McMahona, S. Wilson, “Photoyellowing and discolouration of UV cured acrylated clearcoatings systems: influence of photoinitiator type”, Polymer Degradation and Stability, Vol. 64, pp. 39-48, 1999.
【54】 C.S.B. Ruiz, L.D.B. Machado, J.E. Volponi, E.S. Pino , “Influence of sample composition and processing parameters on the UV cure of clear coatings”, Nuclear Instruments and Methods in Physics Research B, Vol. 208, pp. 309–313, 2003.
【55】 徐福熙,“如何選擇及使用紫外線/可見光硬化樹脂型接著劑”, 化工科技與商情,第27期。
【56】 J. Kindernay, A. Blažková, J. Rudá, V. Janˇcoviˇcová, Z. Jakub′ıková, “Effect of UV light source intensity and spectral distribution on the photopolymerisation reactions of a multifunctional acrylated monomer”, Journal of Photochemistry and Photobiology A, Chemistry 151, pp. 229–236, 2002.
【57】 B. Nabeth, J. F. Gerard, J. P. Pascault, “Dynamic mechanical properties of UV-curable polyurethane acrylate with various reactive diluents”, Journal of Applied Polymer Science, Vol. 60, pp. 2113-2123, 1996.
【58】 D.S. Kim, W.H. Seo, “Ultraviolet-Curing Behavior and Mechanical Properties of a Polyester Acrylate Resin”, Journal of Applied Polymer Science, Vol. 92, pp. 3921–3928, 2004.
【59】 M.J. Hillier, “On a Three-Dimensional Model of Surface Grinding Process,” Int. J. Mach. Tool Des. Res., Vol. 6, pp. 109-113, 1966.
【60】 C. Rubenstein, “The Mechanics of Grinding”, Int. J. Mach. Tool Des. Res. Vol. 12, pp. 127-139, 1972.
【61】 M. Alfares, A. Elsharkawy, “Effect of grinding force on the vibration of grinding machine spindle system”, International Journal of Machine Tools & Manufacture, Vol.40, pp2003-2030, 2000.
【62】 M. Alfares, A. Elsharkawy, “Effect of grinding force on the vibration of grinding machine spindle system”, International Journal of Machine Tools & Manufacture, Vol.40, pp2003-2030, 2000.
【63】 陳春宏,“多晶鑽石碟薄化矽晶圓之破壞層研究”, 清華大學動力機械工程研究所碩士論文,民國95年。
【64】 http://www.mse.nthu.edu.tw/~jch/surface/problem/877505/surface.html,Auger Electron Spectroscopy Studies on TiNx
論文使用權限
  • 同意紙本無償授權給館內讀者為學術之目的重製使用,於2008-07-26公開。
  • 同意授權瀏覽/列印電子全文服務,於2008-07-26起公開。


  • 若您有任何疑問,請與我們聯絡!
    圖書館: 請來電 (02)2621-5656 轉 2281 或 來信